Skip to main content
Log in

Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Silver-doped CdS quantum dots capped with mercaptoacetic acid (CdSAg-MAA QDs) were prepared and are shown to be a quenchable fluorescent probe for hydrogen sulfide (H2S). The optimized approach exhibits a linear response in the 0.01 to 500 μM H2S concentration range and a 3.0 nM detection limit (RSD = 0.54 % for n = 5 at 10 nM of H2S). The estimated endogenous H2S levels in local wastewater were 45.4 μM and 48.7 μM and the assays were not responsive to various ions often present in water and wastewater. The method gave recoveries ranging from 98 to 102 % for the analysis of acidified wastewater spiked with H2S. Consequently, a simple colorimetric test strip was prepared by impregnating the filter paper with a mixture of CdSAg-MAA QDs and chitosan. The test strip exhibited good selectivity and sensitivity for the quantitation of H2S in local wastewater samples.

A simple, sensitive and selective silver-doped CdS quantum dot fluorescent probe for H2S in real sample is presented. To evaluate their practical applicability, test stripes for H2S were prepared and exhibited good selectivity for H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang K, Baskaran V, Nemati M (2009) Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochem Eng J 44:73–94

    Article  CAS  Google Scholar 

  2. Doujaiji B, Al-Tawfiq JA (2010) Hydrogen sulfide exposure in an adult male. Annals Saudi Med 30(1):76–80

    Google Scholar 

  3. Hughes MN, Centelles MN, Moore KP (2009) Making and working with hydrogen sulfide. The Chemistry and Generation of Hydrogen Sulfide in Vitro and its Measurement in Vivo: A Review Free Radical Biol Med 47:1346–1353

    CAS  Google Scholar 

  4. Chen R, Whitmore PM (2014) The science and function of nanomaterials: from synthesis to application, chapter 6, pp 107–120.

  5. Pokorna D, Zabranska J (2015) Sulfur-oxidizing bacteria in environmental technology. Biotechnol Adv. doi:10.1016/j.biotechadv.2015.02.007

    Google Scholar 

  6. Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134

    Article  CAS  Google Scholar 

  7. Kolluru GK, Shen X, Bir SC, Kevil CG (2013) Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 35:5–20

    Article  CAS  Google Scholar 

  8. Kaur M, Jain N, Sharma K, Bhattacharya S, Roy M, Tyagi AK, Gupta SK, Yakhmi JV (2008) Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sensors Actuators B 133:456–461

    Article  CAS  Google Scholar 

  9. Kuo LM, Shih YT, Wu CS, Lin YC, Chao S (2013) A new hybrid method for H2S-sensitive devices using WO3-based film and ACF interconnect. Meas Sci Technol 24. doi:10.1088/0957-0233/24/7/075105

  10. Sen S, Bhandarkar V, Muthe KP, Roy M, Deshpande SK, Aiyer RC, Gupta SK, Yakhmi JV, Sahni VC (2006) Highly sensitive hydrogen sulphide sensors operable at room temperature. Sensors Actuators B 115:270–275

    Article  CAS  Google Scholar 

  11. Chen R, Nuhfer NT, Moussa L, Morris HR, Whitmore PM (2008) Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas nanotechnology 19. doi:10.1088/0957-4484/19/45/455604.

  12. Xu H, Wu J, Chen CH, Zhang L, Yang KL (2010) Detecting hydrogen sulfide by using transparent polymer with embedded CdSe/CdS quantum dots. Sensors Actuators B 143:535–538

    Article  CAS  Google Scholar 

  13. Zhang C, Zhang G, Feng L, Li J (2015) A ratiometric fluorescent probe for sensitive and selective detection of hydrogen sulfide and its application for bioimaging. Sensors Actuators B 216:412–417

    Article  CAS  Google Scholar 

  14. Zhang Z, Chen Z, Wang S, Qu C, Chen L (2014) On-site visual detection of hydrogen sulfide in air based on enhancing the stability of gold nanoparticles. Appl Mater Interfaces 6:6300–6307

    Article  CAS  Google Scholar 

  15. Yu N, Peng H, Xiong H, Wu X, Wang X, Li Y, Chen L (2015) Graphene quantum dots combined with copper(II) ions as a fluorescent probe for turn-on detection of sulfide ions. Microchim Acta 182:2139–2146

    Article  CAS  Google Scholar 

  16. Kornarakis I, Lykakis IN, Vordos N, Armatas GS (2014) Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate–Ag2S–CdS semiconductors. Nanoscale 6:8694–8703

    Article  CAS  Google Scholar 

  17. Gondal MA, Dastageer MA (2012) Spectral red shift in the Ag+ doped CdS quantum dots. Appl Phys B Lasers Opt 106:419–420

    Article  CAS  Google Scholar 

  18. Lin L, Wen Y, Liang Y, Zhang N, Xiao D (2013) Aqueous synthesis of Ag+ doped CdS quantum dots and its application in H2O2 sensing. Anal Methods 5:457–464

    Article  CAS  Google Scholar 

  19. Ma Y, Dai Y, Wei W, Liu X, Huang B (2011) Ag adsorption on Cd-terminated CdS (0 0 0 1) and S-terminated CdS (0001) surfaces: first-principles investigations. J Solid State Chem 184:747–752

    Article  CAS  Google Scholar 

  20. Khan MMT, Bhardwaj RC, Bhardwaj C (1988) Photodecomposition of H2S by silver doped cadmium sulfide and mixed sulfides with ZnS. Int. J. Hydrogen Energy 13:7–10

    Article  CAS  Google Scholar 

  21. Fu X, Wu Z, Lei M, Zhang L, Chen H, Tang W, Peng Z (2013) A facile route to silver–cadmium sulfide core–shell nanoparticles and their nonlinear optical properties. Mater Lett 104:76–79

    Article  CAS  Google Scholar 

  22. Zhou T, Rong M, Cai Z, Yang CJ, Chen X (2012) Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and sulfide sensing. Nanoscale 4:4103–4106

    Article  CAS  Google Scholar 

  23. Falgout DA, Harding CI (1968) Determination of H2S exposure by dynamic sampling with metallic silver filters. J Air Pollut Control Assess 18(1):15–20

    Article  CAS  Google Scholar 

  24. Chung C, Lee M (2004) Self-assembled monolayers of mercaptoacetic acid on Ag powder: characterization by FT-IR diffuse reflection spectroscopy. Bull Kor Chem Soc 25:1461–1462

    Article  CAS  Google Scholar 

  25. Shih CM, Shieh YT, Twu YK (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78:169–174

    Article  CAS  Google Scholar 

  26. Balan T, Guezennec C, Nicu R, Ciolacu F, Bobu E (2015) Improving barrier and strength properties of paper by multi-layer coating with bio-based additives. Cellul Chem Technol 49:607–615

    Google Scholar 

  27. Smirnova NP, Kryukov AI, Eremenko AM, Galagan YA, Kuchmi SY (1998) Preparation and optical properties of a new nanostructural material: silver-ion-doped CdS nanoparticles in silicate matrices. Theor Exp Chem 34:272–276

    Article  CAS  Google Scholar 

  28. Lee JI, Howard SM, Kellar JJ, Cross W, Han KN (2001) Electrochemical interaction between silver and sulfur in sodium sulfide solutions. Metall Mater Trans B Process Metall Mater Process Sci 32B:895–901

    Article  CAS  Google Scholar 

  29. Castro JL, López-Ramírez MR, Centeno SP, Otero JC (2004) Adsorption of mercaptoacetic acid on a colloidal silver surface as investigated by Raman spectroscopy. Biopolymers 74:141–145

    Article  CAS  Google Scholar 

  30. Butwong N, Noipa T, Burakham R, Srijaranai S, Ngeontae W (2011) Determination of arsenic based on quenching of CdS quantum dots fluorescence using the gas-diffusion flow injection method. Talanta 85:1063–1069

    Article  CAS  Google Scholar 

  31. Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873

    Article  CAS  Google Scholar 

  32. He R, Qian X, Yin J, Xi H, Bian L, Zhu Z (2003) Formation of monodispersed PVP-capped ZnS and CdS nanocrystals under microwave irradiation. Colloids Surf A 220:151–157

    Article  CAS  Google Scholar 

  33. Krylova V, Dukštienė N (2013) Synthesis and characterization of Ag2S layers formed on polypropylene. J Chem 2013:1–11

    Article  Google Scholar 

  34. Zamiri R, Ahangar HA, Zakaria A, Zamiri G, Shabani M, Singh B, Ferreira JMF (2015) The structural and optical constants of Ag2S semiconductor nanostructure in the far-infrared. Chem Cent J 9:1–6

    Article  CAS  Google Scholar 

  35. Lippert AR, New EJ, Chang CJ (2011) Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. JACS 133:10078–10080

    Article  CAS  Google Scholar 

  36. King SB (2013) Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides. Free Radic Biol Med 55:1–7

    Article  Google Scholar 

  37. Döllefeld H, Hoppe K, Kolny J, Schilling K, Weller H, Eychmüller A (2002) Investigations on the stability of thiol stabilized semiconductor nanoparticles. Phys Chem Chem Phys 4:4747–4753

    Article  Google Scholar 

  38. Xiang K, Liu Y, Li C, Tian B, Tong T, Zhang J (2015) A colorimetric and ratiometric fluorescent probe with a large stokes shift for detection of hydrogen sulfide. Dyes Pigments 123:78–84

    Article  CAS  Google Scholar 

  39. Ma F, Sun M, Zhang K, Yu H, Wang Z, Wang S (2015) A turn-on fluorescent probe for selective and sensitive detection of hydrogen sulfide. Anal Chim Acta 879:104–110

    Article  CAS  Google Scholar 

  40. Ni P, Sun Y, Dai H, Hu J, Shu J, Wang Y, Li Z, Li Z (2015) Colorimetric detection of sulfide ions in water samples based on the in situ formation of Ag2S nanoparticles. Sensors Actuators B 220:210–215

    Article  CAS  Google Scholar 

  41. Wang R, Yu F, Chen L, Chen H, Wang L, Zhang W (2012) A highly selective turn-on near-infrared fluorescent probe for hydrogen sulfide detection and imaging in living cells. Chem Commun 48:11757–11759

    Article  CAS  Google Scholar 

  42. Vashist SK, Schneider EM, Zengerle R, von Stetten F, Luong JHT (2015) Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron 66(15):169–176

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was carried out in part with funding from Thailand Research Fund (TRF) and Rajamangala University of Technology Isan (RMUTI) through the TRF under Grant No. TRG5780076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nutthaya Butwong.

Ethics declarations

The authors declare that they have no competing interests

Electronic supplementary material

ESM 1

(DOC 898 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butwong, N., Srijaranai, S. & Luong, J.H.T. Fluorometric determination of hydrogen sulfide via silver-doped CdS quantum dots in solution and in a test strip. Microchim Acta 183, 1243–1249 (2016). https://doi.org/10.1007/s00604-016-1755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1755-1

Keywords

Navigation