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Abstract
Purpose   Prolonged bed rest and microgravity in space cause intervertebral disc (IVD) degeneration. However, the under-
lying molecular mechanisms are not completely understood. Transient receptor potential canonical (TRPC) channels are 
implicated in mechanosensing of several tissues, but are poorly explored in IVDs.
Methods  Primary human IVD cells from surgical biopsies composed of both annulus fibrosus and nucleus pulposus (pas-
sage 1–2) were exposed to simulated microgravity and to the TRPC channel inhibitor SKF-96365 (SKF) for up to 5 days. 
Proliferative capacity, cell cycle distribution, senescence and TRPC channel expression were analyzed.
Results  Both simulated microgravity and TRPC channel antagonism reduced the proliferative capacity of IVD cells and 
induced senescence. While significant changes in cell cycle distributions (reduction in G1 and accumulation in G2/M) were 
observed upon SKF treatment, the effect was small upon 3 days of simulated microgravity. Finally, downregulation of TRPC6 
was shown under simulated microgravity.
Conclusions  Simulated microgravity and TRPC channel inhibition both led to reduced proliferation and increased senescence. 
Furthermore, simulated microgravity reduced TRPC6 expression. IVD cell senescence and mechanotransduction may hence 
potentially be regulated by TRPC6 expression. This study thus reveals promising targets for future studies.

Graphical abstract  These slides can be retrieved under Electronic Supplementary Material.
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Take Home Messages

1. Simulated microgravity reduced proliferation and induced
senescence of intervertebral disc cells.

2. Inhibition of transient receptor potential canonical (TRPC) 
channels reduced proliferation, retarded cycle progression and 
induced senescence of intervertebral disc cells.

3. Under simulated microgravity, downregulation of the TRPC6 
channel was observed.
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Introduction

Intervertebral discs (IVDs) show signs of degeneration as 
early as the second decade of life [1]. As normal physio-
logical ageing and pathological degeneration recruit simi-
lar signalling cascades, pathological IVD degeneration can 
be described as accelerated tissue ageing, contributed to by 
multimodal stress-induced changes with ultimate tissue fail-
ure [2]. Although genetics plays an essential role in the onset 
of ageing and the progression of degeneration [3], mechani-
cal loading and damage, particularly of the lumbar spine, 
have been identified as contributing factors [4]. Whereas 
physiological levels of mechanical stress support the meta-
bolic balance of the IVD [5], hyper-physiological mechani-
cal stresses or mechanical unloading biases the IVD towards 
catabolism, inflammation and reduced viability, hence pro-
moting degeneration [6]. Mechanical unloading, occurring, 
e.g. during prolonged bed rest, causes long-lasting changes 
in IVDs [7, 8]. In fact, the changes in IVD morphology 
measured by magnetic resonance imaging after 21 days 
of bed rest in 7 healthy subjects persisted after 5 months 
[7]. The recovery of the IVDs was still incomplete 2 years 
after 60 days of bed rest [8]. Moreover, astronauts, who are 
exposed to microgravity during space flights, exhibit spi-
nal lengthening [9], low back pain [10, 11] and an elevated 
risk of IVD herniation [12]. In vitro experiments [13] and 
animal studies conducted during space flight [14, 15] have 
shown degenerative biomechanical or biochemical effects of 
microgravity. To study microgravity on Earth, random posi-
tioning machines (RPMs) are commonly used [16]. Signs of 
IVD degeneration were observed in mice discs cultured in a 
rotary wall vessel bioreactor [17], although this was not the 
case with rat IVDs [18].

During degeneration, IVD cells acquire numerous 
pathobiological features, including increased levels of 
cellular senescence [19, 20]. Affected cells possess a so-
called senescence-associated secretory phenotype (SASP), 
characterized by proliferative dysfunction, unresponsive-
ness to mitogenic stimulation (and hence hampered cell 
cycle progression), as well as catabolic and inflamma-
tory behaviour [20]. The molecular mechanisms leading 
to IVD degeneration and ageing are not yet completely 
understood. However, high levels of free calcium in the 
cartilaginous endplates are associated with IVD degenera-
tion [21]. Furthermore, free calcium seems to contribute 
to IVD degeneration through the calcium-sensing recep-
tor (CaSR) [22]. Recently, the expression of transient 
receptor potential (TRP) channels, a superfamily of ion 
channel with relevance in calcium regulation [23], has 

been demonstrated in the IVD [24–26]. The members 
of the canonical family (TRPC) are especially interest-
ing. A direct correlation between TRPC6 expression and 
the degree of IVD degeneration has been recently shown 
[25], highlighting TRPC6 as a candidate for further stud-
ies on IVD pathobiology. Aside from TRPC6, the isoform 
TRPC1 may also be of specific relevance. TRPC1 and 
TRPC6 are both known to affect cell cycle progression in 
various cell types [27–29], and TRPC6 was shown to mod-
ulate cellular senescence [30]. Therefore, their modulation 
and (dys-)regulation may play a crucial role in IVD health, 
but also degeneration. Importantly, TRPC1 and TRPC6 
have both been described as mechanosensitive [26]. TRP 
channels are therefore interesting candidates when aiming 
to link IVD mechanobiology with IVD ageing and degen-
eration. Interestingly, simulated microgravity was shown 
to depress TRPC1 expression associated with an accumu-
lation of cells into G2/M, effectively stalling proliferation 
of mouse myoblasts [28, 31].

The aim of this study was to investigate the effects of 
simulated microgravity and TRPC channel pharmaco-
logical inhibition on human IVD cell proliferation, cell 
cycle progression and senescence (as key features of IVD 
degeneration).

Materials and methods

Cell isolation and culture

Primary cells were isolated from human IVD biopsies from 
patients undergoing spinal surgery (approved by the ethical 
committees in Zurich and Lucerne, Switzerland, and after 
informed consent), as previously described [32]. For patient 
demographics, see Table 1. Biopsies were composed of both 
annulus fibrosus and nucleus pulposus (with different ratio), 
as it is difficult to distinguish these tissues in degenerated 
samples. The n number in each experiment (between 4 and 
6) represents the number of donors used per experimental 
condition.

Cells were cultured in DMEM/F-12 (Gibco, 31330-038) 
with 10% FCS (Sigma-Aldrich, F7524) and 1% Anti-Anti 
(= 50 units/mL penicillin, 50  μg/mL streptomycin and 
125 ng/mL ampicillin) (Gibco, 15240-062) at 37 °C and 5% 
CO2 up to passage 1–2. For the experimental phase, cells 
were cultured in reduced-serum DMEM/F12 (5% FCS) with-
out antibiotics to avoid any possible interaction of aminogly-
coside antibiotics with TRP channel activity [28].
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Cellular treatments

Simulated microgravity

To expose cells to simulated microgravity, a previously 
described RPM was used (Fig. 1) [28]. The RPM consists 

of two gimbal-mounted frames independently moved by 
motors. Samples are placed at the centre of the frames, 
where the generated motion pattern is designed to equally 
distribute the gravity vector spatially and temporally (the 
gravity mathematically averages zero) [33]. Because the 
constant reorientation of the gravity vector prevents biologi-
cal systems to adjust to this force, their response is similar 
to the one achieved upon real microgravity exposure [16].

In our experiments, the rotation speed of the frames was 
set to 60° per second. IVD cells (n = 4–5, seeded at 6000 
cells/cm2 in T25 flasks (150,000 cells per flask)) were cul-
tured for 24 h prior to simulated microgravity. Flasks were 
completely filled with culture medium to avoid air bubbles 
and closed airtight with a filter-less cap [28]. Flasks were 
mounted onto the RPM (integrated miniaturized CO2 incu-
bator), whereas corresponding control samples (1 g) were 
cultured in the same conditions and simultaneously kept in 
a standard CO2 incubator [28]. Treated cells were analyzed 
for proliferation (up to 5 days of treatment), cell cycle pro-
gression (24 h of treatment), cellular senescence (72 h of 
treatment) and TRP channel expression (72 h of treatment) 
and compared to untreated controls.

Pharmacological TRPC channel inhibition

Twenty-four hours before pharmacological TRPC inhibition 
with the broad TRPC antagonist SKF-96365 [34] (Sigma-
Aldrich, S7809), IVD cells were seeded at a density of 
~ 8000 cells/cm2 in either 24-well plates for subsequent anal-
ysis of proliferation (n  = 6, 15,000 cells per well), 25 cm2 
flasks for cell cycle analysis (n  = 6, 200,000 cells per flask), 
or 12-well plates for senescence analysis (n = 530,000 cells 
per well). For cell cycle analysis, cells were exposed to high 
doses of SKF-96365 (20 µM) for 48 h, whereas proliferation 
and senescence experiments were conducted for up to 5 days 
at lower concentrations (1.7 and 2.5 µM) to avoid cell death 
or complete growth arrest. Treated cells were analyzed as 
described below and compared to untreated controls.

Cell analysis

Cell proliferation

Manual counting of trypsinized cells was conducted to iden-
tify the effects of simulated microgravity and pharmacologi-
cal TRP inhibition on cell proliferation. Proliferation was 
analyzed over 5 days (day 0 = seeding cell number, 1, 3 and 
5) by counting each replicate twice using a hemocytometer.

Cell cycle

Cell cycle progression was analyzed by flow cytometry 
analysis as previously described [28]. Cells were fixed in 

Table 1   Patient demographics

F = female; M = male; L4/5 = lumbar 4–5; L5/S1 = lumbar 5-sacral 1; 
C6/7 = cervical 6–7; DDD = degenerative disc disease; uk = unknown

Patient 
number

Patient age Sex Disc level Type of disease Pfir-
mann 
grade

1 62 F L4/5 Spondylolisthesis V
2 53 M L5/S1 Herniation IV
3 71 F L4/5 DDD II
4 42 F L4/5 Herniation IV
5 uk uk uk uk uk
6 46 M L5/S1 DDD V
7 43 F L4/5 Herniation IV
8 uk uk uk uk uk
9 41 F L5/S1 Herniation IV
10 47 F L4/L5 Herniation III
11 56 F L3/4 Herniation IV
12 57 M L5/S1 DDD IV
13 68 M L4/5 Herniation III
14 uk uk uk uk uk
15 40 F C6/7 Herniation III
16 44 M L4/5 Herniation IV

Fig. 1   Photograph of the random positioning machine (RPM) used 
in this study. The samples were mounted in the integrated miniatur-
ized CO2 incubator in the inner of the two rotating gimbal-mounted 
frames that are independently moved by motors
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70% ice-cold EtOH, stored at − 20 °C overnight and then 
stained with PI/RNase staining buffer (BD Pharmingen, 
550825). Cells were analyzed with a FACSCalibur sys-
tem (BD Biosciences), outfitted with a FL1 channel for PI 
staining. Appropriate settings for forward- and side-scatter 
gates were applied to examine 10′000 events/sample. The 
cell cycle profile was quantified with FlowJo flow cytom-
etry analysis software (TreeStar Inc.), applying the Watson 
model to fit the histograms of single-gated cells.

Senescence

The level of cellular senescence was assessed by SA-β-
galactosidase staining. Cells were washed twice with PBS, 
fixed with 3% paraformaldehyde in PBS (pH 7.4), washed 
twice with PBS and incubated overnight at 37 °C with X-gal 
chromogenic substrate (1 mg/ml) at pH 6.0 [35]. After wash-
ing and dehydration with graded ethanol (75–95–99.9%, 
1 min each), six images per sample were taken under bright-
field illumination (10×). The percentage of senescent cells 
was determined by manually counting cells with ImageJ.

Gene expression

Gene expression analysis was conducted using a previ-
ously described protocol [36]. Briefly, RNA was extracted 
with TRIzol/chloroform (ThermoScientific, 15596018), 
the quality and quantity of RNA was determined with 
the NanodropLite (ThermoScientific) and 1 µg of RNA 
was reverse-transcribed into cDNA in a 30  µl volume 
using the High-Capacity cDNA Reverse Transcription Kit 
(Applied Biosystems, 4374966). For each qPCR reaction, 
150 ng cDNA was mixed with TaqMan primers (TRPC1: 
Hs00608195_m1; TRPC6: Hs00989190_m1; TBP: 
Hs00427620_m1), TaqMan Fast Universal PCR Master Mix 
(2X) (Applied Biosystems, 4352042) and RNAse-free water 
to a total volume of 10 µl and gene expression was meas-
ured with the CFX96 Touch™ Detection System (Bio-Rad). 
TATA-binding protein (TBP) was used as a housekeeping 
gene. Results are shown as 2− ΔΔCt values (i.e. relative to 
TBP and relative to the untreated control).

Statistical analysis

Data were analyzed for consistency, outliers and for nor-
mality. We used normal probability plots for visual inspec-
tion of data and Kolmogorov–Smirnov tests to test for nor-
mality. Because each donor was measured in the control as 
well as in the experimental group, samples were depend-
ent (clustered). Data were not normally distributed in any 
subgroup, and to consider both circumstances, a gener-
alized estimation equation model (GEE) was applied. In 
detail, we applied a full factorial model with a main, time 

and interaction effects and used the robust Huber–White 
sandwich estimator for the covariance matrix (unstruc-
tured approach). The lognormal distribution was used 
to model the underlying distribution. Least significance 
differences were computed for pairwise comparisons of 
means. Results are given in terms of means, standard devi-
ations and 95% confidence intervals for means. A signifi-
cance level of 5% was used. All tests were two-sided. All 
analyses were done by using STATISTICA 13 (Hill, T. & 
Lewicki, P. Statistics: Methods and Applications. StatSoft, 
Tulsa, OK) and PASW 24 (IBM SPSS Statistics for Win-
dows, Version 24.0., Armonk, NY).

Results

Simulated microgravity and TRPC channel inhibition 
reduce cell proliferation

Exposing IVD cells (n = 5) to simulated microgravity 
significantly reduced proliferation at days 3 (189 573 
cells ± 54 620) and 5 (337 325 cells ± 184 026) compared 
to cells maintained at 1 g (day 3: 365 600 cells ± 21 637, 
p < 0.0001; day 5: 620 463 cells ± 394 720, p = 0.0041) 
(Fig. 2a). Similarly, IVD cell proliferation rate (n = 6) was 
slowed at day 3 and day 5 by SKF-96365 (1.7 and 2.5 µM), 
a non-selective TRPC channel antagonist (Fig. 2b) [34]. 
Statistical significance was reached both when comparing 
each SKF concentration to the control group (p < 0.0001 
for both concentration at both day 3 and 5) and when 
comparing the 1.7 µM to the 2.5 µM group (p = 0.0007 
and p = 0.002 for day 3 and 5, respectively), thus proving 
dose-dependency.

Simulated microgravity and TRPC channel inhibition 
affect cell cycle

Although 24 h of simulated microgravity slightly reduced 
the mean percentage of cells in the G1 phase of the cell cycle 
from 64.6% ± 8.5 in the controls to 59.0% ± 6.1 and caused 
an accumulation within the G2/M phase from 11.6 ± 1.9 to 
15.2% ± 3.6, these differences were not significant (p = 0.062 
and p = 0.076, respectively) (Fig. 3a). However, short-term 
pharmacological blocking of TRPC-mediated calcium entry 
with SKF-96365 (20 µM, 48 h) resulted in a significant accu-
mulation of IVD cells within the G2/M phase, concomitant 
with a reduction of cells within the G1 phase (p < 0.0001 
for both phases) (Fig. 3b). Specifically, G2/M accumula-
tion increased from 11.4% ± 6.0 (untreated control) to 
30.3% ± 8.5, and G1 distribution decreased from 79.7% ± 8.5 
to 56.7% ± 11.9.
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Simulated microgravity and TRPC channel inhibition 
increase cellular senescence

We found that exposing IVD cells to simulated micro-
gravity for 3 days increased senescence (positive SA-β-
galactosidase staining) from 40.0% ± 3.6 (control group) 
to 50.0% ± 6.9 (p < 0.0001) (Fig. 4a). Similarly, SKF-
96365 treatment also augmented the percentage of SA-β-
galactosidase-positive cells relative to untreated controls 
(Fig. 4b). A significant difference was already observed 
between the 2.5 µM SKF group and controls at day 1 
(p < 0.0001), which was maintained at both days 3 and 
5 (p = 0.012 and p < 0.0001, respectively). At these later 
time points, statistical significance was also reached for the 
1.7 µM SKF group (p = 0.0018 and p < 0.0001) (Fig. 4b). 

Simulated microgravity downregulates TRPC6 
expression

Motivated by the fact that TRPC channel inhibition had 
similar effects on proliferation, cell cycle progression and 
senescence to simulated microgravity, we analyzed the 
gene expression of the TRPC channel isoforms TRPC1 
and TRPC6 under simulated microgravity. While TRPC1 
mRNA levels were not affected (p = 0.14) (Fig.  5a), 
TRPC6 expression was significantly reduced (mean 2− ΔΔCt 
value = 0.64 ± 0.19, p < 0.0001) (Fig. 5b).

Fig. 2   Effects of simulated microgravity and TRPC channel inhi-
bition on proliferation. a Proliferation (total cell number) of human 
IVD cells at terrestrial gravity (Ctrl) or exposed to simulated micro-
gravity (RPM) up to 5 days (n = 5). b Proliferation (total cell number) 

of human IVD cells with or without TRPC channel inhibition with 
1.7 or 2.5 μM SKF-96365 for up to 5 days (n = 6). Data are shown as 
mean with 95% confidence interval, *p < 0.05

Fig. 3   Effects of simulated microgravity and TRPC channel inhibi-
tion on cell cycle. a Cell cycle distribution (% of cells in each phase) 
of human IVD cells at 1 g (Ctrl) or exposed to simulated microgravity 
(RPM) for 24 h (n = 5). b Cell cycle distribution (% of cells in each 

phase) of human IVD cells with or without TRPC channel inhibition 
with 20 μM SKF-96365 for 48  h (n = 6). Data are shown as mean 
with 95% confidence interval, *p < 0.05
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Discussion

In this study, we found that (1) simulated microgravity and 
pharmacological antagonism of TRPC channels reduced 
cell proliferation, retarded cell cycle progression and 
induced cellular senescence, and that (2) simulated micro-
gravity concomitantly inhibited TRPC6 expression (while 
not affecting TRPC1 expression). TRPC6 may hence 
potentially play a role in mediating the effects on prolif-
eration and cell cycle distribution that were observed upon 
simulated microgravity. Further studies including modu-
lation of TRPC6 (with, e.g. activation with CRISPRa or 
knockout with CRISPRi [37]) are needed to reveal the pos-
sible involvement of TRPC6 in IVD mechanotransduction.

Mechanical unloading, as observed in astronauts, para-/
tetraplegic patients, bed rest studies [7, 8] or animals 
undergoing hindquarter suspension, negatively affects 
IVD metabolism and matrix composition. Here, we simu-
lated microgravity by using an RPM [28] and similarly 

observed detrimental, degeneration-associated changes. 
These changes are likely due to the integrated signalling 
network that couples mechanosensitive receptors and path-
ways to gene and transcription modulation [38], and may 
furthermore be associated with structural adjustments on 
the cell level (e.g. actin cytoskeleton reorganization) [39].

Although constituting a well-accepted method to simulate 
microgravity, the use of an RPM with its constant reorien-
tation of the samples induces additional forces (e.g. shear 
stresses) that may create artefacts. These forces present 
in the culture flasks on the RPM and their effects on the 
cultured cells were recently thoroughly studied by numeri-
cal analysis [40]. Parameters such as rotational velocity of 
the RPM play a role in the appearance of shear stress [40]. 
Therefore, additional stressors and artefacts can be prevented 
by taking the necessary measures for an accurate operation 
of the RPM [40]. IVD cell culture in flasks on the RPM does 
not recapitulate the complex three-dimensional disc matrix 
environment. However, signs of degeneration were similarly 
observed in whole mouse discs cultured under microgravity 

Fig. 4   Effects of simulated microgravity and TRPC channel inhi-
bition on senescence. a Percentage of SA-β-galactosidase-positive 
human IVD cells at 1 g (Ctrl) or exposed to simulated microgravity 
(RPM) for 3 days (n = 4) b Percentage of SA-β-galactosidase-positive 

human IVD cells with or without TRPC channel inhibition with 1.7 
or 2.5 μM SKF-96365 for up to 5  days (n = 5). Data are shown as 
mean with 95% confidence interval, *p < 0.05

Fig. 5   Gene expression of TRPC1 and TRPC6 under simulated 
microgravity. a Relative gene expression of TRPC1 and b TPRC6 
in human IVD cells at 1 g (Ctrl) or exposed to simulated micrograv-

ity (RPM) for 3 days (n = 4). Results are shown as 2−ΔΔCt values (i.e. 
relative to TBP and relative to the untreated control) (n = 4). Data are 
shown as mean with 95% confidence interval, *p < 0.05
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in a rotating wall vessel bioreactor [17]. Compared to studies 
in the entire human (astronauts and bed rest patients), the 
RPM represents a simplified in vitro model system, which 
is nevertheless useful to uncover the underlying molecular 
mechanisms related to IVD degeneration.

In agreement with our results obtained with human IVD 
cells, murine myoblasts exposed to simulated micrograv-
ity or SKF-96365 exhibited reduced proliferation and cell 
cycle arrest within the G2/M phase [28, 31]. This reflects the 
fact that proliferative capacity may concurrently correlate 
with mechanosensitivity and TRPC function [31]. However, 
myoblasts seem to rely on modulation of TRPC1 rather than 
TRPC6, indicating that the exact role of these TRP channels 
appears to be tissue and/or species dependent. To confirm 
the specific relevance of TRPC6 for IVD mechanosensing 
and mechanotransduction, future experiments should not 
only apply SKF-96365 [34, 41] (which may potentially also 
affect voltage-dependent calcium channels [42]), but should 
also target TRPC6 in a more specific manner.

Apart from analyzing cell proliferation and cell cycle 
progression, we also measured changes in cellular senes-
cence (as assessed by SA-β galactosidase staining), a hall-
mark of IVD degeneration [43, 44]. TRPC channel inhi-
bition and simulated microgravity both increased cellular 
senescence in IVD cells. However, variability in the basal 
levels of senescence (and proliferation capacity) between 
donors was present, as these differed with respect to age, 
pathology, degeneration grade and mixture of NP and AF 
tissue. Senescence in vivo is not only associated with the 
degree of disc degeneration [45], but also varies between 
NP and AF [20]. Furthermore, pro-inflammatory cytokines 
may trigger cell senescence [45], and these may not only be 
secreted by resident IVD cells, but also by invading immune 
cells found predominantly in IVD herniation samples [46]. 
Despite the differences in basal levels of senescence and 
proliferation capacity stemming from disparities in patient 
characteristics, we were able to show that microgravity and 
TRPC channel inhibition both increased cell senescence and 
decreased cell proliferation. The subsequent gene expres-
sion analysis of the TRPC channel isoforms TRPC1 and 
TRPC6 revealed that TRPC6 was downregulated under 
microgravity (while TRPC1 expression was not affected). 
Therefore, TRPC6 could potentially be of importance in the 
progression of IVD degeneration linked to cell senescence, 
but further studies are needed. In fact, the role of TRP chan-
nels in modulating senescence is also known for other cell 
types, such as endothelial cells (TRPC5) [47], pancreatic 
adenocarcinoma cells (TRPM7, TRPM8) [48, 49] and lung 
fibroblasts (TRPC6) [30].

Mechanistic studies modulating TRPC6 expression/
activity are needed to determine whether TRPC6 restricts 
or reverses progression of a SASP in IVD cells and mitigates 
the loss of regenerative capacity. This could possibly offer 

a means to treat IVD degeneration. So far, TRPC6 modula-
tion has been investigated for focal segmental glomerulo-
sclerosis [50], pulmonary hypertension [51] and ischaemia 
reperfusion-induced lung oedema [52]. TRP channel modu-
lation could be achieved by gene editing, using CRIPSR/
Cas9 [37, 53, 54]. However, these approaches are still in an 
early experimental phase.

Conclusions

In conclusion, we show that human IVD cells subjected to 
RPM-simulated microgravity or to TRPC channel inhibition 
display reduced proliferation, retarded cell cycle progres-
sion and increased cell senescence. Furthermore, simulated 
microgravity reduces TRPC6 gene expression. The TRPC6 
ion channel may hence be involved in mechanotransduction 
and in the regulation of cell proliferation and senescence in 
the IVD. These findings are in agreement with other studies 
where simulated microgravity induced signs of degenera-
tion in whole mouse IVDs [17] and reduced proliferation in 
mouse myoblasts by inducing cell cycle arrest [28]. The fact 
that the effects caused by simulated microgravity (reduced 
proliferation, retarded cell cycle progression and increased 
senescence) were recapitulated by TRPC channel inhibi-
tion and were accompanied by downregulation of TRPC6 
expression suggests that TRPC6 may potentially play a role 
in the underlying mechanisms. In fact, TRPC6 has also been 
associated with cell senescence in lung fibroblasts [30], a 
contributor to pulmonary hypertension [55], consequen-
tially motivating first studies on the therapeutic potential 
of TRPC6 modulation [55]. This study thus reveals TRPC6 
as a potential target for further studies aiming to investigate 
IVD degeneration.
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