Skip to main content
Log in

Abstract

A framed surface is a smooth surface in the Euclidean space with a moving frame. The framed surfaces may have singularities. We treat smooth surfaces with singular points, that is, singular surfaces more directly. By using the moving frame, the basic invariants and curvatures of the framed surface are introduced. Then we show that the existence and uniqueness for the basic invariants of the framed surfaces. We give properties of framed surfaces and typical examples. Moreover, we construct framed surfaces as one-parameter families of Legendre curves along framed curves. We give a criteria for singularities of framed surfaces by using the curvature of Legendre curves and framed curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Arnol’d, V.I.: Singularities of Caustics and Wave Fronts. Mathematics and Its Applications, vol. 62. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  • Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol. I. Birkhäuser, Basel (1986)

    Google Scholar 

  • Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82, 246–251 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Bruce, J.W., Giblin, P.J.: Curves and Singularities. A Geometrical Introduction to Singularity Theory., 2nd edn. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  • Fujimori, S., Saji, K., Umehara, M., Yamada, K.: Singularities of maximal surfaces. Math. Z. 259, 827–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Fukui, T.: Local differential geometry of cuspidal edge and swallowtail (preprint) (2017)

  • Fukui, T., Hasegawa, M.: Fronts of Whitney umbrella—a differential geometric approach via blowing up. J. Singul. 4, 35–67 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Fukunaga, T., Takahashi, M.: Existence and uniqueness for Legendre curves. J. Geom. 104, 297–307 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Fukunaga, T., Takahashi, M.: Evolutes of fronts in the Euclidean plane. J. Singul. 10, 92–107 (2014)

    MathSciNet  MATH  Google Scholar 

  • Fukunaga, T., Takahashi, M.: Framed surfaces and one-parameter families of framed curves (preprint) (2018)

  • Gray, A., Abbena, E., Salamon, S.: Modern Differential Geometry of Curves and Surfaces with Mathematica. Studies in Advanced Mathematics., 3rd edn. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  • Honda, S., Takahashi, M.: Framed curves in the Euclidean space. Adv. Geom. 16, 265–276 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ishikawa, G.: Zariski’s Moduli Problem for Plane Branches and the Classification of Legendre Curve Singularities. Real and Complex Singularities, pp. 56–84. World Sci. Publ, Hackensack (2007)

    MATH  Google Scholar 

  • Ishikawa, G.: Singularities of Curves and Surfaces in Various Geometric Problems. CAS Lecture Notes, vol. 10, Exact Sciences (2015)

  • Izumiya, S., Saji, K.: The mandala of Legendrian dualities for pseudo-spheres in Lorentz–Minkowski space and “flat” spacelike surfaces. J. Singul. 2, 92–127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Izumiya, S., Romero-Fuster, M.C., Ruas, M.A.S., Tari, F.: Differential Geometry from a Singularity Theory Viewpoint. World Scientific, New Jersey (2015)

    Book  MATH  Google Scholar 

  • Ivey, T.A., Landsberg, J.M.: Cartan for Beginners. Differential Geometry via Moving Frames and Exterior Differential Systems, 2nd edn. Graduate Studies in Mathematics, vol. 175. American Mathematical Society, Providence (2016)

  • Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities of flat fronts in hyperbolic space. Pac. J. Math. 221, 303–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Martins, L., Nuño-Ballesteros, J.J.: Contact properties of surfaces in \({\mathbb{R}}^3\) with corank \(1\) singularities. Tohoku Math. J. (2) 67, 105–124 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Martins, L., Saji, K.: Geometric invariants of cuspidal edges. Can. J. Math. 68, 445–462 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Martins, L., Saji, K., Umehara, M., Yamada, K.: Behavior of Gaussian Curvature and Mean Curvature Near Non-degenerate Singular Points on Wave Fronts. Geometry and Topology of Manifolds, Springer Proc. Math. Stat, vol. 154, pp. 247–281 (2016)

  • Oset Sinha, R., Saji, K.: On the geometry of the cuspidal cross-cap preprint) (2017). arXiv:1706.02074v1

  • Oset Sinha, R., Tari, F.: Projections of surfaces in \({\mathbb{R}}^4\) to \({\mathbb{R}}^3\) and the geometry of their singular images. Rev. Mat. Iberoam. 31, 33–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Oset Sinha, R., Tari, F.: Flat geometry of cuspidal edges. Osaka J. Math. (to appear) (2017). arXiv:1610.08702

  • Saji, K.: Normal form of swallowtail and its applications (preprint) (2017). arXiv:1703.08904v1

  • Saji, K., Umehara, M., Yamada, K.: The geometry of fronts. Ann. Math. (2) 169, 491–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Takahashi, M.: Envelopes of Legendre curves in the unit tangent bundle over the Euclidean plane. Result Math. 71, 1473–1489 (2017). https://doi.org/10.1007/s00025-016-0619-7

    Article  MathSciNet  MATH  Google Scholar 

  • Teramoto, K.: Parallel and dual surfaces of cuspidal edges. Differ. Geom. Appl. 44, 52–62 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for helpful comments to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Fukunaga.

Additional information

Tomonori Fukunaga was partially supported by JSPS KAKENHI Grant Number JP 15K17457 and Masatomo Takahashi was partially supported by JSPS KAKENHI Grant Number JP 17K05238.

Appendices

Framed Curves in the Euclidean Space

We quickly review on the theory of framed curves in the Euclidean space, see detail Honda and Takahashi (2016).

A framed curve in the Euclidean space is a smooth curve with a moving frame. We say that \((\gamma ,\nu _1,\nu _2):I \rightarrow \mathbb {R}^3 \times \varDelta \) is a framed curve if \(\dot{\gamma }(t) \cdot \nu _1(t)=0\) and \(\dot{\gamma }(t) \cdot \nu _2(t)=0\) for all \(t \in I\). We say that \(\gamma :I \rightarrow \mathbb {R}^3\) is a framed base curve if there exists \((\nu _1,\nu _2):I \rightarrow \varDelta \) such that \((\gamma ,\nu _1,\nu _2)\) is a framed curve.

We put \(\mu (t) = \nu _1(t) \times \nu _2(t)\). Then \(\{ \nu _1(t),\nu _2(t),\mu (t) \}\) is a moving frame along the framed base curve \(\gamma (t)\) in \(\mathbb {R}^3\) and we have the Frenet–Serret type formula,

$$\begin{aligned} \left( \begin{array}{c} \dot{\nu _1}(t)\\ \dot{\nu _2}(t)\\ \dot{\mu }(t) \end{array} \right) = \left( \begin{array}{ccc} 0 &{}\quad \ell (t) &{}\quad m(t)\\ -\ell (t) &{}\quad 0 &{}\quad n(t)\\ -m(t) &{}\quad -n(t) &{}\quad 0 \end{array}\right) \left( \begin{array}{c} \nu _1(t)\\ \nu _2(t)\\ \mu (t) \end{array}\right) , \ \dot{\gamma }(t)=\alpha (t)\mu (t) \end{aligned}$$

where \(\ell (t) = \dot{\nu _1}(t) \cdot \nu _2(t)\), \(m(t) = \dot{\nu _1}(t) \cdot \mu (t), n(t) = \dot{\nu _2}(t) \cdot \mu (t)\) and \(\alpha (t)=\dot{\gamma }(t) \cdot \mu (t)\). We call the functions \((\ell ,m,n,\alpha )\)the curvature of the framed curve. Note that \(t_0\) is a singular point of \(\gamma \) if and only if \(\alpha (t_0) = 0\).

Definition 4

Let \((\gamma ,\nu _1,\nu _2)\) and \((\widetilde{\gamma },\widetilde{\nu }_1,\widetilde{\nu }_2):I \rightarrow \mathbb {R}^3 \times \varDelta \) be framed curves. We say that \((\gamma ,\nu _1,\nu _2)\) and \((\widetilde{\gamma },\widetilde{\nu }_1,\widetilde{\nu }_2)\) are congruent as framed curves if there exist a constant rotation \(A \in SO(3)\) and a translation \(a\in \mathbb {R}^3\) such that \(\widetilde{\gamma }(t) = A(\gamma (t)) +a\), \(\widetilde{\nu _1}(t) = A(\nu _1(t))\) and \(\widetilde{\nu _2}(t) = A(\nu _2(t))\) for all \(t \in I\).

Theorem 7

(The Existence Theorem for framed curves, Honda and Takahashi 2016) Let \((\ell ,m,n,\alpha ):I \rightarrow \mathbb {R}^4\) be a smooth mapping. There exists a framed curve \((\gamma ,\nu _1,\nu _2):I \rightarrow \mathbb {R}^3 \times \varDelta \) whose curvature of the framed curve is \((\ell ,m,n,\alpha )\).

Theorem 8

(The Uniqueness Theorem for framed curves, Honda and Takahashi 2016) Let \((\gamma ,\nu _1,\nu _2)\) and \((\widetilde{\gamma },\widetilde{\nu }_1,\widetilde{\nu }_2):I \rightarrow \mathbb {R}^3 \times \varDelta \) be framed curves with the curvature \((\ell ,m,n,\alpha )\) and \((\widetilde{\ell },\widetilde{m},\widetilde{n},\widetilde{\alpha })\), respectively. Then \((\gamma ,\nu _1,\nu _2)\) and \((\widetilde{\gamma },\widetilde{\nu }_1,\widetilde{\nu }_2)\) are congruent as framed curves if and only if the curvatures \((\ell , m, n, \alpha )\) and \((\widetilde{\ell }, \widetilde{m}, \widetilde{n}, \widetilde{\alpha })\) coincide.

Legendre Curves in the Euclidean Plane

We quickly review on the theory of Legendre curves in the unit tangent bundle over \(\mathbb {R}^2\), see detail Fukunaga and Takahashi (2013).

We say that \((\gamma ,\nu ):I \rightarrow \mathbb {R}^2 \times S^1\) is a Legendre curve if \((\gamma ,\nu )^*\theta =0\) for all \(t \in I\), where \(\theta \) is a canonical contact form on the unit tangent bundle \(T_1 \mathbb {R}^2=\mathbb {R}^2 \times S^1\) over \(\mathbb {R}^2\) (cf. Arnol’d 1990; Arnol’d et al. 1986). This condition is equivalent to \(\dot{\gamma }(t) \cdot \nu (t)=0\) for all \(t \in I\). We say that \(\gamma :I \rightarrow \mathbb {R}^2\) is a frontal if there exists \(\nu :I \rightarrow S^1\) such that \((\gamma ,\nu )\) is a Legendre curve. Examples of Legendre curves see Ishikawa (2007), Ishikawa (2015). We denote \(J(a) = (-a_2, a_1)\) the anticlockwise rotation by \(\pi /2\) of a vector \(a= (a_1, a_2) \in \mathbb {R}^2\). We put \(\mu (t)=J(\nu (t))\). Then \(\{\nu (t), \mu (t) \}\) is a moving frame of a frontal \(\gamma (t)\) in \(\mathbb {R}^2\) and we have the Frenet type formula,

$$\begin{aligned} \left( \begin{array}{c} \dot{\nu }(t)\\ \dot{\mu }(t) \end{array} \right) = \left( \begin{array}{cc} 0 &{}\quad \ell (t)\\ -\ell (t) &{}\quad 0 \end{array} \right) \left( \begin{array}{c} \nu (t)\\ \mu (t) \end{array} \right) , \ \dot{\gamma }(t) = \beta (t) \mu (t), \end{aligned}$$

where \(\ell (t)=\dot{\nu }(t) \cdot \mu (t)\) and \(\beta (t)=\dot{\gamma }(t) \cdot \mu (t)\). We call the pair \((\ell ,\beta )\)the curvature of the Legendre curve.

Definition 5

Let \((\gamma ,\nu )\) and \((\widetilde{\gamma },\widetilde{\nu }):I \rightarrow \mathbb {R}^2 \times S^1\) be Legendre curves. We say that \((\gamma ,\nu )\) and \((\widetilde{\gamma },\widetilde{\nu })\) are congruent as Legendre curves if there exist a constant rotation \(A \in SO(2)\) and a translation \(a\in \mathbb {R}^2\) such that \(\widetilde{\gamma }(t)=A(\gamma (t))+a\) and \(\widetilde{\nu }(t)=A (\nu (t))\) for all \(t \in I\).

Theorem 9

(The Existence Theorem for Legendre curves, Fukunaga and Takahashi 2013) Let \((\ell ,\beta ):I \rightarrow \mathbb {R}^2\) be a smooth mapping. There exists a Legendre curve \((\gamma ,\nu ):I \rightarrow \mathbb {R}^2 \times S^1\) whose curvature of the Legendre curve is \((\ell , \beta )\).

Theorem 10

(The Uniqueness Theorem for Legendre curves, Fukunaga and Takahashi 2013) Let \((\gamma ,\nu )\) and \((\widetilde{\gamma },\widetilde{\nu }):I \rightarrow \mathbb {R}^2 \times S^1\) be Legendre curves with the curvatures of Legendre curves \((\ell ,\beta )\) and \((\widetilde{\ell },\widetilde{\beta })\), respectively. Then \((\gamma ,\nu )\) and \((\widetilde{\gamma },\widetilde{\nu })\) are congruent as Legendre curves if and only if the curvatures \((\ell ,\beta )\) and \((\widetilde{\ell },\widetilde{\beta })\) coincide.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukunaga, T., Takahashi, M. Framed Surfaces in the Euclidean Space. Bull Braz Math Soc, New Series 50, 37–65 (2019). https://doi.org/10.1007/s00574-018-0090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-018-0090-z

Keywords

Mathematics Subject Classification

Navigation