Skip to main content
Log in

GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

A full-length metallothionein (MT) gene (GintMT1) was isolated from Glomus intraradices extraradical mycelium. This is the first MT gene reported in the genus Glomus, third in the Glomeromycota. Functional analysis of GintMT1 in a MT-defective Saccharomyces cerevisiae strain indicates that it encodes a functional MT. Gene expression analyses revealed that the transcript levels of GintMT1 were elevated in mycelia treated with 5 mM Cu or paraquat but inhibited in mycelia treated with 50 μM Cu or 450 μM Cd. The elevated expression of GintMT1 in the 5 mM Cu-treated mycelia together with the ability of GintMT1 to provide tolerance to a Cu-sensitive yeast suggests that GintMT1 might afford protection against Cu. Induction of GintMT1 expression by paraquat and 5 mM Cu, treatments that also produced an oxidative damage to the fungal membranes, suggests that GintMT1 may play a role in the regulation of the redox status of the extraradical mycelium of G. intraradices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Andrews GK, Geiser J (1999) Expression of the mouse metallothionein-I and -II genes provides a reproductive advantage during maternal dietary zinc deficiency. J Nutr 129:1643–1648

    CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer PE, Douds DD, Brouillette J, Bécard G, Shachar-Hill Y (1999) Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol 121:263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beuge JA, Aust SD (1978) Microsomal lipid peroxidation. Meth Enzymol 52:302–310

    Article  Google Scholar 

  • Bonneton F, Théodore L, Silar P, Maroni G, Wegnez M (1996) Response of Drosophila metallothionein promoters to metallic, heat shock and oxidative stress. FEBS Lett 380:33–38

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321

    Article  Google Scholar 

  • Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wu W, Dentchev T, Zeng Y, Wang J, Tsui I, Tobias JW, Bennett J, Baldwin D, Dunaief JL (2004) Light damage induced changes in mouse retinal gene expression. Exp Eye Res 79:239–247

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Costello LC, Guan Z, Franklin RB, Feng P (2004) Metallothionein can function as a chaperone for zinc uptake transport into prostate and liver mitochondria. J Inorg Biochem 98:664–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Val C, Barea JM, Azcón-Aguilar C (1999a) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • del Val C, Barea JM, Azcón-Aguilar C (1999b) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol 11:261–269

    Article  Google Scholar 

  • de Vos RCH, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis due to oxidative stress in Silene vulgaris. Plant Physiol 98:853–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Ecker DJ, Butt TR, Sternberg EJ, Neeper MP, Debouck C, Gorman JA, Crooke ST (1986) Yeast metallothionein function in metal ion detoxification. J Biol Chem 261:16895–16900

    CAS  PubMed  Google Scholar 

  • Feng W, Cai J, Pierce WM, Franklin RB, Maret W, Benz FW, Kang YJ (2005) Metallothionein transfers zinc to mitochondrial aconitase through a direct interaction in mouse hearts. Biochem Biophys Res Commun 332:853–858

    Article  CAS  PubMed  Google Scholar 

  • Fowler BA, Hildebrand CE, Kojima Y, Webb M (1987) Nomenclature of metallothionein. Experientia Suppl 52:21

    Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  Google Scholar 

  • González-Chavez C, D’Haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297

    Article  Google Scholar 

  • González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clanderon, Oxford, UK

    Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    Article  CAS  Google Scholar 

  • Jakupovic M, Heintz M, Reichmann P, Mendgen K, Hahn M (2006) Microarray analysis of expressed sequence tags from haustoria of the rust fungus Uromyces fabae. Fungal Genet Biol 43:8–19

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Sharma N, Attri S, Gogia L, Prasad R (2006) Kinetic characterization of zinc transport process and its inhibition by cadmium in isolated rat renal basolateral membrane vesicles: in vitro and in vivo studies. Mol Cell Biochem 283:169–179

    Article  CAS  PubMed  Google Scholar 

  • Kawashima I, Inokuchi Y, Chino M, Kimura M, Shimizu N (1991) Isolation of a gene for a metallothionein protein from soybean. Plant Cell Physiol 32:913–916

    CAS  Google Scholar 

  • Kojima Y (1991) Definitions and nomenclature of metallothioneins. Meth Enzymol 205:8–10

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco L, Bolchi A, Ros E, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \Delta \Delta }} {\text{C}}_{{\text{T}}} \) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Malcová R, Rydlová J, Vosátka M (2003) Metal-free cultivation of Glomus sp. BEG 140 isolated from Mn-contaminated soil reduces tolerance to Mn. Mycorrhiza 13:151–157

    Article  PubMed  Google Scholar 

  • Maret W (2003) Cellular zinc and redox states converge in the metallothionein/thionein pair. J Nutr 133:1460S–1462S

    CAS  PubMed  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interaction between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Minet M, Dufour ME, Lacroue F (1992) Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 2:417–422

    CAS  PubMed  Google Scholar 

  • Murphy BJ, Andrews GK, Bittel D, Discher DJ, McCue J, Green CJ, Yanovsky M, Giaccia A, Sutherland RM, Laderoute KR, Webster KA (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res 59:1315–1322

    CAS  PubMed  Google Scholar 

  • Nath R, Prasad R, Palinal VK, Chopra RK (1984) Molecular-basis of cadmium toxicity. Prog Food Nutr Sci 8:109–163

    CAS  PubMed  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expression in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  • Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285

    Article  CAS  Google Scholar 

  • Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ (1993) Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci USA 90:8013–8017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ (2004) A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16:1575–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weissenhorn I, Mench M, Leyval C (1995) Bioavailability of the heavy metals and arbuscular mycorrhiza in a sewage-sludge-amended sandy soil. Soil Biol Biochem 27:287–296

    Article  CAS  Google Scholar 

  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Hachia A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum, and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38:133–1339

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the EU project Genomyca (QLK5-CT-2000-01319). Manuel González-Guerrero was supported by a FPU fellowship from the Spanish Ministry of Education, Culture and Sports. We are grateful to Dr. Maria Harrison for providing the GintMT1 partial clone and Dr. Simone Ottonello for the gift of the S. cerevisiae strain DTY113. We also want to thank Drs. José Miguel Barea and Alberto Bago for helpful discussions and Ascensión Valderas for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ferrol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Guerrero, M., Cano, C., Azcón-Aguilar, C. et al. GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17, 327–335 (2007). https://doi.org/10.1007/s00572-007-0108-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-007-0108-7

Keywords

Navigation