Skip to main content

Advertisement

Log in

Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

SW Yunnan of China constituted part of the northern margin of Gondwana facing the proto-Tethys ocean in the early Paleozoic. However, the evolution of the region and its relationship with the accretionary orogenism have been poorly established. This paper reports a set of new zircon U–Pb age data and whole-rock major oxides, elemental and Sr–Nd isotopic data for early Paleozoic metavolcanic rocks from the previously defined Lancang Group and reveals the development of an Ordovician suprasubduction zone in SW Yunnan. Zircon U–Pb ages of 462 ± 6 and 454 ± 27 Ma for two representative samples indicate eruption of the volcanic rocks in the Late Ordovician. Geochemical data for the metavolcanic rocks together with other available data indicate a calc-alkaline affinity with high Al2O3 (13.04–18.77 wt%) and low TiO2 (0.64–1.00 wt%). They have Mg-numbers ranging from 62 to 50 with SiO2 of 53.57–69.10 wt%, compositionally corresponding to the high-Mg andesitic rocks. They display enrichments in LREEs and LILEs with significant Eu negative anomalies (δEu = 0.20–0.33), and depletions in HFSEs, similar to arc volcanic rocks. Their initial 87Sr/86Sr ratios range from 0.721356 to 0.722521 and εNd(t) values from −7.63 to −7.62 with Nd model ages of 2.06–2.10 Ga. Integration of ages and geochemical data with available geological observations, we propose the presence of Ordovician magmatism related to proto-Tethyan evolution in SW Yunnan and the metaigneous rocks formed in an island-arc setting. They were part of a regional accretionary orogen that extended along the northern margin of Gondwana during Neoproterozoic to early Paleozoic period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bailey JC (1981) Geochemical criteria for a refined tectonic discrimination of orogenic andesites. Chem Geol 32:139–154

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827

    Article  Google Scholar 

  • Bhanot VB, Bhandari AK, Singh VP, Kansal AK (1979) Geochronological and geological studies on a granite of Higher Himalaya, northeast of Manikaran, Himachal Pradesh. J Geol Soc India 20:90–94

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Brookfield ME (1993) The Himalayan passive margin from Precambrian to Cretaceous times. Sed Geol 84:1–35

    Article  Google Scholar 

  • Cawood PA, Nemchin AA, Strachan R, Prave T, Krabbendam M (2007) Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. J Geol Soc 164:257–275

    Article  Google Scholar 

  • Cawood PA, Wang YJ, Xu YJ, Zhao GC (2013) Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere? Geology 41(8):903–906

    Article  Google Scholar 

  • Chalot-Prat F, Boullier AM (1997) Metasomatism in the subcontinental mantle beneath the Eastern Carpathians (Romania): new evidence from trace element geochemistry. Contrib Miner Petrol 129:284–307

    Article  Google Scholar 

  • Chen FK, Li XH, Wang XL, Li QL, Siebel W (2007) Zircon age and Nd–Hf isotopic composition of the Yunnan Tethyan belt, southwestern China. Int J Earth Sci 96:1179–1194

    Article  Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons form lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res B89:525–534

    Article  Google Scholar 

  • Cong BL, Wu GY, Zhang Q, Zhang RY, Zhai MG, Zhao DS, Zhang WH (1993) Petrotectonic evolution of the Tethys zone in western Yunnan, China. Chin Bull (B) 23:1201–1207 (in Chinese)

    Google Scholar 

  • Davidson JP (1987) Crustal contamination versus subduction zone enrichment: examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks. Geochim Cosmochim Acta 51:2185–2198

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, Ojha TP, Kapp PA, Upreti BN (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geol Soc Am Bull 110:2–21

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, LaReau B, Spurlin M (2000) Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288:497–499

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Najman Y, Martin AJ, Carter A, Garzanti E (2004) Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet Sci Lett 227:313–330

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Dewey JF, Shackleton RM, Chang CF, Sun YY (1988) The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc Lond Ser A Math Phys Sci 327:379–413

    Article  Google Scholar 

  • Dong X, Zhang ZM, Wang JL, Zhao GC, Liu F, Wang W, Yu F (2009) Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane, Tibetan Plateau: petrology and zircon U–Pb geochronology. Acta Petrologica Sinica 25:1678–1694 (in Chinese with English abstract)

    Google Scholar 

  • Dong X, Zhang ZM, Santosh M (2010) Zircon U-Pb Chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau: implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism. J Geol 118:677–690

    Article  Google Scholar 

  • Evans OC, Hanson GN (1997) Late- to Post-kinematic Archean granitoids of the S.W. Superior Province: derivation through Direct Mantle Melting. Greenstone Belts. Oxford University Press, Oxford, pp 280–295

    Google Scholar 

  • Fan CJ, Zhang YF (1994) The structure and tectonics of western Yunnan. J SE Asian Earth Sci 9:355–361

    Article  Google Scholar 

  • Fang ZJ, Zhou ZC, Lin MJ (1990) Some new observations on the geology of western Yunnan. Chin Sci Bull 15:1286–1290

    Google Scholar 

  • Feng QL (2002) Stratigraphy of volcanic rocks in the Changning-Menglian belt in southwestern Yunnan, China. J Asian Earth Sci 20:657–664

    Article  Google Scholar 

  • Fontaine H (2002) Permian of Southeast Asia: an overview. J Asian Earth Sci 20:567–588

    Article  Google Scholar 

  • Gallagher K, Hawkesworth CJ (1992) Dehydration melting and the generation of continental flood basalts. Nature 358:57–59

    Article  Google Scholar 

  • Garzanti E, Casnedi R, Jadoul F (1986) Sedimentary evidence of a Cambro-Ordovician orogenic event in the Northwestern Himalaya. Sed Geol 48:237–265

    Article  Google Scholar 

  • Gehrels GE, DeCelles PG, Ojha TP, Upreti BN (2006) Geologic and U–Th–Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. Geol Soc Am Bull 118:185–198

    Article  Google Scholar 

  • Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N, Yin A (2011) Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tecoonics. doi:10.1029/2011TC002868

    Google Scholar 

  • Geng HY, Brandl G, Sun M, Wong J, Kroner A (2014) Zircon ages defining deposition of the Paleoproterozoic Southpansberg Group and further evidence for Eoarchaean crust in South Africa. Precambr Res 249:247–262

    Article  Google Scholar 

  • Glassley WE (1974) Geochemistry and tectonics of the Crescent volcanic rocks, Olympic Peninsula, Washington. Geol Soc Am Bull 85(5):785–794

    Article  Google Scholar 

  • Godin L, Parrish RR, Brown RL, Hodges KV (2001) Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: insight from U–Pb geochronology and 40Ar/39Ar thermochronology. Tectonics 20:729–747

    Article  Google Scholar 

  • Gong SL, Chen NS, Geng HY, Sun M, Zhang L, Wang QY (2014) Zircon Hf isotopes and geochemistry of the Early Paleoproterozoic high-Sr low-Y quartz-diorite in the Quanji Massif, NW China: crustal growth and tectonic implications. J Earth Sci 25(1):74–86

    Article  Google Scholar 

  • Halla J (2005) Late Archean high-Mg granitoids (sanukitoids) in the southern Karelian domain, eastern Finland: Pb and Nd isotopic constraints on crust–mantle interactions. Lithos 79:161–178

    Article  Google Scholar 

  • Healy B, Collins WJ, Richards SW (2004) A hybrid origin for Lachlan S-type granites: the Murrumbidgee batholith example. Lithos 79:197–216

    Article  Google Scholar 

  • Hirose K (1997) Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-mg andesitic melts. Geology 25:42–44

    Article  Google Scholar 

  • Hoang N, Yamamoto T, Itoh J, Flower MFJ (2009) Anomalous intra-plate high-Mg andesites in the Choshi area (Chiba, Central Japan) produced during early stages of Japan Sea opening? Lithos 112:545–555

    Article  Google Scholar 

  • Honarmand M, Omran NR, Neubauer F, Nabatian G, Emami MH, Quadt A, Dong YP, Bernroider M (2015) Geochemistry of Enclaves and Host Granitoids from the Kashan Granitoid Complex, Central Iran: implications for Enclave Generation by Interaction of Cogenetic Magmas. J Earth Sci 26(5):626–645

    Article  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18:423–439

    Article  Google Scholar 

  • Hughes NC (2002) Late Middle Cambrian trace fossils from the Lejopyge armata horizon, Zanskar Valley, India, and the use of Precambrian/Cambrian isochronostratigraphy in the Indian subcontinent. Spec Pap Palaeontol 67:135–151

    Google Scholar 

  • Hutchison CS (1989) Geological evolution of South-east Asia. Clarendon Press, Oxford, pp 1–368

    Google Scholar 

  • Imayama T, Arita K (2008) Nd isotopic data reveal the material and tectonic nature of the Main Central Thrust zone in Nepal Himalaya. Tectonophysics 451:265–281

    Article  Google Scholar 

  • Ji WH, Chen SJ, Zhao ZM, Li RS, He SP, Wang C (2009) Discovery of the Cambrianvolcanic rocks in the Xainza area, Gangdese orogenic belt, Tibet, China and its significance. Geol Bull China 9:1350–1354 (in Chinese with English abstract)

    Google Scholar 

  • Kamei A (2004) An adakitic pluton on Kyushu Island, southwest Japan arc. J Asian Earth Sci. doi:10.1016/j.jseaes.2003.07.001

    Google Scholar 

  • Kamei A, Owaba M, Nagao T, Shiraki K (2004) High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: evidence from clinopyroxene and whole rock compositions. Lithos 75:359–371

    Article  Google Scholar 

  • Kawabata H, Shuto K (2005) Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan: implications for Archean TTG formation. J Volcanol Geoth Res 140:241–271

    Article  Google Scholar 

  • Kelemen PB (1995) Genesis of high-mg andesites and the continental crust. Contrib Miner Petrol 120:1–19

    Article  Google Scholar 

  • Kelemen PB, Shimuzu N, Dunn T (1993) Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt-rock reaction in the upper mantle. Earth Planet Sci Lett 120:111–134

    Article  Google Scholar 

  • Kushiro I (1990) Partial melting of mantle wedge and evolution of island arc crust. J Geophys Res 95:15929–15939

    Article  Google Scholar 

  • Le Fort P, Tongiorgi M, Gaetani M (1994) Discovery of a crystalline basement and Early Ordovician marine transgression in the Karakorum mountain range, Pakistan. Geology 22:941–944

    Article  Google Scholar 

  • Li C, Dong YS, Zhai QG, Wang LQ, Yan QR, Wu YW, He TT (2008) Discovery of Eopaleozoic ophiolite in the Qiangtang of Tibet Plateau: evidence from SHRIMP U–Pb dating and its tectonic implications. Acta Petrologica Sinica 24(1):31–36 (in Chinese with English abstract)

    Google Scholar 

  • Li C, Wu YW, Wang M, Yang HT (2010) Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau: discovery of Pan-African orogenic unconformity and Cambrian system in the Gangdese area, Tibet, China. Geol Bull China 29:1733–1736 (in Chinese with English Abstract)

    Google Scholar 

  • Li ZH, Lin SL, Cong F, Xie T, Zou GF (2012) U–Pb ages of zircon from metamorphic rocks of the Gaoligongshan Group in western Yunnan and its tectonic significance. Acta Petrologica Sinica 28(5):1529–1541 (in Chinese with English abstract)

    Google Scholar 

  • Liang XR, Wei GJ, Li XH, Liu Y (2003) Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometer (MC-ICPMS). Geochimica 32:91–96 (in Chinese with English abstract)

    Google Scholar 

  • Liu BP, Feng QL, Chonglakmani C, Helmcke D (2002) Framework of Paleotethyan Archipelago Ocean of Western Yunnan and its elongation towards North and South. Earth Sci Front 9:161–171 (in Chinese with English abstract)

    Google Scholar 

  • Liu XM, Gao S, Ling WL, Yuan HL, Hu ZC (2006) Identification of 3.5 Ga detrital zircons from Yangtze craton in south China and the implication for Archean crust evolution. Prog Nat Sci 16:663–666

    Article  Google Scholar 

  • Liu S, Hu RZ, Gao S, Feng CX, Huang ZL, Lai SC, Yuan HL, Liu XM, Coulson IM, Feng GY, Wang T, Qi YQ (2009) U–Pb zircon, geochemical and S–Nd–Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan block, western Yunnan Province, SW China. J Asian Earth Sci 36:168–182

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-north China orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51(1–2):537–571

    Article  Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Geochronology Center Special Publication, Berkeley, pp 1–70

  • Ma LY, Wang YJ, Fan WM, Geng HY, Cai YF, Zhong H, Liu HC, Xing XW (2014) Petrogenesis of the early Eocene I-type granites in west Yingjiang (SW Yunnan) and its implication for the eastern extension of the Gangdese batholiths. Gondwana Res 25:401–419

    Article  Google Scholar 

  • McCarron JJ, Smellie JL (1998) Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites: Alexander Island, Antarctica. J Geol Soc Lond 155:269–280

    Article  Google Scholar 

  • Metcalfe I (1996) Pre-Cretaceous evolution of SE Asian terranes. Tectonic evolution of Southeast Asian. Geol Soc Spl Publ 106:97–122

    Article  Google Scholar 

  • Metcalfe I (2002) Permian tectonic framework and paleogeography of SE Asia. J Asian Earth Sci 20:551–566

    Article  Google Scholar 

  • Metcalfe I (2006) Palaeozoic and Mesozoic tectonic evolution and paleogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Res 9:24–46

    Article  Google Scholar 

  • Metcalfe I (2011) Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res 19:3–21

    Article  Google Scholar 

  • Metcalfe I (2013) Gondwana dispersion and Asian accretion: tectonic and paleogeographic evolution of eastern Tethys. J Asian Earth Sci 66:1–33

    Article  Google Scholar 

  • Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth-Sci Rev 37(3–4):215–224

    Article  Google Scholar 

  • Miller C, Thöni M, Frank W, Grasemann B, Klötzli U, Guntli P, Draganits E (2001) The early Paleozoic magmatic event in the Northwest Himalaya, India: source, tectonic setting and age of emplacement. Geol Mag 138:237–251

    Article  Google Scholar 

  • Moyen JF, Martin H, Jayananda M, Auvray B (2003) Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Res 127:103–123

    Article  Google Scholar 

  • Murphy JB, Nance RD (1991) Supercontinent model for the contrasting character of Late Proterozoic orogenic belts. Geology 19:469–472

    Article  Google Scholar 

  • Myrow PW, Snell KE, Hudges NC, Paulsen TS, Heim NA, Parcha SK (2006a) Cambrian depositional history of the Zanskar Valley region of the Indian Himalaya: tectonic implications. J Sediment Res 76:364–381

    Article  Google Scholar 

  • Myrow PW, Thompson KR, Hughes NC, Paulsen TS, Sell BK, Parcha SK (2006b) Cambrian stratigraphy and depositional history of the northern Indian Himalaya, Spiti Valley, north-central India. Geol Soc Am Bull 118:491–510

    Article  Google Scholar 

  • Nie XM, Feng QL, Qian X, Wang YJ (2014) Magmatic record of Prototethyan evolution in SW Yunnan, China: geochemical, zircon U–Pb geochronological and Lu–Hf isotopic evidence from the Huimin metavolcanic rocks in the southern Lancangjiang zone. Gondwana Res 28:757–768

    Article  Google Scholar 

  • Oliveira MA, Agnol RD, Althoff FJ, da Silva Leite AA (2009) Mesoarchean sanukitoid rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian craton, Brazil. J S Am Earth Sci 27:146–160

    Article  Google Scholar 

  • Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP, Wang BD (2012) Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci 53:3–14

    Article  Google Scholar 

  • Parrish RR, Hodges KV (1996) Isotopic constrains on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol Soc Am Bull 108:904–911

    Article  Google Scholar 

  • Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997) Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358

    Article  Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury RC (2001) Evidence for mantle meta-somatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410:197–200 (Publication 19)

    Article  Google Scholar 

  • Qi XX, Li HQ, Li TF, Cai ZH, Yu CL (2010) Zircon SHRIMP U-Pb dating for garnet-rich granite veins in high-pressure granulites from the Namche Barwa complex, eastern syntaxis of the Himalayas, and the relationship with exhumation. Acta Petrologica Sinica 26:975–984 (in Chinese with English abstract)

    Google Scholar 

  • Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibole, eclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res 51:1–25

    Article  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Patchett PJ, Garzione CN (2001) The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet Sci Lett 192:507–521

    Article  Google Scholar 

  • Rolland Y, Picard C, Pecher A, Lapierre H, Bosch D, Keller F (2002) The cretaceous Ladakh arc of NW Himalaya-slab melting and melt–mantle interaction during fast northward drift of Indian Plate. Chem Geol 182:139–178

    Article  Google Scholar 

  • Sajona FG, Maury RC, Pubellier M, Leterrier J, Bellon H, Cotton J (2000) Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos 54:173–206

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibo-lite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Miner Petrol 117:394–409

    Article  Google Scholar 

  • Shen SY, Feng QL, Wei QR, Zhang ZB (2008) Newly developed evidence for the original Tethysan island-arc volcanic rocks in the southern segment of the south Lancangjiang belt. Chin J Geochem 26:91–97

    Article  Google Scholar 

  • Shi C, Li RS, He SP, Wang C, Pan SJ, Liu Y, Gu PY (2010) LA-ICP-MS zircon U–Pb dating for gneissic garnet-bearing biotite granodiorite in Yadong area, southern Tibet, China and its geological significance. Geol Bull China 29:1745–1753 (in Chinese with English abstract)

    Google Scholar 

  • Shimoda G, Tatsumi Y, Nohda S, Ishizaka K, Jahn BM (1998) Setouchi high-Mg andesite revisited; geochemical evidence for melting of subducting sediments. Earth Planet Sci Lett 160:479–492

    Article  Google Scholar 

  • Shirey SB, Hanson GN (1984) Mantle-derived Archean monozodiorites and trachyandesites. Nature 310:222–224

    Article  Google Scholar 

  • Shirey SB, Hanson GN (1986) Mantle heterogeneity and crustal recycling in Archean granite–greenstone belts: evidence from Nd isotopes and trace elements in the Rainy Lake province, Ontario, Canada. Geochim Cosmochim Acta 50:2631–2651

    Article  Google Scholar 

  • Smithies RH, Champion DC (2000) The Archean high-mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archean crustal growth. J Petrol 41:1653–1671

    Article  Google Scholar 

  • Smithies RH, Champion DC, Cassidy KF (2003) Formation of Earth’s early Archean continental crust. Precambrian Res 127(1–3):89–101

    Article  Google Scholar 

  • Smithies RH, Van Kranendonk MJ, Champion DC (2007) The Mesoarchean emergence of modern-style subduction. Gondwana Res 11:50–68

    Article  Google Scholar 

  • Song SG, Ji JQ, Wei CJ, Su L, Zheng YD, Song B, Zhang LF (2007) Early Paleozoic granite in Nujiang River of northwest Yunnan in southwestern China and its tectonic implications. Chin Sci Bull 52:2402–2406

    Article  Google Scholar 

  • Stern RA, Hanson GN, Shirey SB (1989) Petrogenesis of mantle derived, LILE-enriched Archean monzodiorites and trachyandesites (sanukitoids) in Southwestern Superior Province, Canada. J Earth Sci 26:1688–1712

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins, Special Publications, 42. The Geological Society, London, pp 313–345

    Google Scholar 

  • Tatsumi Y (2001) Geochemical modeling of partial melting of subducting sediments and subsequent melt–mantle interaction; generation of high-Mg andesites in the Setouchi volcanic belt, Southwest Japan. Geology 29:323–326

    Article  Google Scholar 

  • Tatsumi Y (2006) High-Mg andesites in the Setouchi Volcanic Belt, Southwestern Japan: analogy to Archean magmatism and continental crust formation? Annu Rev Earth Planet Sci 34:467–499

    Article  Google Scholar 

  • Tatsumi Y (2008) Making continental crust: the sanukitoid connection. Chin Sci Bull 53(11):1620–1633

    Google Scholar 

  • Valdiya KS (1995) Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya, the northern frontier of east Gondwanaland. Gondwana Res 1:3–9

    Article  Google Scholar 

  • Visonà D, Rubatto D, Villa IM (2010) The mafic rocks of Shao La (Kharta, S. Tibet): Ordovician basaltic magmatism in the greater Himalayan crystallines of central-eastern Himalaya. J Asian Earth Sci 38:14–25

    Article  Google Scholar 

  • Wang YZ (2000) Tectonics and Mineralization of Southern Sanjiang Area. Geology Press, Beijing, pp 45–49 (in Chinese with English abstract)

    Google Scholar 

  • Wang YJ, Fan WM, Zhang HF, Peng TP (2006) Early Cretaceous gabbroic rocks from the Taihang Mountains: implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos 86:281–302

    Article  Google Scholar 

  • Wang YJ, Fan WM, Sun M, Liang XQ, Zhang YH, Peng TP (2007) Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: a case study in the Hunan Province. Lithos 96:475–502

    Article  Google Scholar 

  • Wang XL, Zhou JC, Qiu JS, Jiang SY, Shi YR (2008) Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan, South China: implications for petrogenesis and post-orogenic extension. Geol Mag 145:215–233

    Article  Google Scholar 

  • Wang YJ, Zhang YZ, Zhao GC, Fan WM, Xia XP, Zhang FF, Zhang AM (2009) Zircon U-Pb geochronological and geochemical constraints on the petrogenesis of the Taishan sanukitoids (Shandong): implications for Neoarchean subduction in the Eastern Block, North China Craton. Precambrian Res 174:273–286

    Article  Google Scholar 

  • Wang YJ, Zhang FF, Fan WM, Zhang GW, Chen SY, Cawood PA, Zhang AM (2010) Tectonic setting of the South China Block in the early Paleozoic: resolving intracontinental and ocean closure models from detrital zircon U–Pb geochronology. Tectonics. doi:10.1029/2010TC002750

    Google Scholar 

  • Wang XX, Zhang JJ, Yang XY, Zhang B (2011) Zircon SHRIMP U–Pb ages, Hf isotopic features and their geological significance of the Greater Himalaya Crystalline Complex augen gneiss in Gyirong area, south Tibet. Earth Sci Front 18:127–139 (in Chinese with English abstract)

    Google Scholar 

  • Wang XX, Zhang JJ, Santosh M, Liu J, Yan SY, Guo L (2012) Andean-type orogeny in the Himalayas of south Tibet: implications for early Paleozoic tectonics along the Indian margin of Gondwana. Lithos 154:248–262

    Article  Google Scholar 

  • Wang BD, Wang LQ, Pan GT, Yin FG, Wang DB, Tang Y (2013a) U–Pb zircon dating of early Paleozoic gabbro from the Nantinghe ophiolite in the Changning-Menglian suture zone and its geological implication. Chin Sci Bull 58:920–930

    Article  Google Scholar 

  • Wang YJ, Xing XW, Cawood PA, Lai SC, Xia XP, Fan WM, Liu HC, Zhang FF (2013b) Petrogenesis of early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos 182–183:67–85

    Article  Google Scholar 

  • Wei GY, Feng GR, Luo ZW, Wu SZ, Tao YY (1984) Stratigraphic sequences of the Lancang and Chongshan Groups in western Yunnan and their volcanism and metamorphism. J Chengdu Coll Geol 2:12–20 (in Chinese with English abstract)

    Google Scholar 

  • Wei GJ, Liang XR, Li XH, Liu Y (2002) Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC-ICPMS. Geochimica 31:295–299

    Google Scholar 

  • Williams IS (1998) U-Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Society of Economic Geologists, Colorado, pp 1–35

    Google Scholar 

  • Williams IS, Claesson S (1987) Isotopic evidence for Precambrian provenance and 854 Caledonian metamorphism of high grade paragneisses from the Seve Nappes, 855 Scandinavian Caledonides. II. Ion microprobe zircon U–Th–Pb. Contrib Miner Petrol 97:205–217

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50(1):11–30

    Article  Google Scholar 

  • Wu YB, Zheng YF (2004) Gensis of zircon and its constrains on the interpretation of U–Pb age. Chin Sci Bull 49(15):1554–1569 (in Chinese with English abstract)

    Article  Google Scholar 

  • Wu SZ, Tao YY, Feng GR, Wei GY, Luo ZW (1984) Characteristics of metamorphic volcanic rocks in the Lancang and Chongshan Groups. Yunnan Geol 3(2):113–123 (in Chinese)

    Google Scholar 

  • Wu RX, Zheng YF, Wu YB, Zhao ZF, Zhang SB, Liu XM, Wu FY (2006) Reworking of juvenile crust: element and isotope evidence from Neoproterozoic granodiorite in South China. Precambrian Res 146:179–212

    Article  Google Scholar 

  • Xing XW, Zhang YZ, Wang YJ, Liu HC (2015) Zircon U–Pb geochronology and Hf isotopic composition of the Ordovician granitic gneisses in Ximeng area, west Yunnan Province. Geotectonica et Metallogenia 39(3):470–480 (in Chinese with English abstract)

    Google Scholar 

  • Xu ZQ, Yang JS, Liang FH, Qi XX, Liu FL, Zeng LS, Liu DY, Li HB, Wu CL, Shi RD, Chen SY (2005) Pan-African and Early Paleozoic orogenic events in the Himalayan terrane: inference from SHRIMP U–Pb zircon ages. Acta Petrologica Sinica 21:1–12 (in Chinese with English abstract)

    Google Scholar 

  • Xu MJ, Li C, Xu W, Xie CM, Hu PY, Wang M (2014) Petrology, geochemistry and geochronology of Gabbros from the Zhongcang Ophiolitic Mélange, Central Tibet: implications for an Intra-Oceanic Subduction Zone within the Neo-Tethys Ocean. J Earth Sci 25(2):224–240

    Article  Google Scholar 

  • Yang YQ, Yang JM, Xu DC, Yang JH (2008) Mineralization of Dapingzhang massive sulfide copper-polymetallic deposit in Yunnan. Mineral Depos 2:230–242 (in Chinese with English abstract)

    Google Scholar 

  • Yang XJ, Jia XC, Xiong CL, Bai XZ, Huang BX, Luo G, Yang CB (2012) LA-ICP-MS zircon U–Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain, western Yunnan Province, and its geological significance. Geol Bull China 31:264–276 (in Chinese with English abstract)

    Google Scholar 

  • Yi ZY, Huang BC, Chen JS, Chen LW, Wang HL (2011) Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: implications to onset of the India-Asia collision and size of Greater India. Earth Planet Sci Lett 309:153–165

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull 107:505–519

    Article  Google Scholar 

  • Yunnan BGMR (Yunnan Bureau Geological Mineral Resource) (1990) Regional geology of Yunnan Province. Geological Publishing House, Beijing, pp 1–729 (in Chinese)

    Google Scholar 

  • Yunnan BGMR (Yunnan Bureau Geological Mineral Resource) (1979) Regional geological survey report in the scale of 1:200,000, Menglian. Geological Publishing House, Beijing 1–145 (in Chinese)

    Google Scholar 

  • Yunnan BGMR (Yunnan Bureau Geological Mineral Resource) (1982) Regional geological survey report in the scale of 1:200,000, Tengchong. Geological Publishing House, Beijing, pp 1–728 (in Chinese)

    Google Scholar 

  • Zhai MG, Cong BL, Qiao GS, Zhang RY (1990) Sm-Nd and Rb-Sr geochronology of metamorphic rocks from SW Yunnan orogenic zones, China. Acta Petrologica Sinica 6:1–11 (in Chinese with English abstract)

    Google Scholar 

  • Zhai QG, Wang J, Li C, Su L (2010) SHRIMP U–Pb dating and Hf isotopic analyses of Middle Ordovician meta-cumulate gabbro in central Qiangtang, northern Tibetan Plateau. Sci China (Ser D) 40(5):565–573 (in Chinese with English abstract)

    Google Scholar 

  • Zhang Q, Li DZ, Zhang KW (1985) Preliminary study on Tongchangjie ophiolite melange from Yun County, Yunnan Province. Acta Petrologica Sinica 1:1–14 (in Chinese with English abstract)

    Google Scholar 

  • Zhang ZM, Wang JL, Shen K, Shi C (2008) Paleozoic circus-Gondwana orogens: petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica 24:1627–1637 (in Chinese with English abstract)

    Google Scholar 

  • Zhang YZ, Wang YJ, Fan WM, Zhang AM, Ma LY (2012a) Geochronological and geochemical constraints on the metasomatised source for the Neoproterozoic (~825 Ma) high-mg volcanic rocks from the Cangshuipu area (Hunan Province) along the Jiangnan domain and their tectonic implications. Precambrian Res 220–221:139–157

    Article  Google Scholar 

  • Zhang ZM, Dong X, Santosh M, Liu F, Wang W, Yiu F, He ZY, Shen K (2012b) Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis, Tibet: constrains on the origin and evolution of the north-eastern margin of the Indian craton. Gondwana Res 21:123–137

    Article  Google Scholar 

  • Zhao CH (1989) The ATK diagram of basic-intermediate volcanic rocks and tectonic environment. Geol Sci Technol Inf 8(4):1–5 (in Chinese with English abstract)

    Google Scholar 

  • Zhong DL (1998) Paleo-Tethyan Orogenic Belt in the Western Parts of the Sichuan and Yunnan Provinces. Science Press, Beijing, pp 1–231 (in Chinese with English abstract)

    Google Scholar 

  • Zhou ZG, Liu WC, Liang DY (2004) Discovery of the Ordovician and its basal conglomerate in the Kangmar area, southern Tibet—with a discussion of the relation of the sedimentary cover and unifying basement in the Himalayas. Geol Bull China 23:655–663 (in Chinese with English abstract)

    Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Dilek Y, Mo XX (2011) Lhasa terrane in southern Tibet came from Australia. Geology 39:727–730

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Dilek Y, Wang Q, Ji WH, Dong GC, Sui QL, Liu YS, Yuan HL, Mo XX (2012a) Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chem Geol 328:290–308

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Wang Q, Dilek Y, Dong GC, Mo XX (2012b) Origin and Paleozoic tectonic evolution of the Lhasa Terrane. Geol J China Univ 18:1–15 (in Chinese with English abstract)

    Google Scholar 

  • Zi JW, Cawood PA, Fan WM, Tohver E, Wang YJ, McCuaig TC (2012a) Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys. Lithos 140–141:166–182

    Article  Google Scholar 

  • Zi JW, Cawood PA, Fan WM, Wang YJ, Tohver E, McCuaig TC, Peng TP (2012b) Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos 144–145:145–160

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by China Natural Science Foundation (41190073 and 41372198), National Basic Research Program of China (2014CB440901), Natural Environment Research Council (Grant NE/J021822/1) and the Fundamental Research Fund for the Central Universities to SYSU. We are grateful to Wolf-Christian Dullo, Yunpeng Dong and another anonymous reviewer for their critical and constructive reviews and comments on this paper. We would like to thank T.-P. Peng, J.-W. Zi, and L.-Y. Ma for their help during fieldwork and dating analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Wang, Y., Cawood, P.A. et al. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan. Int J Earth Sci (Geol Rundsch) 106, 1469–1486 (2017). https://doi.org/10.1007/s00531-015-1282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1282-z

Keywords

Navigation