Skip to main content

Advertisement

Log in

Active tectonics of Himalayan Frontal Fault system

  • Review article
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In the Sub-Himalayan zone, the frontal Siwalik range abuts against the alluvial plain with an abrupt physiographic break along the Himalayan Frontal Thrust (HFT), defining the present-day tectonic boundary between the Indian plate and the Himalayan orogenic prism. The frontal Siwalik range is characterized by large active anticline structures, which were developed as fault propagation and fault-bend folds in the hanging wall of the HFT. Fault scarps showing surface ruptures and offsets observed in excavated trenches indicate that the HFT is active. South of the HFT, the piedmont zone shows incipient growth of structures, drainage modification, and 2–3 geomorphic depositional surfaces. In the hinterland between the HFT and the MBT, reactivation and out-of-sequence faulting displace Late Quaternary–Holocene sediments. Geodetic measurements across the Himalaya indicate a ~100-km-wide zone, underlain by the Main Himalayan Thrust (MHT), between the HFT and the main microseismicity belt to north is locked. The bulk of shortening, 15–20 mm/year, is consumed aseismically at mid-crustal depth through ductile by creep. Assuming the wedge model, reactivation of the hinterland faults may represent deformation prior to wedge attaining critical taper. The earthquake surface ruptures, ≥240 km in length, interpreted on the Himalayan mountain front through paleoseismology imply reactivation of the HFT and may suggest foreland propagation of the thrust belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • A′vouac JP, Tapponnier P (1993) Kinematic model of active deformation in central Asia. Geophys Res Lett 20:895–898

    Article  Google Scholar 

  • A′vouac JP, Ayoub F, Lefrince S, Konca K, Hellembergner DV (2006) The 2005, Mw 7.6, Kashmir earthquake: sub-pixel correlation of ASTER images and seismic wave form analysis. Earth Planet Sci Lett 249:514–528

    Article  Google Scholar 

  • Ambreys NN, Douglas J (2004) Magnitude calibration of North Indian earthquakes. J Geophys Int 159:165–206

    Article  Google Scholar 

  • Armijo R, Tapponnier P, Mercier JL, Tonglin H (1986) Quaternary extension in southern Tibet. J Geophys Res 91:13803–13872

    Article  Google Scholar 

  • Arora BR, Gahalaut VK, Kumar N (2012) Structural control on along strike variation in the seismicity of northwest Himalaya. J Asian Earth Sci 57:15–24

    Article  Google Scholar 

  • Baker DM, Lillie RJ, Yeats RS, Johnson GD, Yousuf M, Zamin AH (1988) Development of the Himalayan frontal thrust zone: salt range, Pakistan. Geology 16:3–7

    Article  Google Scholar 

  • Banerjee P, Burgmann R (2002) Convergence across the northwest Himalaya from GPS measurements. Geophys Res Lett 29:30-1–30-4. doi:10.1029/2002GL015184

    Article  Google Scholar 

  • Barnes JB, Densmore AL, Mukul M, Sinha R, Jain V, Tandon SK (2011) Interplay between faulting and base level in the development of Himalayan frontal fold topography. J Geophys Res 116:1–19. doi:10.1029/2010JF001841

    Google Scholar 

  • Bashyal RP (1998) Petroleum exploration in Nepal. J Nepal Geol Soc 18:9–34

    Google Scholar 

  • Beaumont C, Jamieson RA (2010) Himalayan Tibetan orogeny: channel flow versus (critical) wedge models, a false dichotomy? In: Leech ML et al. (eds) Proceedings for the 25th Himalaya- Karakoram—Tibet Workshop: US Geological Survey, Open- File Report 2010-1099, 2 p. URLP: http://pubs.usgs.gov/of/1099/Beaumont/

  • Beaumont C, Jamieson RA, Nguyen MH et al (2001) Himalayan tectonics explained by extrusion of a low velocity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Bettinelli P, Avouac JP, Flouzat M, Jouanne F, Bollinger L, Willis P, Chitrakar GJ (2006) Plate motion of India and interseismic strain in Nepal Himalaya from GPS and DORIS measurements. J Geod. doi:10.1007/s00190-006-003-3

  • Bilham R, Larson K, Freymuller J (1997) Indo-Asian convergence rates in Nepal Himalaya. Nature 386:61–66

    Article  Google Scholar 

  • Brun JN (1996) Particle motions in a physical model of shallow angle thrust faulting. Proc Indian Acad Sci Earth Planet Sci 105:197–206

    Google Scholar 

  • Burges WP, Yin A, Dubey CS, Shen ZK, Kelty TK (2012) Holocene shortening across the Main Frontal Thrust zone in the eastern Himalaya. Earth Planet Sci Lett 357–358:152–167

    Article  Google Scholar 

  • Calkin JA, Offield TW, Abdullah SKM, Ali ST (1975) Geology of southern Himalaya in Hazara, Pakistan and adjacent areas. US Geol Surv Profess Paper 716-c

  • Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res 10:13389–13404

    Article  Google Scholar 

  • Chambers J, Parrish R, Argles T et al (2011) A short duration pulse of ductile normal shear on the outer South Tibetan detachment in Bhutan: alternating channel flow and critical taper mechanics of the eastern Himalaya. Tectonics 30:TC2005

    Article  Google Scholar 

  • Chapple WM (1978) Mechanics of thin-skinned fold-and-thrust belts. Geol Soc Am Bull 89:1189–1198. doi:10.1130/0016-7606(1978)89<1189:MOTFB>2.0.CO;2

    Article  Google Scholar 

  • Cotton F, Camplillo M, Deschamps A, Rastogi BK (1996) Rupture history and seismotectonics of the 1991 Uttarkashi, Himalayan earthquake. Tectonophysics 258:35–51

    Article  Google Scholar 

  • Cowie PA, Scholz CH (1992) Displacement-length scaling relationship for faults: data synthesis and discussion. J Struct Geol 14(10):1149–1156. doi:10.1016/0191-8141(92)90066-6

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, Kapp PA, Ojha TP, Upreti BN (1998) Neogene foreland basin deposits, erosional unroofi ng, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geol Soc Am Bull 110:2–21. doi:10.1130/0017606(1998)110<0002:NFBDEU>2.3.CO;2

    Article  Google Scholar 

  • Delcaillau B, Carozza JM, Laville E (2006) Recent fold growth and drainage development: the Janauri and Chandigarh anticlines in the Siwalik foothills, northwest India. Geomorphology 76:241–256

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478

    Article  Google Scholar 

  • Exner U, Grasemann B, Mancktelow NS (2006) Multiple faults in ductile simple shear: analog modeling of flanking structure systems. In: Buiter SJH, Schreurs G (eds) Analogue and numerical modeling of crustal-scale processes. Geol Soc London, Special Publication 253:381–95

  • Gansser A (1964) The geology of the Himalayas. Wiley Interscience, New York

    Google Scholar 

  • Grasemann B, Fritz H, Vannay JC (1999) Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW Himalaya, India): implications for decelerating strain path and extrusion of orogenic wedges. J Stru Geol 21:837–853

    Article  Google Scholar 

  • Guha D, Bardhan S, Basir SR, De AK, Sarkar A (2007) Imprints of Himalayan thrust tectonics on the Quaternary piedmont sediments of the Neora-Jaldhuka Valley, Darjeeling-Sikkim Sub-Himalaya, India. J Asian Earth Sci 30:464–473

    Article  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350

    Article  Google Scholar 

  • Hodges KV, Wobus C, Ruhl K, Schildgen T, Whipple K (2004) Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet Sci Lett 220:379–389

    Article  Google Scholar 

  • Hubbard MS, Harrison TM (1989) 40Ar/39Ar age constraints on deformation and metamorphism in the MCT Zone and Tibetan Slab, eastern Nepal Himalaya. Tectonics 8:865–880

    Article  Google Scholar 

  • Hussain A, Yeats RS, Lisa M (2009) Geological setting of the 8th October, 2005 Kashmir earthquake. J Seismol 13:315–325. doi:10.1007/s/10950-800-9101-7

    Article  Google Scholar 

  • Jamieson RA, Beaumont C (2011) Coeval thrusting and extension during lower crustal ductile flow- implications for exhumation of high-grade metamorphic rocks. J Metamorph Geol 29:33–51

    Article  Google Scholar 

  • Jayangondaperumal R, Wesnousky SG, Chaudhary BK (2011) Near surface expression of early to late holocene displacement along the Northeastern Himalayan Frontal Thrust at Marbang Korong Creek, Arunachal Pradesh, India. Bull Seism Soc Am 101:3060–3064. doi:10.1785/0120110051

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Pandey MR et al (1999) Oblique convergence in the Himalayas of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett 26:1933–1936

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Gamond JF, LeFort P, Pandey MR, Bollinger L, Flouzat M, Avouac JP (2004) Current shortening across the Himalayas of Nepal. Geophys J Int 157:1–14

    Article  Google Scholar 

  • Kaneda H, Nakata T, Tsutsumi H, Kondo S, Sugito N, Awata Y, Akhtar S, Majid A, Khatak W, Awan A, Yeats RS, Hussain A, Ashraj M, Wesnousky SG, Kausar B (2008) Surface rupture of the 2005 Kashmir, Pakistan earthquake and its active tectonic implication. Bull Seism Soc Am 98:512–557

    Google Scholar 

  • Karunakaran C, Rao R (1979) Status of hydrocarbon in the Himalayan region: contributions to stratigraphy and structure. Geol Surv India Miscell Pub 41:1–66

    Google Scholar 

  • Keller HM, Tahirkheli RAK, Mirza MA, Johnson GD, Johnson NM, Opdyke ND (1977) Magnetic polarity stratigraphy of the Upper Siwalik deposits, Pabbi Hills, Pakistan. Earth Planet Sci Lett 36:187–201

    Article  Google Scholar 

  • Krishnaswamy VS, Jalote SP, Shome SK (1970) Recent crustal movements in NW Himalaya and Gangetic plain. Proceedings 4th Symposium Earthquake Engineering Roorkee University, pp 419–439

  • Kumar S, Wesnousky SG, Rockwell TK, Ragona D, Thakur VC, Seitz GG (2001) Earthquake recurrence and rupture dynamics of Himalayan frontal thrust, India. Science 294:2328–2331

    Article  Google Scholar 

  • Kumar S, Wesnousky SG, Rockwall TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquake along the Indian Himalaya. J Geophys Res III:Bo3304. doi:10.1029/2004JB00309

    Google Scholar 

  • Kumar S, Wesnousky SG, Jayangondaperumal R, Nakata T, Kumahara Y, Singh V (2010) Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes. J Geophys Res 115:B12422, 1–20. doi:10.1029/2009JB006789

  • L′ave J, Avouac JP (2000) Active folding of fluvial terraces across the Siwalik Hills, Himalayas of Central Nepal. J Geophys Res 105(5735–5770):593. doi:10.1029/1999JB900292

    Google Scholar 

  • L′ave J, Yule D, Sapkota S, Basant K, Madden C, Attal M, Pandey MR (2005) Evidence of a great Medieval earthquake (~1100 AD) in the Central Nepal. Science 307:1302–1305

    Article  Google Scholar 

  • Larson K, Bergmann R, Bilham R, Freymueller JT (1999) Kinematics of the India-Eurasian collision zone from GPS measurements. J Geophys Res 104:1077–1093

    Article  Google Scholar 

  • Larson KP, Cottle JM, Godin L (2011) Petrochronologic record of metamorphism and melting in the upper Greater Himalayan sequence, Manaslu- Himal Chuli Himalaya, west- central Nepal. Lithosphere 3:379–392

    Article  Google Scholar 

  • LeFort P (1975) Himalayas collided range—present knowledge of continental arc. Am J Sci A275:1–44

    Google Scholar 

  • Malik JN, Mathew G (2005) Evidence of paleoearthquakes from trench investigations across Pinjore Garden fault in Pinjore Dun, NW Himalaya. J Earth Syst Sci 114(4):387–400

    Article  Google Scholar 

  • Malik JN, Shah AA, Sahoo AK, Puhan B, Banerjee C, Shinde DP, Juyal N, Singhvi AK, Rath S (2010) Active fault, fault growth and segment linkage along the Janauri anticline (fontal foreland fold), NW Himalaya, India. Tectonophysics 483:327–343

    Article  Google Scholar 

  • Meigs AJ, Burbank DW, Beck RA (1995) Middle–late Miocene (N10 Ma) formation of the Main Boundary Thrust in the western Himalaya. Geology 23:423–426

    Article  Google Scholar 

  • Mishra P, Mukhopadhyay DK (2002) Balanced structural models of Mohand and Santaurgarh ramp anticlines, Himalayan foreland fold- thrust belt, Dehradun reentrant, Uttranchal. J Geol Soc India 60:649–661

    Google Scholar 

  • Molnar P (1984) Structure and tectonics of the Himalaya: constraints and implication of geophysical data. Annals Rev Earth Planet Sci 12:489–518

    Article  Google Scholar 

  • Molnar P, Stock JM (2009) Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28:TC3001. doi:10.1029/2008TC00227

    Article  Google Scholar 

  • Mugnier JL, Huyyghe P, Chalron E, Mascle G (1994) Recent movements along the Main Boundary Thrust of the Himalaya: normal faulting in an over- critical thrust wedge. Tectonophysics 238:199–215

    Article  Google Scholar 

  • Mugnier JL, Huyghe P, Gajurel AP, Becel D (2005) Frontal and piggy-back seismic ruptures in the external thrust belt of western Nepal. J Asian Earth Sci 25:707–717

    Article  Google Scholar 

  • Mukherjee S (2012a) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci. doi:10.1007/s00531-012-0806-z

    Google Scholar 

  • Mukherjee S (2012b) Higher Himalayan Shear Zone, Bhagirathi section (NW Himalaya, India)—its structures, backthrusts, and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Earth Sci (in press)

  • Mukherjee S (2013) Implication of the southern Tethyan Himalaya (Sutlej section, India) for the extrusion of the Higher Himalaya and the geometry of the mid-crustal channel. Geophys Res Abst 15, EGU2013-2584, 2013 (Submitted)

  • Mukherjee S, Koyi HA (2010a) Higher Himalaya shear zone, section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow and continental tectonics: an overview. In: Law RD, Searl MP (eds) Channel flow, extrusion and exhumation in continental collision zone. Geol Soc Lond Spec Publ 268: 25–37

  • Mukherjee S, Koyi HA (2010b) Higher Himalaya shear zone, Zanskar section—microstructural studies & extrusion mechanism by a combination of simple shear & channel flow. Int J Earth Sci 99:1083–1110

    Article  Google Scholar 

  • Mukherjee S, Mulchron K (2013) Viscous dissipation pattern in incompressible Newtonian viscous simple shear zone, an analytical model. Int J Earth Sci (in press)

  • Mukhopadhyay DK, Mishra P (2004) The Main Frontal Thrust (MFT), northwestern Himalayas: thrust trajectory and hanging wall fold geometry from balanced cross sections. J Geol Soc India 64:739–746

    Google Scholar 

  • Mukul M (2000) The geometry and kinematics of the Main Boundary Thrust and related neotectonics in Darjeeling Himalayan thrust belt. J Struc Geol 22:1261–1283

    Article  Google Scholar 

  • Mukul M, Jaiswal M, Singhvi AK (2007) Timing of recent out of sequence active deformation in the frontal Himalayan wedge: insights from Darjeeling Sub Himalaya. Geology 35:999–1002

    Article  Google Scholar 

  • Murphy MA, Copeland P (2005) Transtensional deformation in the central Himalaya and its role in accommodating growth of the Himalayan orogen. Tectonics 24:4012. doi:10.1029/2004TC001659

    Article  Google Scholar 

  • Nabelek J et al (2009) Underplating in the Himalaya—Tibet collision zone revealed by the Hi—CLIMB Experiment. Science 325(5946):1371–1374. doi:10.1126/1167719

    Article  Google Scholar 

  • Nakata T (1972) Geomorphic history and crustal movements of the foothills of the Himalayas. Science Reports, Tohoku University 22, 7:39–177

  • Nakata T (1975) On Quaternary tectonics around the Himalayas. Tohoku University Science Reports 25, 7:111–118

  • Nakata T (1989) Active faults of the Himalaya of India and Nepal. In: Malinconico Jr., Lillie RJ (eds) Tectonics of the western Himalaya. Geol Soc America Special Paper 232:243–264

  • Nakata T, Tsutsumi SH, Lawrence RD (1991) Active faults of Pakistan: map sheets and inventories. Research Centre for Regional Geography, Hiroshima University Sp Pub 21

  • Nawani PC, Khan SA, Singh AK (1982) Geologic cum geomorphic evolution of the western part of Chenab basin with special reference to Quaternary tectonics. Him Geol 12:264–279

    Google Scholar 

  • Nelson KD et al (1996) Partially molten middle crust beneath Southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1696

    Article  Google Scholar 

  • Ni J, Burzangi M (1984) Seismotectonics of the Himalayan Collision zone-geometry of the under thrusting Indian plate beneath the Himalaya. J Geophys Res 89:1147–1163

    Article  Google Scholar 

  • Oatney EM, Virdi NS, Yeats RS (2001) Contribution of the Trans-Yamuna active fault system towards hanging wall strain release above the decollement, Himalayan foothills NW India. Him Geol 22:9–27

    Google Scholar 

  • Ojha TP, Butler RF, Quade J, DeCelles PG, Richards D, Upreti BN (2000) Magnetic polarity stratigraphy of the Neogene Siwalik Group at Khutia Khola, far western Nepal. Geol Soc Am Bull 112:424–434

    Article  Google Scholar 

  • Pandey MR, Tandulkar RP, Avouac JP, Vergne J, Heritier Th (1999) Seismotectonics of the Nepal Himalaya from a local seismic network. J Asian Earth Sci 17:703–712

    Article  Google Scholar 

  • Parkash B, Kumar S, Rao MS, Giri SC, Kumar CS, Gupta S, Srivastava P (2000) Holocene tectonic movements and stress field in the western Gangetic plains. Curr Sci 79:438–449

    Google Scholar 

  • Peltzer G, Saucier F (1996) Present day kinematics of Asia derived from geological fault rates. J Geophys Res 101:27943–27956

    Article  Google Scholar 

  • Philip G, Suresh N, Bhakuni SS, Gupta V (2011) Paleoseismic investigation along Nalagarh Thrust: evidence of Late Pliestocene earthquake in Pinjaur Dun, Northwestern Sub Himalaya. J Asian Earth Sci 40:1056–1067

    Article  Google Scholar 

  • Powers PM, Lillie RJ, Yeats RS (1998) Structure and shortening of the Kangra and Dehradun re-entrants, Sub Himalaya, India. Geol Soc Am Bull 110:1010–1027

    Article  Google Scholar 

  • Raiverman V, Srivastava AK, Prasad DN (1994) Structural style in northwestern Himalayan foothills. Him Geol 15:263–280

    Google Scholar 

  • Rao AR (1993) Magnetic polarity stratigraphy of Upper Siwalik of north-western Himalayan foothills. Curr Sci 64:863–871

    Google Scholar 

  • Robinson DM, DeCelles PG, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal. Geol Soc Am Bull 118:865–885

    Article  Google Scholar 

  • Sahoo D (2012) Neotectonics- active tectonics of frontal Siwalik range and Soan dun in Himachal Pradesh, NW Himalaya. D. Phil thesis H N B Garhwal University Srinagar: 149 p

  • Sangode SJ, Kumar R, Ghosh SK (1996) Magnetic polarity stratigraphy of Siwalik Sequence of Haripur area (HP), NW Himalaya. J Geol Soc India 47:683–704

    Google Scholar 

  • Sangode SJ, Kumar R, Ghosh SK (1999) Paleomagnetic and rock magnetic perspectives on the post—collisional continental sediments of the Himalaya in the Indian sub continent and Gondwana: A paleomagnetic and rock magnetic perspective. In: Radhakrishna T, Piper JDFA (eds) Mem Geol Soc India 44: 221–248

  • Sapkota SN, Bollinger L, Klinger L, Tapponnier P, Gaudemer Y, Tewari D (2013) Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci 6:71–76

    Article  Google Scholar 

  • Schulte- Pelkum V, Monslave G, Sheehan A, Pandey MR, Bilham R, Wu F (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435:1222–1225

    Article  Google Scholar 

  • Seeber L, Armbruster JG (1981) Great detachment earthquakes along the Himalayan arc and long term forecasting. In Simpson DW, Richards PG (eds) Earthquake prediction: an international review. Am Geophys Union Maurice Ewing Ser 4:259–277

    Google Scholar 

  • Seeber L, Gornitz V (1983) River profiles along the Himalayan arc as indicators of active tectonics. Tectonophysics 92:335–367

    Article  Google Scholar 

  • Singh T, Jain V (2009) Tectonic constraints on watershed development on frontal ridges: Mohand Ridge, NW Himalaya, India. Geomorphology 106:231–241. doi:10.1016/J.geomorph.2008.11.001

    Article  Google Scholar 

  • Singh V, Tandon SK (2008) The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya: Tectonic geomorphology and morphotectonic evolution. Geomorphology 102:376–394

    Google Scholar 

  • Singh AK, Prakash B, Mohindra R, Thomas JV, Singhvi AK (2001) Quaternary alluvial fan sedimentation in the Dehradun valley piggy back basin, NW Himalaya: tetonic and paleoclimatic implications. Basin Res 13:449–471

    Article  Google Scholar 

  • Suppe J (1983) Geometry and kinematics of fault-bend folding. Am J Sci 283:689–692

    Article  Google Scholar 

  • Suresh N, Kumar R (2009) Variable period of aggradations and termination history of two distinct late Quaternary fans in the Soan Dun, NW Sub Himalaya: impact of tectonics and climate. Him Geol 30:155–166

    Google Scholar 

  • Suresh N, Bagati TN, Kumar R, Thakur VC (2007) Evolution of Quaternary alluvial fans and terraces in intermundane Pinjaur dun, Sub Himalaya, NW India: interaction between tectonics and climate change. Sedimentology 54:809–833. doi:10.111/J.1365-3091.2007.00861X

    Article  Google Scholar 

  • Thakur VC, Pandey AK (2004) Active deformation of Himalayan Frontal Thrust and Piedmont Zone south of Dehradun in respect of seismotectonics of Garhwal Himalaya. Him Geol 25:23–31

    Google Scholar 

  • Thakur VC, Pandey AK, Suresh N (2007) Late Quaternary-Holocene frontal fault zone of the Garhwal Sub Himalaya, NW India. J Asian Earth Sci 29(2/3):305–319

    Article  Google Scholar 

  • Thakur VC, Jayangondaperumal J, Suresh N (2009) Late Quaternary–Holocene fold and landform generated by morphogenic earthquakes in Chandigarh anticline in Punjab Himalaya. Him Geol 30:103–113

    Google Scholar 

  • Thakur VC, Jayangondaperumal R, Malik MA (2010) Redefining Wadia-Medlicott’s main boundary fault from Jhelum to Yamuna: an active fault strand of the Main Boundary Thrust in Northwest Himalaya. Tectonophysics 489:29–42

    Article  Google Scholar 

  • Valdiya KS (1992a) Active Himalayan frontal fault, main boundary thrust and Ramgarh Thrust in southern Kumaun. Geol Soc India 40:509–528

    Google Scholar 

  • Valdiya KS (1992b) The Main Boundary thrust zone of the Himalaya, India. In: Bucknam RC, Hancock PL (eds) Major active faults of the world: results of IGCP Project 206. Annales Tectonicae VI:54–84

  • Wesnousky SG, Kumar S, Mahindra R, Thakur VC (1999) Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics 18:967–976

    Article  Google Scholar 

  • Wobus CW, Heimsath A, Whipple K, Hodges K (2005) Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434:1008–1011

    Article  Google Scholar 

  • Wobus CW, Whipple KX, Hodges KV (2006) Neotectonics of the Central Nepalese Himalaya: constraints from geomorphology, detrital 40Ar/39Ar thermochronology and thermal modeling. Tectonics 25:4011. doi:10.1029/2005TC001935

    Article  Google Scholar 

  • Jayangondaperumal R, Dubey AK, Mugnier JL Scarp development in the Himalayan Frontal Thrust, western Himalaya: implications for shortening estimates and seismic hazard assessment. Int J Earth Sci (this volume)

  • Yeats RS, Lillie RJ (1991) Contemporary tectonics of the Himalayan frontal fault system: folds, blind thrusts, and the 1905 Kangra earthquake. J Struc Geol 13:215–225

    Article  Google Scholar 

  • Yeats RS, Thakur VC (2008) Active faulting south of the Himalayan front: establishing a new plate boundary. Tectonophysics 453:63–73

    Article  Google Scholar 

  • Yeats RS, Khan SH, Akhtar M (1984) Late quaternary deformation of the Salt Range of Pakistan. Geol Soc Am Bull 95:958–966

    Article  Google Scholar 

  • Yeats RS, Nakata T, Farah A, Fort M, Mirza MA, Pandey MR, Stein RS (1992) The Himalayan Frontal Fault System. In: Bucknam RC, Hancock PL (eds) Major active faults of the world: results of IGCP Project 206. Annales Tectonicae VI:85–98

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along–strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 28:211–280

    Google Scholar 

  • Zhou W, Nelson KD, Project INDEPTH team (1993) Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature 302:557–559

    Article  Google Scholar 

Download references

Acknowledgments

I thank the Director of the WIHG for providing the logistic support. The work is an outcome of financial support provided for various projects by the DST, Government of India. Thanks are due to W C Dullo and Monika Dullo for editorial support and Delores Robinson, Soumyajit Mukherjee, and an anonymous reviewer for comments in revising the manuscript. Mayank Joshi assisted in preparing the manuscript and illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. C. Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakur, V.C. Active tectonics of Himalayan Frontal Fault system. Int J Earth Sci (Geol Rundsch) 102, 1791–1810 (2013). https://doi.org/10.1007/s00531-013-0891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0891-7

Keywords

Navigation