Skip to main content
Log in

A concave–convex problem with a variable operator

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the following elliptic problem \(-A(u) = \lambda u^q\) with Dirichlet boundary conditions, where \(A(u) (x) = \Delta u (x) \chi _{D_1} (x)+ \Delta _p u(x) \chi _{D_2}(x)\) is the Laplacian in one part of the domain, \(D_1\), and the p-Laplacian (with \(p>2\)) in the rest of the domain, \(D_2 \). We show that this problem exhibits a concave–convex nature for \(1<q<p-1\). In fact, we prove that there exists a positive value \(\lambda ^*\) such that the problem has no positive solution for \(\lambda > \lambda ^*\) and a minimal positive solution for \(0<\lambda < \lambda ^*\). If in addition we assume that p is subcritical, that is, \(p<2N/(N-2)\) then there are at least two positive solutions for almost every \(0<\lambda < \lambda ^*\), the first one (that exists for all \(0<\lambda < \lambda ^*\)) is obtained minimizing a suitable functional and the second one (that is proven to exist for almost every \(0<\lambda < \lambda ^*\)) comes from an appropriate (and delicate) mountain pass argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., García-Azorero, J., Peral, I.: Multiplicity results for some nonlinear elliptic equations. J. Funct. Anal. 137, 219–242 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Acerbi, E., Fusco, N.: A transmission problem in the calculus of variations. Calc. Var. Partial. Differ. Equ. 2(1), 1–16 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J.M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Q. J. Math. 28, 473–486 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bulíček, M., Glitzky, A., Liero, M.: Systems describing electrothermal effects with \(p(x)\)-Laplacian like structure for discontinuous variable exponents. SIAM J. Math. Anal. 48(5), 3496–3514 (2016)

  7. Bulíček, M., Glitzky, A., Matthias L.: Thermistor systems of \(p(x)\)-Laplace-type with discontinuous exponents via entropy solutions (preprint MORE/2016/11)

  8. Boccardo, L., Escobedo, M., Peral, I.: A Dirichlet problem involving critical exponents. Nonlinear Anal. 24(11), 1639–1648 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Nirenberg, L.: \(H^1\) versus \(\cal{C}^1\) local minimizers. C. R. Acad. Sci. Paris t.317, 465–472 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Charro, F., Colorado, E., Peral, I.: Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave–convex right hand side. J. Differ. Equ. 246, 4221–4248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré Anal. Nonlinéaire 15, 493–576 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Figueiredo, D.G.: On the existence of multiple ordered solutions of nonlinear eigenvalue problems. Nonlinear Anal. Theory Methods Appl. 11(4), 481–492 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Figueiredo, D.G.: Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Published for the Tata Institute of Fundamental Research, Bombay. Springer, Berlin (1989)

    Google Scholar 

  14. Diening, Lars, Harjulehto, Petteri, Hästö, Peter, Ružička, Michael: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics. Springer, Berlin (2017)

    MATH  Google Scholar 

  15. Fan, X.-L., Wang, S., Zhao, D.: Density of \(\cal{C}^\infty (\Omega )\) in \(W^{1, p(x)}(\Omega )\) with discontinuous exponent \(p(x)\). Math. Nachr. 279, 142–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan, X.-L., Zhao, D.: Regularity of quasi-minimizers of integral functionals with discontinuous \(p(x)\)-growth conditions. Nonlinear Anal. 65(8), 1521–1531 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fischer, A., Koprucki, T., Gärtner, K., Brückner, J., Lüssem, B., Leo, K., Glitzky, A., Scholz, R.: Feel the heat: nonlinear electrothermal feedback in organic LEDs. Adv. Funct. Mater. 24, 3367–3374 (2014)

    Article  Google Scholar 

  18. García-Azorero, J., Peral Alonso, I.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 323, 877–895 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. García-Azorero, J., Peral Alonso, I.: Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43(3), 941–957 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. García-Azorero, J., Peral, I., Rossi, J.D.: A convex–concave problem with a nonlinear boundary condition. J. Differ. Equ. 198(1), 91–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. García-Azorero, J., Manfredi, J.J., Peral, I.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2(3), 385–404 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. García-Melián, J., Rossi, J.D., Sabina de Lis, J.C.: A variable exponent diffusion problem of concave–convex nature. Topol. Methods Nonlinear Anal. 47(2), 613–639 (2016)

    MathSciNet  MATH  Google Scholar 

  23. García-Melián, J., Rossi, J.D., Sabina de Lis, J.: A convex–concave elliptic problem with a parameter on the boundary condition. Discrete Contin. Dyn. Syst. 32(4), 1095–1124 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 224, 2nd edn. Springer, Berlin (1983)

    Book  Google Scholar 

  25. Ghoussoub, N., Preiss, D.: A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire 6, 321–330 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guedda, M., Veron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. Theory Methods Appl. 13, 879–902 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harjulehto, P., Hästö, P., Lê, Út V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551–4574 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman–Lazer-type problem set on \(\mathbb{R}^N\). Proc. R. Soc. Edinb. 129A, 787–809 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  30. Lions, P.L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24, 441–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mercaldo, A., Rossi, J.D., Segura de León, S., Trombetti, C.: On the behaviour of solutions to the Dirichlet problem for the \(p(x)\)-Laplacian when \(p(x)\) goes to 1 in a subdomain. Differ. Integral Equ. 25(1–2), 53–74 (2012)

    MathSciNet  MATH  Google Scholar 

  32. Sakaguchi, S.: Concavity properties of solutions to some degerate quasilinear elliptic Dirichlet Problems. Ann. Scuola Normale Sup. di Pisa Serie 4 14(3), 403–421 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Stampacchia, G.: Equations Elliptiques du Second Ordre a Coefficients Discontinus. Les Presses de L’Université de Montreal, Montreal (1966)

    MATH  Google Scholar 

  34. Zhikov, V.V.: On some variational problems. Russ. J. Math. Phys. 8, 105–116 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was started during a research stay of the first author at Universidad of Buenos Aires (Argentina) supported by Secretaría de Estado de Investigación, Desarrollo e Innovación EEBB2014 (Spain) also he is partially supported by MINECO-FEDER Grant MTM2015-68210-P (Spain), Junta de Andalucía FQM-116 (Spain) and by MINECO Grant BES-2013-066595 (Spain). The second author is supported by CONICET (Argentina) and by MINECO-FEDER Grant MTM2015-70227-P (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio D. Rossi.

Additional information

Communicated by A. Malchiodi.

To Ireneo Peral a great mathematician and friend in his 70th birthday.

Appendix

Appendix

We include here a proof of the fact that Palais–Smale sequences are bounded when we assume an Ambrosetti–Rabinowitz type condition with \(\kappa >p\). We remark again that this condition does not hold here, but we include this simple computation for the sake of completeness.

Lemma 4.8

Consider the functional \(F:\mathcal {W}(\Omega )\rightarrow {\mathbb {R}}\) defined as follows:

$$\begin{aligned} F(u)= \int _{D_1} \frac{|\nabla u|^2}{2} \, dx + \int _{D_2} \frac{|\nabla u|^p}{p} \, dx - \lambda \int _{\Omega } H(x,u(x)) \, dx, \end{aligned}$$

with H such that there exists \(\kappa >p\) satisfying

$$\begin{aligned} 0\le \kappa H(x,s)\le s h(x,s), \qquad s \ge 0, \, x \in \Omega , \end{aligned}$$
(40)

where \(H(x,s)=\int _0^sh(x,t)dt\).

Then, Palais–Smale sequences for F are bounded.

Proof

Let \(\{u_n\}\subset \mathcal {W}(\Omega )\) be a Palais–Smale sequence. That is, \(|F(u_n)|\le C\) and \(F'(u_n)\rightarrow 0\) in \(\mathcal {W}(\Omega )'\). Then

$$\begin{aligned} C&\ge \int _{D_1} \frac{|\nabla u_n|^2}{2} + \int _{D_2} \frac{|\nabla u_n|^p}{p} - \lambda \int _{\Omega } H(x,u_n) \, dx, \\&\ge \int _{D_1} \frac{|\nabla u_n|^2}{2} + \int _{D_2} \frac{|\nabla u_n|^p}{p} -\frac{\lambda }{\kappa }\int _{\Omega }u_n h(x,u_n)dx \\&=\left( \frac{1}{2}-\frac{1}{\kappa } \right) \int _{D_1} |\nabla u_n|^2 + \left( \frac{1}{p}-\frac{1}{\kappa } \right) \int _{D_2} |\nabla u_n|^p+\frac{1}{\kappa } F'(u_n)(u_n) \\&\ge \left( \frac{1}{p}-\frac{1}{\kappa } \right) \left( \int _{D_1} |\nabla u_n|^2+\int _{D_2} |\nabla u_n|^p \right) -\frac{\varepsilon _n}{\kappa }[u_n]_{\mathcal {W}(\Omega )}, \end{aligned}$$

where \(\varepsilon _n \rightarrow 0\). This leads to the boundedness of \(\{u_n\}\) in \(\mathcal {W}(\Omega )\). \(\square \)

We remark that the condition (40) can be relaxed imposing the inequality for \(|s|\ge R>0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molino, A., Rossi, J.D. A concave–convex problem with a variable operator. Calc. Var. 57, 10 (2018). https://doi.org/10.1007/s00526-017-1291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1291-9

Mathematics Subject Classification

Navigation