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Abstract
Skin cancer, primarily resulting from the abnormal growth of skin cells, is among the most common cancer types. In recent

decades, the incidence of skin cancer cases worldwide has risen significantly (one in every three newly diagnosed cancer

cases is a skin cancer). Such an increase can be attributed to changes in our social and lifestyle habits coupled with

devastating man-made alterations to the global ecosystem. Despite such a notable increase, diagnosis of skin cancer is still

challenging, which becomes critical as its early detection is crucial for increasing the overall survival rate. This calls for

advancements of innovative computer-aided systems to assist medical experts with their decision making. In this context,

there has been a recent surge of interest in machine learning (ML), in particular, deep neural networks (DNNs), to provide

complementary assistance to expert physicians. While DNNs have a high processing capacity far beyond that of human

experts, their outputs are deterministic, i.e., providing estimates without prediction confidence. Therefore, it is of para-

mount importance to develop DNNs with uncertainty-awareness to provide confidence in their predictions. Monte Carlo

dropout (MCD) is vastly used for uncertainty quantification; however, MCD suffers from overconfidence and being miss

calibrated. In this paper, we use MCD algorithm to develop an uncertainty-aware DNN that assigns high predictive entropy

to erroneous predictions and enable the model to optimize the hyper-parameters during training, which leads to more

accurate uncertainty quantification. We use two synthetic (two moons and blobs) and a real dataset (skin cancer) to validate

our algorithm. Our experiments on these datasets prove effectiveness of our approach in quantifying reliable uncertainty.

Our method achieved 85.65 ± 0.18 prediction accuracy, 83.03 ± 0.25 uncertainty accuracy, and 1.93 ± 0.3 expected

calibration error outperforming vanilla MCD and MCD with loss enhanced based on predicted entropy.
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1 Introduction

Over the past decades, there has been a significant increase

in the incidence of skin cancers across the world potentially

due to our social and lifestyle changes, as well as the

depletion of the ozone layer [1]. Skin cancer, which is

mostly caused by abnormal growth of skin cells, can be

considered as one of the most prevalent cancer types. One

in six Americans suffer from skin cancer at some point in

their lives. This type of cancer accounts for one-third of all

cancers in the United States. Near 75 percent of all skin

cancer-related deaths are due to malignant melanoma. The

most common type of skin cancer is non-melanoma with

lower mortality rate. Despite the aforementioned increase

in incidence of skin cancer, its diagnose is still challenging

even for dermatologists [2–4]. Consequently, there has

been a surge of interest in incorporation of computer-aided

methodologies to assist the medical experts with their

decision makings [5]. Recently, machine learning (ML), in

particular, deep learning (DL) solutions, have achieved

promising results in various application domains, encour-

aging their utilization for cancer screening/diagnosis [6].

Capitalizing on the fact that early diagnosis of skin cancer

is of significant importance to improve life expectancy of

patients, researchers strive to develop advanced DL models

in this domain.

Generally speaking, DL methods have become widely

popular for medical image processing and analysis tasks
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such as segmentation of cancerous legions. For instance,

convolutional neural network (CNN) has been recently

used for systematic categorization of skin legion diseases

[7] and its performance has even been evaluated against a

group of 58 dermatologists for skin cancer classification.

As pointed out in [8], in another similar attempt, promising

results have been obtained by using CNN for skin cancer

classification [9–11]. The resulting DL model can be used

as a complementary medical assistant for skin cancer

classification [12]. One of the milestones of applying DL in

medical applications is the lack of labeled data. This stems

from the fact that labeling of medical images must be done

by experts, which is both costly and time consuming.

Additionally, deep neural networks (DNNs), typically,

have thousands of parameters, therefore, learning appro-

priate parameter values from scratch may be computa-

tionally demanding. An alternative approach is transfer

learning, which is generally used to fine-tune a pre-trained

network to a new task and achieve acceptable performance

in reasonable amount of time [13]. Deep neural networks

(DNNs) have shown promising results in challenging tasks;

however, their reliability is fragile when it comes to unseen

data, which could lead to wrong medical diagnoses and,

ultimately, patient deaths. This is due to the fact that DNNs

are black-box models with deterministic behavior, lacking

transparency in their decision-making process and the

ability to estimate how certain they are about their own

predictions. Several studies have been devoted to the

important topic of uncertainty quantification for deep

models [14].

Generally speaking, uncertainty is of two types: epis-

temic and aleatoric. Epistemic uncertainty, also known as

model uncertainty, is due to limited training data or model

complexity, which is reducible by providing enough data.

Aleatoric uncertainty, on the other hand, arises due to the

inherent noise of observations, making it data-dependent

and cannot be reduced by gathering more data [?].

One possible way of uncertainty quantification in DNNs

is through the Bayesian approach. Instead of using deter-

ministic values for DNN parameters, the Bayesian

approach imposes a probability distribution on them, pro-

viding a natural way of capturing uncertainty [15]. How-

ever, the computational complexity of this approach is

high, hindering the estimation of posterior distribution in

real time [13]. Bayesian neural networks begin with an

initial value on the previous model and data parameters and

use them to calculate and update the posterior distribution.

For networks with thousands of parameters, finding and

calculating the posterior distribution is complex and com-

putationally costly. Estimation methods such as Monte

Carlo (MC) can be used to address the computational

complexity of the Bayesian approach. In this method, each

sample is fed M times to the network equipped with

dropout layers. Random activation/deactivation of the

network neurons (due to dropout layers) yields M different

outputs for the given input. These M outputs can be used to

estimate mean and variance, providing a measure of

uncertainty. However, the drawback of MC is the lack of

calibration of forecasts, leading to performance lower than

ensemble methods [16].

The purpose of this paper is to propose a new method for

improving the quantification of uncertainty in skin cancer

detection models. Ideally, the model should assign high

uncertainty to predictions that are not certain. By sorting

the model’s outcomes according to their predictive entropy,

we can estimate two distributions that correspond to correct

and incorrect predictions, as shown in Fig. 1.

In our previous work [16], we addressed the drawbacks

of the MCD method, including overconfidence and being

non-calibrated, by proposing an uncertainty-aware loss

function to optimize the model parameters. Although the

use of this loss function leads to uncertainty quantification

with acceptable accuracy, optimizing the model’s hyper-

parameters still requires manual intervention. Suboptimal

choices of hyperparameter values can impede further

improvements in MCD.

Inspired by the fact that MCD is very sensitive to the

choice of hyperparameters and the issues discussed above,

the main contribution of this paper can be listed as:

• In addition to optimizing uncertainty accuracy (UA)

and expected calibration error (ECE), our previously

proposed uncertainty-aware loss function is exploited

for automatic hyperparameter (e.g. dropout probability)

tuning based on Bayesian optimization.

• For the first time, uncertainty-aware diagnosis of skin

cancer is investigated. Given that field of medical

diagnosis is safety critical, robust uncertainty quantifi-

cation is vital to successful deployment of DNNs in this

field.

Fig. 1 The density plots of predictive uncertainty predictions for

correctly classified and misclassified samples of the ideal classifica-

tion model
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• While Ensemble methods outperform MCD in terms of

UA and ECE, they are computationally expensive.

Achieving better uncertainty quantification but keeping

computation complexity low is highly desirable. To this

end, MCD is reinforced with better UA and ECE

estimation as well as automatic hyperparameter tuning

while computational complexity is much lower than

Ensemble methods.

Through comprehensive experiments, we quantitatively

evaluate our method against the existing ones such as the

MCD and the Ensemble Bayesian Networks using cross-

validation. We also perform a qualitative evaluation on the

distributions of correctly and incorrectly categorized pre-

dictions, due to the fact that the ideal model has to separate

the two distributions (their means should be as far as

possible) and reduce their overlap. As a result, our model is

able to detect wrong predictions which can be sent to a

medical expert for further inspection.

The rest of the article is organized as follows: the

background of our work is introduced in Sect. 2. The

proposed method for better uncertainty quantification is

presented in Sect. 3. The simulation and experimental

results of our proposed method are given in Sect. 4.

Finally, the paper is closed with conclusion in Sect. 5.

2 Background

In uncertainty-aware classification, two types of accuracy

can be considered which are related to model prediction

and model uncertainty quantification [?]. The motivation

for uncertainty quantification is the fact that deterministic

models are bound to predict the class for given input even

if samples similar to it have not been seen during training.

Under such circumstances, performing a prediction may

lead to erroneous results. On the other hand, uncertainty-

aware models are able to provide a measure of how certain

they are about their own prediction. This way, the user will

know when it is safe to trust the model’s prediction.

However, solely providing an estimation of model uncer-

tainty will not be of much use. It is vital to compute the

accuracy of the model’s uncertainty estimation. A model

with high uncertainty estimation accuracy and a high

classification accuracy is the ideal case. Such a model is

expected to assign a low uncertainty to its correct predic-

tions and high uncertainty to its incorrect ones [17]. In the

remainder of this section, the required background for

uncertainty quantification is reviewed.

2.1 Predictive uncertainty quantification

For a given test sample, the predicted output of a model is

either correct or incorrect. Using multiple forward passes

of MCD, the predictive mean and standard deviation for

the test sample can be computed. If the predictive standard

deviation is less than a certain threshold, the model pre-

diction is considered to be certain. For standard deviation

higher than the threshold, the model is assumed to be

uncertain about its own prediction. Considering all possible

combinations of {correct, incorrect} and {certain, uncer-

tain} yields the confusion matrix shown in Fig. 2. In this

matrix, TC represents the cases in which the model has

made a correct prediction that it is certain about. TU stands

for the cases that the model has made a wrong prediction

and the model is highly uncertain about its prediction

correctness. FU is related to the cases that the model is

uncertain about its own correct predictions. Finally, FC

represents the worst error type which occurs when the

model makes a wrong prediction with high confidence.

Similar to the idea of the confusion matrix, we can propose

four metrics for evaluating different Bayesian networks:

• Uncertainty sensitivity (Usen) which denotes the number

of incorrect and uncertain estimates divided by the

number of incorrect predictions:

Usen ¼
TU

TUþ FC
: ð1Þ

• Uncertainty Specificity (Uspe) which is defined as the

number of correct and certain predictions divided by the

number of correct predictions:

Uspe ¼ TC

TC + FU
: ð2Þ

• Uncertainty precision (Upre) which is related to the

number of incorrect and uncertain predictions divided

by the number of uncertain predictions:

Upre ¼ TU

TU þ FU
: ð3Þ

• Uncertainty accuracy (UA) which is defined as the sum

of diagonal predictions (TU and TC) divided by the

total number of predictions:

Fig. 2 The UCM and its components
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UA ¼ TU + TC

TU + TC + FU + FC
: ð4Þ

A trustworthy model has a high UA. The best value of

UA is 1 and the worst value is 0. A network with UA

metric near one is able to estimate its uncertainty level

more accurately and identify the samples about which it is

uncertain.

2.2 Uncertainty quantification techniques

The two uncertainty prediction techniques used in Baye-

sian neural networks are briefly described in the following

subsections.

2.2.1 Monte Carlo dropout (MCD)

MCD is a Gaussian Process (GP) approximation that con-

sists of retaining rate, model precision, and length scale

parameters. According to [18], the posterior distribution of

a Bayesian setting can be estimated by turning on the

dropout at test time and feeding each sample to the network

M times which yields M predictions. Due to the random

nature of the dropout layers, the M predictions are not

exactly the same and can be used to compute the mean and

the standard deviation of the posterior distribution. The

standard deviation is considered a measure of uncertainty.

Higher standard deviation means higher uncertainty. More

details on MCD method is already available in the litera-

ture [19]. The predictive mean (lpred) for a test input x is

estimated as:

lpredðx; cÞ �
1

M

XM

m¼1

pðy ¼ c j x; x̂mÞ; ð5Þ

where pðy ¼ c j x; x̂mÞ is the softmax probability of sample

x belonging to class c, x̂m is the set of network parameters

in mth forward pass, and M is the number of forwarding

passes of MCD. For uncertainty evaluation, the predictive

entropy (PE) is calculated as follows [20, 21]:

PEðxÞ ¼ �
XC

c¼1

lpredðx; cÞ log lpredðx; cÞ
� �

ð6Þ

where C is the number of classes. Pseudo code of gener-

ating MCD is revealed in Algorithm 1.
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2.2.2 Ensemble Bayesian networks

Probabilistic Bayesian methods are accepted as one of the

best ways to quantify uncertainty. However, ensemble

methods are computationally expensive leading to proposal

of many approximate solutions. As an example, ensemble

of neural networks is exploited to quantify epistemic

uncertainties. Ensemble of networks is useful provided that

the networks parameters are different enough from each

other [22].

There are two types of methods for generating ensemble

networks. In the first approach, for each sample multiple

neural networks provide their predictions for which mean

and standard deviation are computed. The mean is the final

prediction and the standard deviation represents the

ensemble uncertainty about the computed mean. This

method is called ensembling of the models. In the second

approach, a network is trained on different subsets of data,

which is known as ensembling the data. In this paper, the

first approach is used. Using an ensemble of N networks,

the probability that input sample x belongs to class c can be

estimated as follows [23]:

p̂ðy ¼ c j xÞ ¼ 1

N

XN

i¼1

phiðy ¼ c j xÞ ð7Þ

where c is the class index and hi denotes the set of

parameters for ith network of the ensemble. Moreover, the

PE metric is defined as:

PEðxÞ ¼ �
XC

c¼1

p̂ðy ¼ c j xÞ log p̂ðy ¼ c j xÞ½ � ð8Þ

Algorithm 2 shows the pseudo code of the ensemble

setting.

3 Proposed method

Despite being powerful learners, DNNs performance is

directly affected by the right choice of hyperparameter

values. Moreover, DNNs are deterministic in nature and

incapable of quantifying uncertainty about their own pre-

dictions. As mentioned before, methods like MCD can be

used to make DNNs uncertainty-aware. However, MCD is

known to provide miscalibrated uncertainty estimates [23]

which we have tackled by proposing an uncertainty-aware

multi-objective loss function [16]:

l̂predb;c ¼ 1

M

XM

m¼1

ŷ
ðmÞ
b;c ; b ¼ 1 : B; c ¼ 1 : C; ð9Þ

l̂predb ¼ argmax
c

l̂predb;c ; ð10Þ

Loss ¼ 1

B

XB

b¼1

� yb log l̂predb

� �
þ ð1� ybÞ log 1� hatlpredb

� �h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Binary cross entropy

8
>><

>>:

þ
XM

m¼1

PEðxðmÞb Þ
)
;

ð11Þ

where M is the number of forward passes of MCD, B is the

batch size, C is the number of classes, yb is the desired

label for input sample xb, ŷ
ðmÞ
b;c is a ½B� C� matrix such that

its bth row is the network prediction (softmax output)

corresponding to xb. The left-hand side of equation 9 is a

½B� C� matrix and the left-hand side of equation 10 is a

½B� 1� vector due to applying argmax operator. Finally,

PEðxðmÞb Þ is the predictive entropy for xb in the mth forward

pass of MCD. The loss function in equation 11 is the sum

of traditional cross entropy and PEs aiming to minimize the

overlapped region depicted in Fig. 1. According to the

definition of the PE uncertainty metric, lower/higher PE

means that the network has higher/lower confidence in its

prediction. Using the loss function in equation 11 leads to

the uncertainty aware training approach called MCD?en-

tropy which improves MCD in terms of providing uncer-

tainty estimates with better calibration.

The pseudo-code of MCD?Entropy method is available

in Algorithm 3. In line 2, the T training epochs are started.

In each epoch, the training set is traversed batch by batch.

For each batch M, forward passes are computed (line 5)

which are used to compute the PEs in line 7. After com-

puting the loss value (line 8), the network parameters are

updated using backpropagation at line 9. At the end of each

epoch, the evaluation of the model is done on the test set

(line 11).

Table 1 The resulted optimized parameters for each dataset by

MCD?Entropy BO algorithm

Datasets Parameters

L1 L2 P1 P2

Two moons 88 34 0.34 0.45

Blobs 91 35 0.25 0.47

Skin cancer 100 51 0.1 0.47
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To further improve the performance of the method in

algorithm 3, it is necessary to find appropriate values for

dropout probabilities which can be done using Bayesian

Optimization (BO). In general, hyper-parameter tuning can

be done by either random search, grid search or BO. The

grid search is a brute force method which is very time

consuming but achieves good results. As the name implies,

random search explores the space of hyper-parameters

completely randomly, which may come up with reasonable

values but not necessarily optimal ones. Contrary to ran-

dom search and grid search, the BO takes a wiser approach

by controlling the search direction based on obtained

observations. In the BO approach, an initial probability

distribution is assumed in the space of hyper-parameter

values. A sample is drawn from the aforementioned dis-

tribution and used as hyper-parameter values during the

training. The BO distribution is then updated based on

observed training loss. The update is done in an attempt to

reduce the loss during the next training process. By

repeating this process multiple times, the distribution in the

hyper-parameter space keeps getting better and better.

Fig. 3 UA metric for four

algorithms on MNIST HAM-

10000 dataset. UA is calculated

for different uncertainty

thresholds for different folds
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4 Simulation and results

In this section, the proposed method is compared with three

Bayesian architectures in terms of epistemic uncertainty

quantification. To this end, Moons and Blobs synthetic

datasets from Scikit Learn library and MNIST HAM-10000

(real) dataset related to skin cancer have been used in the

experiments. HAM10000 (Human Against Machine with

10000 training images) dataset is available at Kaggle [24]

and includes 10015 dermoscopy images of cancer and non-

cancerous cases in different age ranges.

For training and evaluation of the four Bayesian

approaches, six-fold cross validation has been used. Given

that deep models are data hungry and medical data are

usually limited, using pre-trained models are advantageous.

In our experiments, a DenseNet 121 pre-trained on Ima-

geNet dataset was used for feature extraction. As prepro-

cessing step, the images were resized to 224� 224 and

standardized (normalized). Relying on DenseNet121,

50176 convolutional features were extracted for each

image which were fed to two dense layers. The activation

functions were set to Relu. Optimization was done using

Adam [25] algorithm. The experiments were run on Google

Colab with its default settings (GPU: Tesla K80, 12GB

GDDR5 VRAM).

To generate our ensemble model, number of neurons in

the first and second dense layers were randomly selected

from the sets f256; 257; :::; 512g and f32; 33; :::; 64g,
respectively. The parameters of the two dense layers for

each network in the ensemble were initialized randomly.

The dropout probability was set to 0.25 in order to prevent

overfitting during training. The hyperparameters of MCD

Fig. 4 UA metric for different

algorithms and different

thresholds for Two moons and

Blobs dataset. The upper row

denotes to two moons dataset

and the below one is for Blobs

dataset for different noise levels

Table 2 UA and ECE of different Bayesian models averaged over six

folds

UQ Method UA % ECE

MCD 70:42� 0:37 6:97� 0:32

MCD?Entropy 81:93� 0:28 2:48� 0:42

MCD?Entropy BO 83:03� 0:25 1:93� 0:3

Ensemble 72:45� 0:43 6:61� 0:5

Table 3 The qualitative

comparison of four Bayesian

models: l1 and l2 are the

estimated centers of correct and

incorrect distributions and Dist
is the distance between the two

centers

UQ Method l1 l2 Dist Acc %

MCD 0:33� 0:22 0:59� 0:18 0:25� 0:22 84:95� 0:23

MCD?Entropy 0:18� 0:21 0:48� 0:22 0:29� 0:23 85:39� 0:275

MCD?Entropy BO 0:16� 0:20 0:47� 0:21 0:30� 0:22 85:65� 0:18

Ensemble 0:31� 0:21 0:58� 0:21 0:27� 0:23 85:47� 0:28
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and MCD?entropy i.e. P1, P2, L1, and L2 were set to 0.25,

0.25, 128, and 64, respectively. It should be noted that P

and L stand for dropout probability and number of neurons

in each dense layer, respectively.

In our algorithm, the parameters of the model are opti-

mized, similar to MCD?entropy algorithm. Additionally,

the hyperparameters are optimized using BO in each

training epoch. The resulting hyperparameters are reported

in Table 1 for each dataset.

The estimated UA for different noise thresholds applied

to the two synthetic datasets (Two Moons and Blobs) is

available in Fig. 3. The top row is associated with the Two

Moons dataset and the bottom row is related to the Blobs

dataset with different values of standard deviation. Large

standard deviation values mean that the two classes are

heavily overlapped. The results for synthetic datasets

reveal the superiority of our algorithm (MCD?entropy

BO) over the other evaluated methods.

Since the real datasets are usually imbalanced, the per-

formance of different architectures may vary for different

subsets of data (splitting of data to test and train may

affect). To tackle this issue, we use six fold cross validation

to measure methods performance. The UA for all four

algorithms has been depicted in Fig. 4 revealing that our

algorithm outperforms its rivals by achieving better UA for

different thresholds as we compare the results with others.

Obviously, our algorithm (using optimized hyperparame-

ters) improves the MCD?entropy algorithm for differen-

tiating between correct and incorrect predictions

(according to the UA’s definition).

Table 2 reports expected values of UA and ECE computed

over six folds (UA near one and ECE near zero is favorable).

The lowest ECE belongs toMCD?entropy BO, which shows

that this model is calibrated better than the other methods

(ECE shows how much a specific model could produce cali-

brated predictions). Also, the UA of our method is higher than

other methods revealing our model’s ability to assign low PE

to correct predictions and high PE to incorrect ones.

All four Bayesian methods have been compared in

Table 3. Similar to Fig. 1, the expected correct and

incorrect predictions (l1 and l2) and their distance (Dist)

have been computed. Large Dist values for a model show

its ability to distinguish between correct and incorrect

distributions. As can be seen in Table 3, our proposed

method has achieved higher Dist values demonstrating its

superiority over the other three methods.

5 Conclusion

In this paper, we improved the uncertainty quantification

performance of MCD method by proposing a novel

approach for automatic optimization of deep model hyper-

parameters. The proposed approach was compared against

three other Bayesian algorithms, namely, the MCD, the

Ensemble Bayesian networks, and the MCD?entropy

method for quantifying uncertainty associated with the skin

cancer dataset. Experiments on the MNIST HAM10000

dataset showed that MCD?entropy BO method outper-

forms its rivals by offering reliable uncertainty without

sacrificing the classification accuracy achieving

85.65±0.18 prediction accuracy, 83.03±0.25 uncertainty

accuracy, and 1.93±0.3 expected calibration error outper-

forming vanilla MCD and MCD with a loss enhanced

based on predicted entropy. Uncertainty quantification is of

paramount importance for making trustworthy decisions

under uncertainty in critical tasks of biomedical engineer-

ing. For the future works, we will use different heuristic

optimization algorithms such as Whale and Grey Wolf to

find out whether they can improve our proposed method.
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