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David Elizondo3 • Miguel A. Molina-Cabello1,4

Received: 29 September 2022 / Accepted: 14 July 2023 / Published online: 23 August 2023
� The Author(s) 2023

Abstract
In the area of medical imaging, one of the factors that can negatively influence the performance of prediction algorithms is

the limited number of observations for each class within a labeled dataset. Usually, in order to increase the samples, a

second set of unlabeled images is used. However, this set adds two new problems (i) finding patient observations with

different pathologies than those observed in the labeled data set and (ii) finding images belonging to a different distribution

from the dataset used in the model training process. This way, merging datasets from different sources can have an adverse

effect on the distribution of features. Encountering this type of data (better known as out-of-distribution data) within the

deployment environments may also lead to varying degrees of performance degradation as can be seen in the different

experimental results obtained. In this research, a study of the behavior of Feature Density is made, as a mathematical model

for the estimation of predictive uncertainty in supervised classification algorithms, in order to improve the behavior when

out-of-distribution data are presented in the dataset. The Feature Density method is based on the estimation of feature

density by means of histogram calculation (or Probability Density Function). The advantage of this method over the

baseline approach (Mahalanobis distance) is that it does not assume a Gaussian-type distribution of sample characteristics

and serves to estimate the uncertainty. This work focuses on the binary classification of mammography X-ray images from

three different datasets simulating the condition of a different degree of contamination with out-of-distribution sample.

According to the obtained results, the performance of the proposed method depends directly on the architecture of the

implemented neural network.
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1 Introduction

Nowadays, many fields of knowledge investigate and use

Artificial Intelligence models (and their different approa-

ches) for the processing and analysis of data (structured

and unstructured). It is one of the most important tech-

nologies in the fourth industrial revolution and in the not-

too-distant future it will have an influence on people’s daily

lives [1]. So far, different techniques have been developed

(and are still being developed) that mimic a part of human

behavior to solve specific and complex problems. Emerg-

ing advances in the application of deep learning in different

areas of knowledge have been published [1]. In the field of

medicine, the use of different ML (Machine Learning)

approaches is being studied as a support tool in tasks of

classification and diagnosis of diseases such as cancer in its

many facets, tissue abnormalities, and, more recently, with

the COVID-19 pandemic [2].

According to [3], in 134 of 183 countries around the

world, cancer is the first or second leading cause of pre-

mature death. Breast cancer is the most commonly diag-

nosed cancer in women (although less frequently this

disease can also be diagnosed in men). In [4], the authors

mention that about 287,850 possible new cases of breast

cancer in women will be diagnosed in the US during the
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year 2022 and about 2,710 cases in men. Nowadays, one of

the most effective strategies in the fight against breast

cancer is routine check-ups, which allow an early diagnosis

that can be as accurate as possible. Diagnosis is commonly

made through manual evaluation of images such as mam-

mographies. Being a rudimentary process, a certain margin

of uncertainty or error can be generated, giving way to poor

diagnoses. Due to this, approaches such as ML are being of

interest and widely investigated as a support tool in clas-

sification tasks and medical diagnosis. The main problems

of applying ML or any other AI approach in the area of

medicine are the limited number of samples in the dataset

(generalization of a pattern), the quality of the data, and the

process in which they are acquired. As a consequence of

this, not all the proposed models are adequate or provide

optimal performance.

Despite the serious problems that ML algorithms still

face when deployed in real-world environments, they still

remain an attractive approach with many advantages [5–7].

It is usual that within the labeled data set, there is a very

limited number of observations that can adequately repre-

sent the characteristics of some of the classes (anomalies)

of the case of study, while other classes may have a huge

number of observations. In our context (breast cancer), it

was observed that within the datasets used in the experi-

ments, there is a large number of observations with nega-

tive cases in cancer compared to positive cases; a specific

example is to compare the number of samples of the BI-

RADS 6 classification with the number of BI-RADS 1

samples in each of the sets used. This difference in the

number of samples can cause a bias in the classification

process since the models will tend to more easily recognize

the characteristics of the class with the largest number of

samples, a phenomenon known as Data Imbalance. Addi-

tionally, sometimes, within the test dataset or the unlabeled

dataset (for semi-supervised models), observations with

pathologies different from those observed in the training

set can be found. This type of data anomaly is known as

out-of-distribution data (OOD) and can be harmful to the

performance of classification models, causing a degrada-

tion in the accuracy value [6]. In these cases with data

imbalance, it must be highlighted to not confuse the effect

(bad performance of the model) with the cause (data

imbalance).

A third well-studied problem in [7] is the mismatch

distribution of data or features. This problem usually

happens when models are implemented in a different

environment than the one in which they were trained or

developed; another point of view mentioned in [8] is that,

traditionally, Deep Learning models are trained and tested

from the same data set, but this is not always true in real-

world scenarios due to the complicated process of obtain-

ing data (for instance, in the area of medicine), so it is

necessary to train the models with data that is easier to

obtain. For the training of the classification models, a

specific dataset is typically used, thus obtaining a specific

performance; but when deploying the same model in

another environment (usually called target dataset) repli-

cation of performance results are not be guaranteed.

The most common strategy to face the aforementioned

problems is to increase the labeled data set to obtain a good

generalization of the characteristics of the case study; this

would allow classifying any sample within a test dataset.

However, in an area like medicine, getting a large set of

labeled data is very expensive, both financially and pro-

fessionally. As explained in [9], creating a dataset focused

on medical images requires: a large amount of human

effort (to manually label the images), financial expenses to

hire the necessary professional staff, or in some cases it is

necessary to build the infrastructure to collect the infor-

mation. The authors of [10] also mention that on many

occasions for the labeling work, it is necessary for several

radiologists to evaluate the dataset individually, compare

and discuss the results of these evaluations with each other

on a case-by-case basis to arrive at an accurate final con-

clusion. A viable alternative to the scarcity of data and to

prevent overfitting of the models is to perform certain

transformations on the base images (for example, rotations,

augmentations, cuts, and geometric transformations) in this

way the number of images available for training is

increased; this technique is called data augmentation. Some

novel data augmentation methods, based on feature trans-

formation, are proposed in [11]; also, in [12], the most

commonly used techniques for data augmentation are

mentioned. Another acceptable option that is being studied

is the use of semi-supervised algorithms, which in turn

allow the use of large unlabeled data sets combined with

smaller labeled datasets, the work carried out in [13] pre-

sents several SSDL methods used in classification tasks.

Despite the results obtained in different contexts where the

unlabeled set helps to improve model training, it does not

exempt this new set from facing the same problems

described above. It has been shown experimentally that the

problems mentioned above affect the accuracy of the

models. In [10], they mention that obtaining a good gen-

eralization of the characteristics (patterns) of any case

study is complicated since there will always be significant

variability in the observations, thus limiting the efficiency

of the models; this should provide enough motivation to

continue improving and investigating new models.

In the context of ML, the uncertainty measure indicates

how reliable or accurate a model is in classifying the

observations of a given dataset from the supervised training

that has been provided to the model. In this research, the

method called Feature Density is evaluated as a measure of

uncertainty, comparing it with other proposed methods.
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This work aims to study the possibility of obtaining a

statistically significant enhancement by using a Feature

Histogram to achieve a higher performance in the estima-

tion of predictive uncertainty with respect to other tech-

niques that assume a Gaussian distributed dataset. The

Mahalanobis distance (baseline approach) is a method used

to measure the distance between two points, usually the

distance between any point and the mean (or centroid) of

the data; similar to the Euclidean distance. In addition, the

Mahalanobis method takes into account the covariance of

the data. In the context of this research, it is used to

measure how similar a test data set (separated by hits and

misses) is to the base data set (training data). Feature

Density consists of the estimation of the density of features

from the calculation of a histogram; this takes the form of a

graph that allows to represent the frequency distribution of

a variable (in the context of this research would be the

features belonging to a set of images). The advantage of

this method over the Mahalanobis distance is that it is not

necessary to assume that the features follow a Gaussian

distribution, being this the main innovation of the present

work.

2 State of the art

The authors of [14] propose to combine two methods to

measure uncertainty estimation. The first is based on sub-

jective logic [15], uðpÞ : p ! R, which uses probabilistic

predictions and the information contained in them. The

second is based on the data proximity DmðzÞ : z ! R using

the Mahalanobis method [16]; this measure Dm allows to

quantify the distance between a sample and a training

distribution cluster. Likewise, the authors in [16] deter-

mined that by applying the Mahalanobis Distance, out-of-

distribution cases can be detected. For example, when

training a classification model using images of breasts (ID)

and subsequently analyzing outliers such as any other

images (OOD), the Mahalanobis Distance rejection crite-

rion is quite effective. Despite the combination of these

methods and their effectiveness, in [14], the authors sug-

gest that more research is needed focusing on determining

optimal thresholds.

The authors in [17] focus on uncertainty estimation

methods that are more practical and straightforward to

implement; in their experiments, they use the Monte Carlo

Dropout (MCD) and Softmax approaches. For uncertainty

estimation, a Softmax activation function can be used in

many ways; a basic way is to implement it in the output

layer of deep learning models. Another way is to quantify

the entropy value over the distribution of all Softmax

output values, from an input xj. The disadvantage of using

a method such as Softmax is that it can lead to a model that

makes poor estimations of uncertainty, due to the excess

confidence observed in the estimations made by neural

network models. Another approach that has been studied is

MCD, where the estimations tend to be more robust and

simple to implement [18]. The MCD method makes use of

the Bayesian interpretation of the model parameters,

resulting in a significant improvement in the SSDL models

compared to the supervised ones. There are different lines

of research where mathematical models are proposed for

the estimation of uncertainty since it is an important issue

in the medical area and in decision-making; each option

has advantages and disadvantages depending on the con-

text in which they are applied and the models used for

image classification.

Regarding the problem of data imbalance, [5] proposes

to use the transfer learning approach. In order to validate

the effect that Transfer Learning has on SSDL models,

multiple models with different configurations for training

were implemented, it was also experimented with loss

function to solve the imbalance of classes. As a first stage

in the experiments, a supervised training of the models was

used on a dataset of mammograms (Dl
s;INbreast and D

l
s;DDSM),

thus obtaining source-trained models that are subsequently

fine-tuned with a limited number of labeled samples from

the target dataset (CR-Chavarria-2020). As a result of the

investigation, an improvement in classification perfor-

mance was found in the models subjected to domain

adaptation compared to other configurations. On the other

hand, in [19], they use multiple models to extract features

from images (knowledge transfer) and then combine all the

features into a single vector that serves as input to the

classifier model; the results in this research indicate that it

is better to have a layer composed of several feature

extractors than to have a single one.

The aim of this research (based on [20]) is to compare

the Mahalanobis Distance (baseline model), but unlike [14]

it is not combined with any other mathematical model to

improve its performance; with the Feature Density method

proposed in [7] where it is used as a possible alternative

solution to the class imbalance problem. On the one hand,

the Mahalanobis Distance is a method used to measure the

distance between two points (usually between any point

and the centroid of the data); similar to the Euclidean

Distance. In the context of this research, it is used to

measure how similar a test dataset (correct and incorrect

estimates made by a convolutional network) is to the base

data set (training data) in this way the value of uncertainty.

On the other hand, Feature Density is a method that con-

sists of estimating the density of features from the calcu-

lation of a histogram; a graph that allows representing the

distribution of frequencies of a variable. In the context of
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this research, they would be the characteristics belonging to

a set of images. The advantage of the proposed model over

the base model is that it is not necessary to assume that the

features follow a Gaussian-type distribution.

3 Methods

As previously mentioned, the objective of this research is

to evaluate the Feature Density method as a measure of

uncertainty in image classification. The main advantage of

this method, on a comparative basis (with respect to the

Mahalanobis distance), is that it does not assume a Gaus-

sian distribution of the features of the samples belonging to

the dataset. Feature Density computes Feature Histograms

to obtain a measure of uncertainty from the feature distri-

bution of both hits and misses (classified images) com-

mitted by CNN models (AlexNet, DenseNet, and

MobileNet models). The main metric adopted to measure

the performance of the proposed method is the Jensen–

Shannon distance. This metric is usually used to quantify

the difference that exists between two probability distri-

butions; in the context of this research, the Jensen–Shannon

distance of the uncertainty distribution is sought to be as

large as possible, as the proportion of out-of-distribution

samples in the test set increases. In order to observe a clear

trend in the behavior of the proposed method in estimating

the uncertainty value, approximately 54000 X-ray images

were binary classified for each CNN model. These subsets

(hits and misses) were then sent to the uncertainty esti-

mator methods (Feature Density and Mahalanobis Dis-

tance) to obtain a measure of uncertainty for each image.

Finally, a comparison by means of the Jensen–Shannon

distance was done.

3.1 Mammography datasets

Three mammography image datasets were used in this

work: INbreast, CBIS-DDSM and CR-Chavarrı́a-2020. The

diversity of the samples intends to expose classifiers and

uncertainty estimators to multiple observations and char-

acteristics of breast cancer. This seeks to have a general-

ization in the recognition of the patterns that make up the

images. Figure 1 shows some samples.

3.1.1 INbreast

This dataset [21] is made up of 115 patient cases and

provides a wide variety of breast cancer anomalies: masses,

calcifications, architectural distortions, asymmetries,

observations with multiple anomalies, and routine control

samples. Mammography images have two views: Cranio-

caudal (CC), a top-to-bottom view of the breast; and

Mediolateral oblique (MLO), a lateral view of the breast.

From the 115 cases that make up this data set, 90 cases

have an image for each view (CC and MLO), from each of

the breasts; the 25 missing cases only have one associated

image for each view and for each breast. These samples

were taken from the mammography exams. Each of the

410 X-ray images was classified using the 6 BI-RADS

categories and the density measurement, and their resolu-

tion depends on the size of the patient’s breast.

3.1.2 CBIS-DDSM

According to [22], access to the information contained in

the pre-existing dataset Digital Database of Screening

Mammography was very complicated, and its quality was

not very good; so they decided to create an improved

version: Curated Breast Imaging Subset of Digital Data-

base of Screening Mammography (CBIS-DDSM). The aim

of this work was to contribute and improve the quality of

the information of the collected cases, in addition to being

easier to access. Another action taken by the authors was to

remove inaccurate observations or observations that did not

satisfy confidentiality standards. Finally, the authors of [22]

structured all the images by separating them into other

subsets intended for training and testing; this in turn

allowed for a binary type classification of the images

according to the type of anomaly present.

On the other hand, the authors in [5] mention some

features of the CBIS-DDSM set. It is made up of 3,103

digitized (scanned) images from 1,566 patients. Abnor-

malities that can be detected on mammograms are masses

and calcifications. Of the total number of images, it was

determined that 1,728 images have benign anomalies and

1,375 images have malignant anomalies of breast cancer.

Due to the number of images within this dataset and the

Fig. 1 Mammogram samples from each dataset according to a binary

classification from a MLO view: a Negative case of INbreast,

b Negative case of CBIS-DDSM, c Negative case of CR-Chavarria,

d Positive case of INbreast, e Positive case of CBIS-DDSM and

f Positive case of CR-Chavarria
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memory it uses, it was decided to only use the images

belonging to the test subset.

3.1.3 CR-Chavarria-2020

The CR-Chavarria-2020 dataset [5] is a relatively new set

compared to the INbreast and CBIS-DDSM sets (both of

which are widely used in related research). The images

belonging to this dataset come from the private clinic of

Dr. Chavarria Estrada Medical Imaging located in Costa

Rica. This set is made up of 87 cases; the age range of

patients is between 40 and 90 years old. In this study, of the

total of 341 images, only 282 images are used; the rest of

the observations were discarded because they did not sat-

isfy optimal quality or in some cases, the patients had

breast implants, which would produce noise in the classi-

fication stage. If a binary-type classification is performed

on the dataset, 268 images of negative cases are obtained,

and only 14 images with positive cases. Each of the images

was classified using the BI-RADS categories and was

acquired digitally (FFDM). In [5] and other related

research, CR-Chavarria-2020 is generally used as out-of-

distribution data, since it has several characteristic condi-

tions (such as data imbalance in its classes) of a dataset

target and represents a real challenge for ML algorithms.

3.2 Data processing

As part of the preprocessing actions of the X-ray images

belonging to the three data sets described above, the fol-

lowing operations were performed:

• Readjust the resolution of each image, resulting in

images with dimensions of 224x224 pixels. These

dimensions have been used in previous experiments to

reduce the execution time of algorithms, reduce the

processing load on the GPUs, and decrease the amount

of disk space used by images.

• A file extension conversion process (image format)

from DICOM to BMP.

• Being an investigation that focuses on the binary

classification of the samples, a reclassification of the

datasets was necessary, similar to how it is done in [5],

where they are defined as positive cases of breast cancer

those mammograms belonging to BI-RADS categories

4, 5 and 6. On the other hand, mammograms belonging

to BI-RADS categories 1 and 2 were labeled as

negative cases of breast cancer. All mammograms

within BI-RADS categories 0 and 3 were eliminated

due to the particularity of their characteristics.

Due to the peculiarity of the CBIS-DDSM data set (noisy

and digitized X-ray images), a second preprocessing stage

was performed on this set. In general, the observed

anomalies on the images are a blur or shadow (pixels in

different shades of gray) in the pixels surrounding the

breast (this could cause a deficiency in the classification of

the images since there is a possibility that the classification

algorithms take this noise as part of the image), and dif-

ferent annotations (metadata) in the images (this informa-

tion describes the image taken of the breast, such as the

type of view or relevant data for the doctor).

Using the procedure described in [23], the images of the

CBIS-DDSM set were cleaned. To verify the effectiveness

of the process, the images were reviewed by means of a

visual inspection. In some cases, remains of annotations

were found in the images; also in some exceptions the

algorithm removed a considerable part of the pixels

belonging to the breast. Both problems can cause the

models to carry out a faulty classification. To solve this, the

images were treated manually by means of annotations of

the affected areas and the execution of their own algorithm.

3.3 Cross-validation process

The cross-validation method is widely used to ensure that

experimental results do not depend solely on the partition

selected for training and testing, thus giving a more sub-

stantial value to the results obtained. Initially, samples

from the source data sets are classified using the BI-RADS

category (in the case of INbreast and CR-Chavarria-2020)

or by the present abnormalities, masses, or calcifications

malignant/benign (in the case of CBIS-DDSM). In order to

provide a balanced data set for the training and testing

process of the models used in the experiments, the fol-

lowing steps were performed to create the different

experimental image segments:

1. Each of the source data sets contains folders labeled

according to the categories into which these sets have

been classified.

2. The images inside each of the aforementioned folders

were split into N ¼ 10 image sections. This will

ensure, to some extent, that each of the future subsets

(for training and testing) contains images of the

different anomalies present and that the models will

have the ability to generalize the features, as well as to

avoid bias in the classification of the images.

3. Two steps are then performed simultaneously:

• A binary classification of the categories, as

explained in the previous section.

• A clustering between the Ni image sections, i.e.,

shuffling all sections with the same index/position.

Visually, it could be said that there are now two

folders: a first one representing the benign samples and

a second one representing the malignant samples. In
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turn, these folders contain N ¼ 10 subfolders, where

the images from the INbreast and CBIS-DDSM sets

have been mixed stratified.

4. Now, from these N ¼ 10 segments, wte ¼ 2 (e.g., N1

and N2) are selected to be taken as the test subset,

wv ¼ 2 other image segments will be used as the

validation subset (e.g., N3 and N4 ) and the rest wtr ¼ 6

will be used for model training (N5, N6,..., N10).

5. As mentioned above, a characteristic shared by the data

sets used in the experiments is that there are a larger

number of benign samples than malignant ones. This

leads to an imbalance in the classes (in the context of

binary classification), making it necessary a balancing

process in the classes. To create the training and

validation subset, x number of benign samples equal to

the number of malignant samples (y) was randomly

selected from each of the N image segments designated

for that purpose. The remaining images become part of

the designated test segments.

6. In the case of the test subsets, M ¼ 10 folds are created

for each degree of contamination with OOD sample

and the number of images shown in Table 1.

7. The previous steps are repeated using a stride j ¼ 1 to

the right, i.e., now the N2 and N3 segments will be used

for testing purposes, N4 and N5 for validation and the

rest for training. This is until each segment has been

used for all 3 purposes.

It is necessary to clarify that a similar process is performed

with the CR-Chavarria-2020 set, intended as a data con-

tamination set.

3.4 Experimental design

Figure 2 shows an overview of each of the components

used in the evaluation process of Feature Density as an

uncertainty estimator method. Each CNN model is trained

and validated on a dataset that gathers images from the

different categories coming from INbreast and CBIS-

DDSM. Each subset is as balanced as possible (same

amount of benign and malignant samples). The CNNs, by

means of their convolutional layers, extract features from

the images and learn to identify/classify the anomalies

present. In the testing stage, batches of images that the

network has never seen are sent for classification; based on

the hits and misses, two subsets of data are created (rep-

resented by folders in Fig. 2) and the uncertainty measure

is calculated for each image within these subsets. Both the

Mahalanobis method and the method proposed by this

research are used here. Finally, the two methods are

compared by means of the Jensen–Shannon distance met-

ric. Details of the whole process are given in later sections.

From the images designated for testing, the experiments

in charge of evaluating the performance of the uncertainty

estimation methods were established. For each degree of

contamination with OOD sample (starting from 0% con-

tamination, progressively increasing by 12.5% contamina-

tion with OOD images, until reaching 100%

contamination) K ¼ 10 experimental batches are created;

in order to be able to observe a clear trend in the behavior

of the evaluated methods. Each experimental batch con-

sisted of 60 images that were randomly selected. It was

sought that each batch be as balanced as possible between

benign and malignant samples (this becomes impossible in

the last degrees of contamination), as shown in detail in

Table 1 Composition of

negative/positive cases in breast

cancer for the different

experimental batches

Exp. INbreast and CBIS-DDSM CR BI-RADS 1 CR BI-RADS 2

100% IOD 30/30 – –

87.5% IOD - 12.5% OOD 26/26 2/2 2/2

75% IOD - 25% OOD 22/23 4/5 4/2

62.5% IOD - 37.5% OOD 19/18 6/10 5/2

50% IOD - 50% OOD 14/16 8/12 8/2

37.5% IOD - 62.5% OOD 6/16 12/12 12/2

25% IOD - 75% OOD 8/7 15/12 16/2

12.5% IOD - 87.5% OOD 3/4 19/12 20/2

100% OOD – 23/12 23/2

Fig. 2 Schema of the estimation of uncertainty
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Table 1. Since these images are used for testing, it is not

necessary to ensure that a sample is included for each of the

anomalies present in the data sets.

3.5 Training process

For this research, the AlexNet [24], DenseNet [25] and

MobileNet [26] architectures were used for the classifica-

tion tasks. These architectures are from the FastAI library

and are widely used for image classification. The details of

the architecture and the diagram of each network can be

found in their respective papers.

To speed up the training process, the pre-trained ver-

sions of the architectures were used. In addition, the Fine-

Tuning technique was used to train the architectures on the

data sets that were defined as IOD (INbreast and CBIS-

DDSM). To avoid overfitting in the first training iterations

of the architectures, data augmentation techniques were

used. No hyperparameter configuration of the proposed

architectures was made since the purpose of this research is

not focused on testing models that obtain high precision,

but on testing techniques for estimating uncertainty, for

which models that are not perfect are needed.

The architectures in the different iterations of experi-

ments were trained from approximately 440 X- mammo-

grams covering as many anomalies as possible. In contrast,

the validation of the training was carried out with

approximately 150 images completely different from those

used in the training process. The selection of these images

was performed using the cross-validation technique

described in the previous section. In order to see if the

accuracy of the proposed architectures could be improved,

it was decided to carry out some brief experiments where

the number of training epochs was increased (for example,

200 epochs); but this only made the architectures overfit

faster, given the configuration selected for this

investigation.

After training, the feature extractor was obtained. This

corresponds to all of the mathematical processes that the

architecture used to obtain the features of the images. This

element is used as one of the parameters in the uncertainty

estimation methods, with the aim of making a comparison

between the characteristics of the predictions and the

characteristics of the training set.

3.6 Uncertainty estimation process

After the model training stage, the Feature Density method

is evaluated as an uncertainty estimator together with the

comparison base method. For this, 10 test sets were used

for each level of contamination in the data. From the

confusion matrix and the classification predictions made by

the model, the correct and incorrect estimates were

separated. They were later processed by the uncertainty

estimation methods in another stage, together with the

parameters requested by each method. Figure 2 shows a

schema of this process.

Concerning the base comparison method (Mahalanobis

Distance), the covariance matrix and the vector of means

must be estimated from the mammograms used in the

training. The characteristics of these observations are used

to estimate the uncertainty of the image subsets built in the

previous stage. For each mammogram of the test set clas-

sified by the model, an uncertainty measure is computed

and stored in an uncertainty vector according to whether it

was a correctly classified estimate or not. As a last step, the

estimation of the Jensen–Shannon Distance (JS) as a

comparison metric is carried out by estimating the proba-

bility density function with the histogram. That is, the

absolute frequency distribution for each uncertainty vector

is measured, and it is subsequently normalized. This value

is later used to compare with a similar value obtained from

the proposed method. Regarding the proposed method of

Feature Density, the histograms of features of the training

data set must first be estimated, these represent the distri-

bution of the features of the images and that is the basis for

the calculation of uncertainty. The authors of [7] explain

that to calculate the feature histogram for each sample

(images of the training set) x 2 Rn, being n the number of

dimensions is done by means of the feature extractor

(usually refers to the last convolutional layer of the CNN

architectures) this element calculates the feature vector,

whose dimensions will depend on the neural network

architecture that is being implemented; this creates a set of

features given by Hl. From Hl the feature histogram is

created; for each of the dimensions in the Feature Space,

the normalized histogram must be calculated in order to

approximate the density function Pl
r within Hl, thus pro-

ducing a set of feature density functions. For more in-depth

knowledge on the feature density process, please refer to

the respective article. As in the previous method, for each

image belonging to the subset (correct and incorrect esti-

mates), an uncertainty value is obtained and stored in the

corresponding vector. Again a frequency distribution is

built for each uncertainty vector and the distance between

them is computed.

This JS distance value allows a direct comparison

between the base method and the proposed method; the

value of the JS distance of the uncertainty distribution must

be as large as possible, indicating which method is more

suitable for estimating uncertainty.
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4 Experiment results

To evaluate the performance and to be able to observe a

clear trend in the results of the uncertainty estimation

models, 54,000 mammography images were processed,

divided into 10 folds containing 90 experimental batches

each. For every 10 experimental batches, a degree of

contamination was covered with the OOD data. Figure 3

shows the trend of the accuracy value in the training stage

of each of the architectures, according to the results, the

MobileNet architecture is the one that obtains the best

precision in the validation stage when classifying the

images; this behavior continues in the first experimental

stages (first 5 degrees of contamination), but it degrades in

the last 4 degrees of contamination (where there is more

presence of OOD data than IOD), which indicates that the

MobileNet architecture faces difficulties when classifying

images that do not belong to the data set used in training,

i.e., OOD data, as can be seen in Fig. 3. The architecture

that maintains a similar behavior throughout the different

experiments is the AlexNet. But this does not mean that it

has the best Feature Extractor for uncertainty estimation.

These accuracy values obtained by the implemented

architectures differ, and to a certain extent are lower when

compared to other values published in other articles, due to

the fact that several datasets are used for training, valida-

tion, and testing in this research. Another possible cause of

the degradation of the precision values may be due to the

quality of the images of the CBIS-DDSM dataset, which is

much lower compared to the other sets used.

Despite not obtaining high accuracy values, this was not

an impediment to continuing with the experiments, since

this research focuses on analyzing methods for estimating

uncertainty and not on obtaining the highest accuracy

values. Another important aspect that must be taken into

consideration when deciding which method is better is the

execution time that the experiments took; the more com-

plex the structure of the convolutional layers (operations),

the more processing time it takes to obtain the feature

extractor. In order to reduce the processing load and the

execution time, data parallelism was used through GPU.

Despite this, each architecture took a considerable amount

of time to train, obtain the base parameters and process all

the experiments.

Figure 4 shows the trend for the average and the median

value of the JS distance, through the experiments carried

out. As can be seen, using any of the three Feature

Extractors, the Feature Density method obtains higher

values for the JS distance; being the AlexNet architecture

where a greater difference is appreciated. Another deduc-

tion is that the greater the degree of contamination with

OOD data, the greater the value of the JS distance.

Therefore, it can be deduced that the performance of

Feature Density is linked to the architecture that has been

used for the classification of the images and it is not nec-

essary to use models with complex convolutional layers to

obtain good results.

5 Conclusion

The purpose of this work was to evaluate the Feature

Density method as an estimation model of uncertainty, in

the context of binary classification of mammograms. The

neural network architectures used for the experiments were

AlexNet, DenseNet, and MobileNet. According to the

results obtained in the different experiments, there is no

statistically significant difference between the Feature

Density method and the Mahalanobis Distance as uncer-

tainty estimator models when using the DenseNet and

MobileNet convolutional network architectures. The

opposite case can be seen when using an AlexNet

Fig. 3 Accuracy values in the validation and testing stages for the

different implemented architectures. In the left image, it can be seen

that the values of each iteration are connected between them with

lines to better compare the results, but this does not mean that the

results are related. Analogously, in the right image, the values of each

experiment type are connected between them with lines to better

compare the results, but this does not mean that the results are related
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architecture. Despite this, with the AlexNet architecture,

there is no significant difference between the values of the

Jensen–Shannon distance when using only IOD images and

when using only OOD images; differences, however, can

be seen in the results using the other two architectures;

therefore, it cannot be concluded that the AlexNet network

combined with the Feature Density method is the best

option as an uncertainty estimator model.

Considering the execution time and the computational

cost that must be used to estimate the uncertainty using the

Feature Density method, in some contexts it may be more

feasible to use the Mahalanobis Distance method. It is

necessary to highlight that depending on the complexity of

the convolutional layers of the architecture, the execution

time and computational cost will increase. Despite the

results proposed by this work, the Feature Density method

should not be left aside as an estimation model of uncer-

tainty, there may be contexts where its performance is

better.

As recommendations for future lines of work, it is

proposed to perform experiments with other data sets,

looking for a context where Feature Density performance

might be better; and to investigate mathematical models

that can be used as uncertainty estimation methods and that

their dependence is not directly related to the type of net-

work used for image processing.

Fig. 4 Performance of the JS Distance for the different tested

architectures. Each row reports the performance of AlexNet,

DenseNet, and MobileNet models, respectively. The values of each

experiment type are connected between them with lines to better

compare the results, but this does not mean that the results are related
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Saúl Calderón-Ramı́rez

sacalderon@itcr.ac.cr

Enrique Domı́nguez

enriqued@lcc.uma.es

Ezequiel López-Rubio
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