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Abstract
The COVID-19 pandemic has devastated the entire globe since its first appearance at the end of 2019. Although vaccines

are now in production, the number of contaminations remains high, thus increasing the number of specialized personnel

that can analyze clinical exams and points out the final diagnosis. Computed tomography and X-ray images are the primary

sources for computer-aided COVID-19 diagnosis, but we still lack better interpretability of such automated decision-

making mechanisms. This manuscript presents an insightful comparison of three approaches based on explainable artificial

intelligence (XAI) to light up interpretability in the context of COVID-19 diagnosis using deep networks: Composite

Layer-wise Propagation, Single Taylor Decomposition, and Deep Taylor Decomposition. Two deep networks have been

used as the backbones to assess the explanation skills of the XAI approaches mentioned above: VGG11 and VGG16. We

hope that such work can be used as a basis for further research on XAI and COVID-19 diagnosis for each approach

figures its own positive and negative points.
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1 Introduction

At the end of 2019, the pandemic provoked by the new

coronavirus (COVID-19) has its probable emergence in

Wuhan, China, with similar symptoms to those of viral

pneumonia [22]. A deeper analysis of the respiratory tract

in humans highlighted that the problem’s origin concerns a

new virus from the family Coronaviridae, termed SARS-

CoV-2, supposedly originating from bats of species

Phinolophus [1]. Four months later, SARS-CoV-2 ended

up in a world-scale public health crisis with no precedents,

killing more than 239, 000 people and infecting around

3, 435, 800 persons by May 2020.

The scientific community has dedicated the past months

to the fast-run development of vaccines to mitigate and

control the number of victims worldwide. However, the

disease transmission is still high and with new variants

scaling up as time goes by. Computer-aided approaches are

paramount to help in such a scenario, either in the auto-

matic disease identification or simulations, to better

understand the rationale behind COVID-19 infection

behavior among people. A common approach to diag-

nose/confirm a possible infection by the new coronavirus

regards thoracic X-ray images [3, 14] — most patients

affected by COVID-19 figure anomalies in the lungs,

which are primarily used for diagnostic purposes. How-

ever, such alterations can be visible to the human eye to

some extent only, for their shape, color, and texture may

face subtle changes. Besides, human fatigue is another

important fact that may lead to judgments prone to errors.

Research on machine learning-driven approaches to

cope with the automatic COVID-19 identification has
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flourished in the past months, with particular attention to

those methods based on deep learning [8, 16–18, 29, 30].

Wang et al. [43] presented COVID-Net, a convolutional

neural network (CNN) designed to detect COVID-19 from

X-ray images, with promising results over a public image

repository [11]. However, the model proposed by the

authors figures a relatively high number of parameters that

lead to considerable training time.

Santos et al. [37] showed the importance of normalizing

images when dealing with COVID-19 automatic diagnosis

using X-ray images and an EfficientNet-B6 architecture.

Although it is consensus that normalizing images is usually

satisfying for image classification purposes, no study

focused on such a statement had been considered for the

context addressed here. Song et al. [41] proposed an

approach based on deep learning to detect COVID-19

accurately in computed tomography (CT) images. The new

architecture, termed DRENet, first detects potential lesion

regions by blending a pre-trained ResNet50 with a feature

pyramid network. Further, ResNet50 is applied once more

to the detected regions for local feature extraction, which is

then combined with the global features learned in the for-

mer step. The model achieved a precision of 0.79 and a

recall (sensitivity) of 0.95. However, precision and recall

were boosted when using three types of CT images to 0.86

and 0.93, respectively.

Most works pay little attention to explaining the deci-

sions learned by the intelligent models [2, 20]. The scien-

tific community has broadly used the term ‘‘computer-

aided’’ diagnosis in the past decades. Still, algorithms are

primarily used to make decisions and not help humans to

learn from their knowledge. Explainable artificial intelli-

gence (XAI) has come to help that end so that models have

been developed to light up why a specific decision has been

taken apart from others[15, 26].

Pennisi et al. [32] proposed an approach based on deep

learning to segment lung parenchyma and lobes for further

using them as input for classification networks. The accu-

racies were compared against the ones provided by three

expert radiologists on a dataset composed of 166 CT scans.

The interpretation of the trained AI models’ outcomes

revealed that most regions supporting COVID-19 identifi-

cation are closely related to those areas clinically relevant.

Ye et al. [46] described an initial study concerning XAI

and deep learning for COVID-19 automatic diagnosis using

CT scan volumes. The authors compared the proposed

approach against class activation maps (CAM) [47], argu-

ing that the latter can be used as a post-processing proce-

dure only, i.e., the network should be trained first. The

proposed approach incorporates LIME [33] in its classifi-

cation module to estimate each image’s superpixel contri-

bution in the final prediction.

Montavon et al. [27] came up with the idea of repre-

senting the contribution of each input neuron to the mod-

el’s explainability as a decomposition of functions. The

work investigated the applicability of Single Taylor

Decomposition to encode the relevance of each neuron

during inference, and they proposed the Deep Taylor

Decomposition. The authors also highlighted its similari-

ties with Layer-wise Relevance Propagation.

The primary contribution of this manuscript is to com-

pare some XAI-based approaches in the context of com-

puter-aided COVID-19 identification, i.e., Composite

Layer-wise Propagation [35], Single Taylor Decomposi-

tion [27], and Deep Taylor Decomposition [27]. As far as

we know, no work aimed at such an analysis up to date.

The techniques used for explainability purposes are com-

pared considering three factors: (i) explainability continu-

ity, (ii) explainability selectivity, and (iii) input

perturbation.

In short, the main contributions are:

• To compare Single Taylor Decomposition, Deep Taylor

Decomposition, and Layer-wise Propagation for

explainability in computer-aided COVID-19

identification;

• Different scenarios are considered to evaluate the

degree of explainability; and

• To foster research on XAI applied to COVID-19

diagnosis.

The remainder of this paper is organized as follows.

Sects. 2 and 3 present a review of the literature and the

background theory, respectively. Sect. 4 describes the

methodology, and the experiments are discussed in Sect. 5.

Last but not least, Sect. 6 states conclusions and future

works.

2 Related works

Pennisi et al. [32] presented a recent and interesting study

concerning XAI applied to computer-assisted COVID-19

diagnosis using CT scans. Their research was focused on

comparing the results obtained by experts with the ones

achieved by computers. However, they did not use XAI

tools to assess the regions that matter for computer-driven

classification purposes. DeGrave et al. [13] showed that

deep learning systems used to detect COVID-19 from chest

radiographs rely on several factors other than medical

pathology only. The authors argued that machine learning

models trained straightforwardly present undesired effects

in real-world scenarios. Their work recommends further

examination of the results by experts and reporting the

outcomes using XAI tools. Moreover, we should remain

skeptical of high performances without external validation.
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Serte and Demirel [39] also considered CT images but

at a tridimensional scale. A ResNet50 was applied to

classify each patient’s slide for further fusing image-level

predictions from the 3D scan to take the final decision. Al-

Waisy et al. [4] proposed a hybrid framework to cope with

COVID-19 diagnosis using deep learning called COVID-

CheXNet. The approach combines predictions from both

ResNet34 and HRNet architectures to make the final

decision. Dansana et al. [12] considered X-ray and CT

images to distinguish between COVID-19 and pneumonia

using CNNs. The well-known VGG-16 and Inception-V2

deep architectures and a decision tree have been considered

for classification purposes, with VGG-16 achieving the top

results.

Wang et al. [44] introduced a PatchShuffle Stochastic

Pooling Neural Network to detect COVID-19, which out-

comes were further analyzed by Gradient-weighted Class

Activation Mapping (Grad-CAM) [38]. The proposed

approach outperformed nine state-of-the-art techniques in

the experiments. Wu et al. [45] developed a joint approach

composed of segmentation and classification modules to

perform real-time and explainable COVID-19 diagnosis

using chest CT images. The idea is to perform segmenta-

tion only in the images that were classified as positive for

COVID-19.

Brunese et al. [9] presented a three-step approach to

distinguish between pneumonia and COVID-19: (i) first,

given an X-ray image, the system detects whether it carries

pneumonia or not; (ii) if so, the second step aims at dif-

ferentiating between pneumonia and COVID-10; and (iii)

the last step segments the regions that figure the disease

indicators. The DeepCOVIDExplainer was proposed by

Karim et al. [24] to provide explainable diagnosis using

chest X-ray images. The authors used Grad-CAM, Grad-

CAM?? [10], and Layer-wise Relevance Propagation

(LRP) [23] tools to provide insights into the classification

step, which used an ensemble of deep networks.

Alshazly et al. [5] also considered chest CT scans to

diagnose COVID-19 infection automatically using transfer

learning. Visualization techniques have been used to better

understand the prediction step’s outcomes. Hryniewska

et al. [19] presented an interesting critic for proper usage of

deep learning models and explainable tools in the context

of COVID-19 diagnosis. The first concern is related to the

quality of images available in the public datasets, for only a

few use DICOM format for proper storage. They use 8-bit

JPG or PNG format mostly. The second situation refers to

the few images with low and medium severity cases.

Usually, the works try to distinguish between healthy and

infected individuals or between pneumonia and COVID-

19. Other issues are imbalanced and mixed (CT with X-ray

images) datasets. Data augmentation is used indiscrimi-

nately, for not all approaches are appropriate to the medical

domain, e.g., rotation or flipping in CT and X-ray images

since they are customarily taken using standardized

protocols.

Bassi and Attux [7] used dense convolutional networks

and transfer learning to classify X-ray images into three

labels: COVID-19, pneumonia, and healthy individuals.

LRP was further used to generate heat maps and analyze

the outcomes. Fuhrman et al. [15] reviewed several

explainable AI techniques to assist COVID-19 identifica-

tion. The authors highlighted different aspects, advantages,

and disadvantages of the techniques considered in their

work. XAI can be embedded to bring interpretability but at

the price of bringing the performance down. Therefore, its

choice relies on the application itself.

Hu et al. [21] proposed a multi-input and fuzzy con-

volutional neural network to detect COVID-19 from torso

X-ray images. Explainable approaches were used to

investigate forecasts provided by the neural mode. The

authors concluded that transfer learning and pre-trained

models are helpful in such a context. Aviles-Ribeiro

et al. [6] highlighted the problem of obtaining a suit-

able number of labeled samples for COVID-19 identifica-

tion. The authors introduced a graph-based semi-

supervised learning framework that used X-ray images to

recognize COVID-19. Attention maps accommodate the

radiologist’s mental model.

3 Background theory

3.1 Taylor expansion

A Taylor series is an expansion of some infinitely differ-

entiable function (in an open interval) into an infinite sum

of terms, where each term has a larger exponent, as follows

the example below:

ex ¼ 1þ xþ x2

2!
þ x3

3!
þ x4

4!
þ . . . ¼

X1

n¼0

xn

n!
; ð1Þ

where n stands for the number of terms. The higher the

number of terms, the better the approximation.

For the sake of explanation, consider approximating

sinðxÞ function:

sinðxÞ ¼ x� x3

3!
þ x5

5!
� x7

7!
þ . . . ¼

X1

n¼0

ð�1Þn

ð2nþ 1Þ! x
ð2nþ1Þ:

ð2Þ

Figure 1 depicts the approximation of sinðxÞ function using

different numbers of terms. One can observe that seven

terms can approximate the function quite reasonably.

The key idea behind Taylor series concerns the fact that

a function can be approximated using a summation of high-
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order polynomials around a neighborhood of some root

point ~x 2 <. In other words, one wants to evaluate/de-

compose f(x) when it is close to ~x. The general formulation

for such an assumption is given below:

f ðxÞ ¼
X1

n¼0

f ðnÞð~xÞ
n!

ðx� ~xÞn; ð3Þ

where f ðnÞð~xÞ is the n-th derivative of f at the point ~x. A

specific case of the above equation is termed as Maclaurin

series when ~x ¼ 0.

3.2 Deep Taylor expansion

Many machine learning models are complex and non-linear

when considering them globally. On the other hand, they

might be simpler and, sometimes, linear when taken

locally. Now, let us assume that f is positive-valued and

takes the form f : <d ! <. Concerning image

classification, the input x 2 <d denotes an image with pixel

values x ¼ fxpg, where p stands for a particular pixel.

Let us consider the first-order Taylor expansion of f(x):

f ðxÞ ¼ f ð~xÞ þ f 0ð~xÞðx� ~xÞ þ �; ð4Þ

where � denotes the higher-order terms of the expansion. In

practice, Equation 4 is simply a different approach to

represent the general formulation of the Taylor expansion

(Equation 3).

According to Montavon et al. [27], Equation 4 can be

reformulated as follows:

f ðxÞ ¼ f ð~xÞ þ
X

p

f 0ðxpÞðxp � ~xpÞ þ �; ð5Þ

where ~xp denotes the pixel values of the root point ~x, andP
p runs over all pixels in the image.

Let RpðxÞ be a relevance score associated with each

pixel p, i.e., it indicates to what extent pixel p contributes

(a) (b)

(c) (d)

Fig. 1 Approximating function sin(x) using Taylor Series with

different numbers of terms: a standard function, b approximated

with two terms, i.e., sinðxÞ ¼ x� x3

3!, c approximated with five terms,

i.e., sinðxÞ ¼ x� x3

3! þ x5

5! � x7

7! þ x9

9!, and d approximated with five

terms, i.e., sinðxÞ ¼ x� x3

3! þ x5

5! � x7

7! þ x9

9! � x11

11! þ x13

13!
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to explaining the classification decision f(x). Besides, let

RðxÞ ¼ fRpðxÞg be a heatmap that is composed of all pixel

scores. According to Montavon et al. [27], a heatmapping

R(x) is conservative if it satisfies the condition below:

f ðxÞ ¼
X

p

RpðxÞ; 8x: ð6Þ

Such a condition guarantees that the relevance scores

correspond to the extent to which an object in the input

image is detected by the model, i.e., f(x). Also, a

heatmapping is said to be positive if it obeys the following

restriction:

f ðxÞ ¼ RpðxÞ� 0; 8x; p: ð7Þ

The above constraint ensures the relevance scores are not

contradictory regarding the presence or absence of the

detected object in the image. We said that f ðxÞ ¼ 0 when

the object is absent in the image, and f ðxÞ[ 0 quantifies

the presence of this object. Last but not least, we say that a

heatmapping R(x) is consistent when it is conservative and

positive.

According to Montavon et al. [27], the heatmapping

R(x) can be formulated as the element-wise product �
between the gradient of the function at the root point, i.e.,

f 0ð~xÞ, and the difference between the image and the root, as

follows:

RðxÞ ¼ f 0ð~xÞ � ðx� ~xÞ: ð8Þ

Essentially, the formulation above says that the magnitude

of the gradient at each pixel will tell us its relevance for

classification purposes.

The Taylor decomposition concerning function f(x) has

one free variable, i.e., the choice of the root point ~x.
Mathematically speaking, we want to observe the behavior

of function f(x) in the neighborhood of that root point. In

general terms, we want to study how the function behaves

when the object of interest is absent in the image, i.e.,

f ð~xÞ ¼ 0, for we expect it to be in the image. Such a sit-

uation holds when the minimize the following objective

function [42]:

~f ¼ argmin
f

f� xk k2 s.t. f ðfÞ ¼ 0 and f 2 X ; ð9Þ

where X stands for the image domain. Montavon et al. [27]

stated that finding proper values for ~x is time-consuming

when f(x) is computationally expensive. Moreover, for

deep networks, nearest root points are usually not per-

ceivable (visually speaking) from x.

We can rewrite the first-order Taylor expansion from

Equation 5 as follows:

f ðxÞ ¼ f ð~fÞ þ f 0ð~fÞðx� ~fÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
RðxÞ

þ�
ð10Þ

¼ f ð~fÞ þ RðxÞ þ 0: ð11Þ

Since we are considering a first-order expansion, we can

discard the higher-order terms, i.e., � ¼ 0.

3.2.1 Extension to deep networks

Let us assume that f(x) models a deep neural network. The

idea of Deep Taylor Expansion is to understand that a

complex and non-linear function learned by f(x) can be

decomposed into a set of simpler subfunctions [27]. Let us

assume that f(x) has been decomposed on the set of neurons

at a given layer, and let xj be such a neuron and Rj its

assigned relevance. In a nutshell, we want to decompose Rj

on the set of lower neurons fxig to which xj is connected.

Considering neuron xj at the current layer to be ana-

lyzed, we define f~xigj as the root point. Assuming that fxig
and Rj are related by a function RjðfxigÞ, the Taylor

decomposition of Rj is computed as follows:

Rj ¼ R0
jðf~xig

jÞTðfxig � f~xigjÞ þ �j

¼
X

i

R0
jðf~xig

jÞðxi � ~xjiÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rij

þ�j; ð12Þ

where �j denotes the Taylor residual at neuron xj, and Rij

stands for the redistributed relevance from neuron xj to

neuron xi.

In order to estimate the total relevance of neuron xi, we

need to consider all relevance values from neurons fxjg to

which neuron xi contributes:

Ri ¼
X

j

Rij: ð13Þ

Combining Equations 12 and 13, we obtain:

Ri ¼
X

j

R0
jðf~xig

jÞðxi � ~xiÞ: ð14Þ

Figure 2 illustrates the idea of layer-wise propagation on a

deep network, where xf denotes the output neuron of such

deep network. One can observe that the neuron’s activa-

tions are backpropagated to the input image to highlight

relevant pixels.

4 Methodology

This section details the methodology used to evaluate some

XAI approaches for the automatic COVID-19

identification.
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4.1 Deep neural architectures

We considered three well-known deep neural architectures

that employ different mechanisms for training purposes, for

the primary idea of this work is to evaluate the behavior of

some XAI tools in distinct scenarios:

• VGG11 [40]: it uses 224� 224 RGB images forwarded

through a stack of 3� 3 convolutional filters with stride

fixed to 1 pixel; five max-pooling layers carry out

spatial pooling over 2� 2-sized windows; the fully

connected layers follow a stack of convolutional layers,

where the first two have 4, 096 channels each, and the

third contains 1, 000 outputs since it has been designed

to address classification in the ImageNet dataset [34];

the last layer stands for a softmax layer.

• VGG16 [40]: it comprises a similar architecture to

VGG11 but with extra convolutional layers. The output

layer has been modified to accommodate three classes

since it has been designed to address classification in

the ImageNet dataset [34].

4.2 Dataset

We used the ‘‘COVID-19 Radiography Dataset’’1, which

comprises 15, 153 chest X-ray images divided into three

classes: (i) 1, 345 images positive to viral pneumonia, (ii)

3, 616 images positive to COVID-19, and (iii) 10, 192

images from healthy people. Figure 3 depicts some

examples from the aforementioned dataset.

4.3 Experimental setting

Since we are using deep neural architectures, we perform

data augmentation in the training dataset to double its size

using horizontal flipping on every training image. Such

transformation does not affect the natural appearance of the

images, for we are dealing with chest X-ray data.

Out of the 15, 153 images, 15, 063 are employed to

compose the training set (99:4%), and the remaining 90

images are used as the test set. Since we are interested in

evaluating XAI techniques and not outperforming state-of-

the-art approaches in terms of COVID-19 identification, we

understand that large training sets will be further helpful in

building consistent models so that their explainability can

be clarified.

All deep architectures mentioned in Sect. 4.1 were first

trained on ImageNet for further fine-tuning in the COVID-

19 Radiography Dataset for one epoch only2, which

showed to be enough to reach recognition rates higher than

95%. We used mini-batches of size 6, cross-entropy as the

loss function, Adam optimizer [25], and a learning rate of

3� 10�5. Concerning XAI tools3, we compared Composite

LRP [35], Single Taylor Decomposition [27], and Deep

Taylor Decomposition [27].

4.4 Quantitative analysis

Explainable AI primarily refers to interpreting results using

visual perspectives, i.e., qualitative understanding. How-

ever, one also can provide deeper insights using quantita-

tive evaluation. In this paper, we consider three measures

to accomplish this task: (i) input perturbation [36], (ii)

selectivity [28], and (iii) continuity [28]. More details

about their working mechanism are provided in the further

section

Fig. 2 The working mechanism of the deep Taylor decomposition. A

prediction for the class ‘‘COVID-19’’ is estimated by forwarding the

pixel values fxpg (input) to the deepest layers of the neural

architecture. The output is encoded by neuron xf . A relevance score

Rf ¼ xf is assigned to the output neuron and backpropagated to the

input layer, where Rp denotes the pixel’s relevance scores, visualized

as a heatmap. Adapted from [27]

1 Available at https://www.kaggle.com/tawsifurrahman/covid19-

radiography-database.
2 We used the official implementation provided by PyTorch [31].
3 We used the code available at https://github.com/hans66hsu/nn_

interpretability.
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5 Experiments

In this section, we present the experimental results con-

cerning the methodology described in the previous section.

5.1 Input perturbation

Input perturbation aims to evaluate to what extent regions

of the input image identified as relevant by XAI tools take

that role. The rationale is: Given a trained model, we use a

test image as an input to obtain its heatmap (Fig. 2)

according to some XAI technique designed for that specific

deep network. Further, the most relevant regions4, i.e.,

groups of pixels, have their values changed in the original

(input) image by uniformly and randomly generated values.

The modified image is then presented to the network once

more for classification purposes. Such methodology is

repeated a few more iterations to have a more significant

number of patches changed. It is expected that the model

effectiveness will be neglected as the number of modified

patches increases. An effective good XAI technique will be

more affected by these changes than the poorest one.

Figure 4 displays the VGG16 outcomes concerning the

COVID-19 class5. We performed the above methodology

for all test images so that prediction scores (y-axis) stand

for the average values over the test set. Moreover, the y-

axis stands for the so-called ‘‘classification score,’’ which is

the confidence value outputted by the neuron in charge of

recognizing the COVID-19 label on the deep network’s last

layer. Therefore, the higher the classification score, the

most accurate the model will be in identifying COVID-19

(true positive for that class).

One can observe that Composite LRP appears to be the

most effective approach in identifying the relevant regions,

for its classification score decreases faster than others.

Deep Taylor Decomposition (DTD) figured as the worst

since its behavior does not change that much when the

number of modified regions increases. Such performance

can be explained for DTD highlights high-frequency

regions of the image, i.e., lung borders mainly. Figure 5

illustrates such scenario. It seems that such regions are not

plausible to distinguish between COVID-19 and other

classes (i.e., healthy and viral pneumonia), for internal

parts of the lungs are the ones affected by the diseases.

Since lung borders cover most of the image, only a very

high number of modified patches will affect the classifi-

cation score.

Concerning the explanations presented in Fig. 5, one

can observe that both Composite LRP and Single Taylor

Decomposition (STD) figure two distinct colors, i.e., red

Fig. 3 Some samples from the dataset: a, b images positive to viral

pneumonia, c, d images positive to COVID-19, and e, f images from

healthy people

4 We used 32� 32-sized patches.

5 We present results only for COVID-19 patients, for we are

interested in investigating the behavior of XAI tools for that scenario

only.

Fig. 4 VGG16 outcomes concerning COVID-19 label using input

perturbation assessment
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and blue. The former stands for the regions that are rele-

vant for the identification of COVID-19, and the blue ones

denote areas that do the opposite effect.

One can assess the performance of the XAI techniques

by computing the area under the curve (AUC). The concept

is that smaller AUC values stand for more precise

approaches, i.e., the ones that can accurately highlight the

most relevant parts of the image. Table 1 presents the AUC

values concerning VGG16 deep network with respect to the

results depicted in Fig. 4. The smallest AUC value is

highlighted in bold.

Figure 6 illustrates the input perturbation analysis con-

sidering VGG11 deep network. In this case, Deep Taylor

Decomposition obtained the best results (AUC = 223.54),

followed by Single Taylor Decomposition (AUC =

261.33), and Composite LRP (AUC = 269.54). The dif-

ference now relies on the depth of the networks. Although

VGG11 figures fewer convolutional layers than VGG16, its

training loss (0.1271) was slightly smaller than VGG16

(0.1372). Such behavior might be due to the complexity of

the VGG16 network, which may require more data for

training purposes.

According to Montavon et al. [28], LPR tends to pro-

duce better explanations when the number of layers is kept

Fig. 5 From left to right: original image and its versions with three,

eight, ten, and fourteen patches modified. From top to bottom: a

random image from the test set positive to COVID-19, and heatmaps

produced by Composite LRP, Single Taylor Decomposition, and

Deep Taylor Decomposition, respectively (input perturbation

analysis)

Table 1 AUC values concerning VGG16 deep network with respect

to input perturbation analysis

Technique AUC

Composite RLP 28.68

Single Taylor Decomposition 23.26

Deep Taylor Decomposition 82.96

The values in bold stand for the most effective outcomes
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low, for the neurons’ relevance is redistributed along with

the network. Also, for LRP to best match DTD, average- or

sum-pooling layers are preferred to max-pooling, and that

does not happen in VGG-like models, which mainly use

max-pooling layers. We, therefore, confirm the assump-

tions made by Montavon et al. [28].

5.2 Selectivity

Selectivity can be understood as a particular scenario of the

input perturbation, for we ‘‘‘remove’’ the most relevant

areas of the input image instead of changing their values. In

short, we zeroed the pixels’ values inside that regions so

that one can evaluate the robustness of the XAI technique.

The rationale is the same as pixel perturbation, i.e., we

expect that the prediction scores decrease as the number of

zeroed (and relevant) regions increases.

Figure 7 depicts the selectivity results concerning

VGG16 deep network. Once more, Composite LRP

obtained the best results, for its classification score

decreased faster than STD and DTD approaches as the

number of removed regions increases. However, this

experiment showed better effectiveness of Deep Taylor

Decomposition when compared to its counterpart version,

i.e., the Single Taylor Decomposition.

Deep Taylor Decomposition achieved results that are

somehow close to the ones related to input perturbation, as

one can observe in Table 2. However, both Composite LRP

and Single Taylor Decompositions have their AUC values

strongly affected by removing the most relevant regions.

Although DTD is heavily based on border information and

zeroing patches that fall in those regions induce disconti-

nuities in the lung borders, the most relevant areas fall in

the peripherical regions, thus affecting less the classifica-

tion scores. Figure 8 illustrates such a scenario, where a

considerable number of removed patches in the case of

STD are spread over the entire image.

Figure 9 depicts the selectivity experiment concerning

VGG11 model. One can observe that Composite LRP

obtained results (AUC = 118.82) that are a bit better than

Single Taylor Decomposition (AUC = 135.19), and Deep

Taylor Decomposition (AUC = 135.41). Such results were

different from those obtained in the input perturbation

experiment, where DTD achieved the best results with the

VGG11 model. It seems VGG16 leads to higher discrep-

ancies among the XAI techniques than VGG11. We believe

this scenario might be due to the better generalization

capabilities demonstrated by VGG11, for it obtained a

lower loss value during training. We understand that better-

trained models lead to better explanations, regardless of the

approach used for such a purpose.

5.3 Continuity

A suitable property of any explanation technique is to

output continuous explanation functions, for it is often

assumed that f(x) is continuous either. Montavon et al. [28]

stated that the following behavior should be ensured for a

particular explanation technique: If two points are some-

how equivalent, then the explanation of their predictions

should also be comparable.

Fig. 6 VGG11 outcomes concerning COVID-19 label using input

perturbation assessment

Fig. 7 VGG16 outcomes concerning COVID-19 label using selec-

tivity assessment

Table 2 AUC values concerning VGG16 deep network with respect

to selectivity analysis

Technique AUC

Composite RLP 59.79

Single Taylor Decomposition 85.96

Deep Taylor Decomposition 72.06

The values in bold stand for the most effective outcomes
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The explanation continuity can be demonstrated by

searching for the most substantial variation on the rele-

vance maps. Montavon et al. [27] also stated that when

f(x) is a deep ReLU network, Simple Taylor Decomposi-

tion has sharp discontinuities in its explanation functions;

on the other hand, Deep Taylor Decomposition produces

continuous explanations.

In general, we can evaluate the robustness of the

explanation approach by taking into account its ‘‘level of

continuity’’ when we perform image translation (i.e., pixel

shifting). The idea is to partition the image into quadrants

(R1 to R4) so that explanation continuity will be assessed

for each region, as depicted in Fig. 10.

Figure 11 illustrates the continuity assessment consid-

ering a random test image positive to COVID-196. One can

Fig. 8 From left to right: original image and its versions with three,

eight, ten, and fourteen patches modified. From top to bottom: a

random image from the test set positive to COVID-19, and heatmaps

produced by Composite LRP, Single Taylor Decomposition, and

Deep Taylor Decomposition, respectively (selectivity analysis)

Fig. 9 VGG11 outcomes concerning COVID-19 label using selec-

tivity assessment

6 We used image COVID-82.png for such experiment.
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observe that Composite LRP and DTD produce ‘‘better

behaved’’ functions, i.e., they tend to produce continuous

functions as we shift the input image horizontally. On the

other hand, STD figures sharp transitions, ending up in

functions that are not continuous.

Figure 12 illustrated the continuity analysis under the

same image used previously for VGG16. One can observe

a similar behavior, i.e., Composite LRP and DTD tend to

produce continuous functions. At the same time, STD has

functions with sharp transitions when we increase the

number of shifted pixels.

5.4 Discussion

The primary goal of the manuscript is to compare three

XAI-based approaches to distinguish between viral pneu-

monia, COVID-19, and healthy individuals. The compar-

ison considers three different aspects: (i) input

perturbation, (ii) selectivity, and (iii) continuity. Besides,

two neural backbones are employed: VGG-11 and VGG-

16.

One can observe from Fig. 4 that Composite LRP can

find the most relevant regions up to a certain extent, for the

Fig. 10 Image is divided into quadrants for further explanation continuity assessment. Example of continuity analysis using Deep Taylor

Decomposition

(a) (b)

(c)

Fig. 11 Continuity analysis with VGG16 model: a Composite LRP, b Single Taylor Decomposition, and c Deep Taylor Decomposition
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classification accuracy drops rapidly until five regions are

changed. For a number greater than that, STD takes the

role, with all images classified incorrectly when ten regions

are changed. However, with a lighter architecture (i.e.,

VGG-11), Deep Taylor Decomposition achieves better

results (Fig. 6). The structure of the lungs is somehow well

preserved when using DTD for explanation purposes

(Fig. 5).

Selectivity plays a similar role (Figs. 7 and 9), except

for the latter one, where Single Taylor Decomposition

performed better than its deep counterpart. A possible

explanation relies on the neural backbones, which might

not be deep enough to benefit Deep Taylor Decomposition.

Figure 5 shows that all methods highlight high-fre-

quency regions as important, which is usually expected.

However, some of these regions comprise the patches that

have been modified by either input perturbation or selec-

tivity approaches. DTD appears to be less affected by the

artificially changed patches, for it did not hallucinate about

regions that have not been changed. Take the second col-

umn from left to right in Fig. 5. Composite LRP (second

row from top to bottom) seemed to ‘‘see’’ patch patterns in

the bottom-middle portion of the image, which does not

happen to be. Single Taylor Decomposition also halluci-

nates about patches spread of the image (third row, second

column).

6 Conclusions and future works

Explainable artificial intelligence has been a valuable asset

to provide out-of-the-box explanations about the inner

mechanisms of deep neural networks. Such a paradigm is a

game-changer when dealing with automated decisions that

must be further clarified.

In this manuscript, we coped with computer-assisted

COVID-19 identification using chest X-ray images to

assess three techniques’ explanation quality further: Com-

posite Layer-wise Relevance Propagation, Single Taylor

Decomposition, and Deep Taylor Decomposition. We

considered two well-known deep architectures for expla-

nation: VGG11 and VGG16. Last but not least, three

(a) (b)

(c)

Fig. 12 Continuity analysis with VGG1 model: a Composite LRP, b Single Taylor Decomposition, and c Deep Taylor Decomposition
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distinct quantitative measures were considered for com-

parison purposes: explanation continuity, explanation

selectivity, and input perturbation.

We observe results that confirm some statements made

by Montavon et al. [27], with VGG11 performing better

than its counterpart with extra layers, i.e., VGG16. In

general, Composite LRP achieved better results but was

closely followed by Deep Taylor Decomposition. We

understand that both approaches are suitable for explana-

tion purposes if one takes into account the quantitative

assessment. However, it seems that DTD highlights both

lungs and the rib cage’s boundaries, which does not seem

to be a good choice. On the other hand, Composite LRP

appears to highlight not only high-frequency regions, but

others that seem to be relevant for COVID-19 automatic

identification.

Concerning future works, we aim to evaluate other deep

architectures such as ResNets, EfficientNets, and Mobile-

Nets. The latter models are pretty efficient and fast for

training purposes, thus allowing us to retrain them when-

ever necessary.
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