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Abstract
The devastating consequences of climate change have resulted in the promotion of clean energies, being the wind energy

the one with greater potential. This technology has been developed in recent years following different strategic plans,

playing special attention to wind generation. In this sense, the use of bicomponent materials in wind generator blades and

housings is a widely spread procedure. However, the great complexity of the process followed to obtain this kind of

materials hinders the problem of detecting anomalous situations in the plant, due to sensors or actuators malfunctions. This

has a direct impact on the features of the final product, with the corresponding influence in the durability and wind

generator performance. In this context, the present work proposes the use of a distributed anomaly detection system to

identify the source of the wrong operation. With this aim, five different one-class techniques are considered to detect

deviations in three plant components located in a bicomponent mixing machine installation: the flow meter, the pressure

sensor and the pump speed.

Keywords Anomaly detection � One-class � Control system � kNN � MST � NCBoP � PCA � SVDD

1 Introduction

European Union (EU) is committed to generate a new

ecological transition to become in the world’s first climate-

neutral continent by 2050. This effort requires a significant

investment from public and private entities that EU tries to

impulse through its European Green Deal’s Investment

Plan [1]. In this sense, renewable energies play a key role

in this plan to fight against the fossil fuel markets. Among

the different options, wind power is the most extended in

EU [2]. According to [3], in 2018, the global electricity

from renewable sources represented only a 25.6 % of the

total share. This value reveals a significant development in

comparison with previous years [4, 5]. Although, nowa-

days, the hydroelectric energy is the most common, cov-

ering 16 % of the generation, the wind technologies have

experienced a remarkable increase during the last two

decades. In [6], it is stated that the wind power installed

grew from 17 GW in 2000 to 591 GW in 2018. According

to this sequence, there are some forecasts that estimate a

global share of 23 % in 2030 [7]. This represents four to

five times the current share [8]. In this context, there are

several researches oriented to optimise and improve dif-

ferent renewable energies systems [9]. Specially, in case of

wind turbines, it takes significant relevance the wind blades

in terms of shape [10] and materials [11, 12].

Most of the commercial wind blades are made of

polyester or epoxy reinforced with glass fibre or carbon

fibre. During the manufacturing process, a key step occurs

when the epoxy is mixed with catalytic to obtain the resin

for the infusion process [13]. Due to the non-Newtonian
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nature of both fluids, this is not a trivial step, since the mix

of both fluids must kept in the same proportion for any flow

demanded, and the presence of noise during monitoring can

hinder the control of the system.

The facility under study obtains carbon fibre as final

product, whose features in terms of stiffness, tensile and

compression strengths are suitable to the use in wind

generator blades. It is an interesting alternative to glass

fibre, since it shows greater stiffness with lower density

than the glass fibres, resulting in lighter blades. However,

an accurate proportion of both bicomponents should be

ensured to avoid possible wrinkles that could lead to

undesired material features [14]. Then, flow rate deviations

could have an important impact on material, such as pro-

duct waste, defective material during curing process, or

shortening of blade life. Both scenarios result in economic

losses.

Therefore, an early diagnosis of any deviation from the

normal operation of the system is crucial to take actions in

several directions. On the one hand, the anomaly detection

can be used to carry out corrective maintenance, and on the

other hand, it can be used to develop fault tolerant systems.

This means that the control system can continue the pro-

cess trying to avoid the propagation of the anomaly effect.

In both cases, besides the detection of an unexpected event,

it is interesting to determine the part of the system that has

suffered the fault. Then, it is desirable to develop a dis-

tributed topology, where an anomaly detection system is

placed over each sensor or actuator. The left side of Fig. 1

represents the implementation of an anomaly detection

system applied to the entire mixing facility, and right side

depicts a distributed topology. This second topology has

the advantage of locating the source of the anomaly.

In this sense, anomaly detection techniques [15] provide

an important advantage during monitoring process to

identify the abnormal behaviour of the system. From a

generic approach, an anomaly can be considered as an

unusual pattern that does not an expect behaviour [16]. The

used techniques for anomaly detection can be categorised

in three main types, based on type of learning methods

used:

– Type 1: Supervised Learning: in this case, all samples

are labelled as normal and anomalous. Then, modelling

techniques are applied over each class.

– Type2: Unsupervised Learning: here, there is not a

previous knowledge about the dataset and therefore

samples are not labelled.

– Type 3: Semi-supervised Learning: in this case, only

samples belonging to normal operation are used to train

the models, so just the normal operation is modelled.

Given the fact that in most cases, only information from

correct operation is available, the definition of this cir-

cumstance is mandatory to determine an anomalous situa-

tion [16, 17]. Then, it is defined the concept of one-class

classifiers that cover all the instances that belong to the

target set, which is the set representing the normal opera-

tion. The use of one-class classifiers has been widely used

for many different applications, such as anomaly detection,

fraud detection or medicine diagnosis. However, this semi-

supervised approach offers only the possibility of labelling

data as target or non-target data. In [18], a one-class clas-

sifier is implemented to determine the occurrence of

anomalies in a bearing system. Although it is an interesting

tool, it is not capable of locating or, at least, narrowing the

source of the anomaly. Focusing on a different approach, in

[19], a virtual sensor using intelligent techniques is

developed to determine the value measured by a sensor

located in an industrial plant. Then, the deviation between

real and predicted value is the criteria to determine

anomalies. This approach can be considered to identify the

source of the anomaly, and thus favour the diagnostic and

supervision of the plant.

This work faces the anomaly detection in an industrial

plant used to obtain bicomponent material used for wind

generator blades. The proposal takes advantage of one-

class techniques to implement a distributed system capable

of locating anomalies in specific parts of the facility. To

achieve this goal, a real dataset gathered during the correct
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operation with different operating points is considered.

Then, a deep analysis of different one-class techniques is

carried out to evaluate the anomaly detection using three

different plant anomalies. The anomalies are created by

deviating the values measured with a flow meter, the

pressure and the speed in a pump.

The present research is organised as follows. After this

contextualisation section, the case of study section presents

the bicomponent mixing machine. Later, Sect. 3 introduces

the theoretical concepts of the four one-class anomaly

detection techniques used in this work, to present in Sect. 4

the experiments and results and finally derive the conclu-

sions and future works in Sect. 5.

2 Case study

In this section, the bicomponent mixing machines are

described, detailing its main components and explaining its

workflow. Also, the recorded dataset is described in terms

of measured variables and sampling procedure, presenting

an example of the dataset graphically.

2.1 Bicomponent mixing machine for turbine
blade material

During fabrication of a turbine blade, the shape of the blade

is created by combining a resin with reinforcement of fibre

glass or carbon. In order to produce such resin, it is nec-

essary an industrial machine to mix two primary fluids, the

epoxy and the catalytic to obtain a final product which

presents high tensile and compressive strengths and great

chemical resistance [20]. This industrial mixing machine is

schematised in Fig. 2.

As can be seen in Fig. 2, the system is monitored by

means of a total of 9 sensors. Each fluid line has one

pressure sensor at the output of the pumps (PE1, PC1) and

another at the input of the mixing valve (PE2, PC2) and also

one flow meter per line (FE2, FC2). Each pump has a speed

sensor (SE, SC), and finally, the flow of mixed material at

the output line is also measured (FM).

Fig. 2 Bicomponent mixing machine scheme
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The workflow is as follows:

1. Both fluids are stored in separated tanks and sent to the

mixing valve by centrifugal pumps controlled through

three phase variable frequency drives (VFD).

2. A control system adjusts the pumps speed, acting over

each VFD, based on information sampled in the three

flow meters to keep a constant output flow and

homogeneous material.

2.2 Dataset

With the aim of generating an accurate anomaly detection

model, the bicomponent mixing process is monitored by

using a total of nine sensors, presented in previous Section.

The monitoring process has a sample period 0.5 sec during

an hour and 15 min. After removing wrong measures (null

or negative values), the final dataset consists of 8549

samples and nine variables.

In order to illustrate how sample values varies in time,

four of the measures are presented in Fig. 3 during 8 min.

As all data samples represents the normal operation of

the system, anomalies have been generated following the

process shown in Fig. 4.

Here, j anomalies were generated by modifying in a p%

one of the random variables in a total of j random samples

from a MxN dimensional dataset.

Fig. 4 Measurement deviation

Fig. 5 kNN distances
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3 Soft computing methods to validate
the proposal

This section details the one-class techniques used to detect

anomalies over the case of study previously presented. All

algorithms work only with samples from normal behaviour

of the system, and later anomalies are used to evaluate the

performance of each one.

3.1 k-nearest neighbour

The k-Nearest Neighbour (kNN) for anomaly detection is

based on relative distances between neighbour training

samples and new test samples, therefore the local density

of the hypersphere made of its kth nearest neighbours [21],

determines whether a sample x is considered as an anomaly

or not.

It can be expressed by Eq. (1) that calculates such

density d, as the relation between the distance of a new

testing sample x to the kth nearest training data neighbour

kNNtrðxÞ and the local distance from the kth neighbour to

its kth neighbour [17]

dðxÞ ¼ d1
d2

¼ jx� kNNtrðxÞj jj
jkNNtrðxÞ � kNNtrðkNNtrðxÞÞj jj ð1Þ

Figure 5 represents both distances graphically in a easier

way.

The value of k plays a significant role in the classifier

performance, and it depends on the dataset structure shape

[21].

3.2 Minimum spanning tree

This one-class method is based on target set modelling by

means of the structure obtained by a minimum spanning

tree (MST). It relies on the assumption that two points

pi; pj 2 Rn that belong to target class should be neighbours

in Rn representation [22]. Then, a linear transformation can

be found for these points and all points considered as target

class. As this set commonly contains more than two

objects, then, more than one transformation can be applied.

Hence, for a dataset D with n instances, ðn� 1Þ linear

transformations can be found [22]. Then, the MST consists

of a set of edges eij that specify the linear transformations

of each point. It is implemented a graph ensuring the

absence of loops and minimising the total length of the

edges. It can be defined as a problem of finding ðn� 1Þ
edges that implement a tree with a minimum total weight,

as shown in Eq. (2) and subjected to Eq. (3).

re2/kek ð2Þ

k/k ¼ ðn� 1Þ;/ � � 9!pathðfpi; pjgÞ; 8fpi; pjg 2 D; i[ j

ð3Þ

Once the MST is trained with data from the target set, the

distance between a new test object p to training set D,

Dataset  R3

Projection #1 Non-convex polygon Projection #1

Projection #2 Non-convex polygon Projection #2

Fig. 6 NCBoP projections
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which is also the target set, is calculated as the shortest

distance to the set of ðn� 1Þ edges of the tree, as shown in

Eq. (4). If this distance exceeds a threshold, b can be

derived from a quantile function of the obtained MST.

dMSTðpjDÞ ¼ mineij2MSTdðpjeijÞ ð4Þ

3.3 Non-convex boundary over projections

Non-Convex Boundary over Projections (NCBoP) is a

novel one-class classification algorithm that overcome the

weaknesses presented by well-known Convex Hull over

random projections [23, 24].

The main basis of this method is to approximate the

boundaries of a dataset S 2 Rn using the non-convex hull

over p random projections on 2D planes and then, deter-

mine the non-convex limits on that plane, reducing in this

way the complexity of calculating the non-convex limits

over Rn.

The process to determine the non-convex polygon that

contains a set of points D ¼ d0; d1; :::; di follows the next

steps:

– Look for the point with the lowest y-coordinate (d0). In

case tie, the point with the lowest x-coordinate is

selected.

– Find the k-nearest points to that current point. For this,

the vectors d0di with i 2 f1; � � � ; ng are implemented,

looking for the smallest Euclidean distance.

– Sort the k-nearest points based on the angle resulting by

the line with the x-axis. The further point from the

starting point is selected.

– Once this first couple of points are calculated, a stack

structure is created including the next third point.

– Then, it is checked if the next point in the list turns left

(pushed into the stack) or right (point on the top is

removed). This process is repeated until arrive again to

the starting point.

Once the non-convex polygon is defined, it should have all

training instances. Finally, a parameter k is considered to

increase or decrease the polygon vertexes v of the non-

convex polygon NC(X) from the centroid c, according to

Eq. (5).

vk : kvþ ð1� kÞc j v 2 NCðXÞf g ð5Þ

Then, when a testing point is presented to the algorithm, if

such point falls outside the non-convex polygon in at least

one of the projections, it is considered as an anomaly,

otherwise it represents the normal behaviour of the system.

Figure 6 presents a 3D example where a sample that falls

outside the limits of the non-convex polygon for one the

calculated projections.

3.4 Principal component analysis

The principal component analysis [25] can be described as

a linear operation involving unsupervised learning for data

compression whose aim is to find that orthogonal basis that

maximises the data variance for a given dimension of basis.

The final goal is to generate a new subspace using as

new components the eigenvalues of the covariance matrix

of the original input space. From a geometrical point of

view, it consists on a rotation of the original axes, which

can be expressed by Eq. (6).

yi ¼ WT
i x

d ð6Þ

where xd in an N-dimensional space onto vectors in an M-

dimensional space ðx1:::xNÞ, where M�N, Wi are the N

eigenvectors of the covariance matrix, and yi are the pro-

jected original data onto the new output M-dimensional

subspace ðy1:::yMÞ.
Finally, to the criteria applied to identify an anomaly

[26–28], consists of calculating the reconstruction error and

determine if this reconstruction error is greater than the

maximum threshold. The reconstruction error is expressed

in Eq. (7) as the difference between the original dataset and

its projection over the new subspace Eq. (8), computed in

the original data. Such projection can be expressed as:

f ðxÞ ¼jjx� xprojjj2 ð7Þ

xproj ¼WðWTWÞ�1WTx ð8Þ

This technique offers good results when the subspace is

clearly linear [17].

3.5 Support vector data description

The support vector machine (SVM) is a supervised learning

used for classification and regression tasks [21]. Its main

goal is to map the training set into a hyperspace and, then,

implement a hyperplane to maximises the distance between

classes [29].

Support vector data description (SVDD) aims to find a

minimum volume space that contains all training data

samples. Therefore, given a dataset X in Rn, SVDD will try

to find the hypersphere with centre a and radius R that

includes most of the training data samples. It can be for-

mulated as an optimisation problem with Eqs. (9) and (10).

FðR; a; niÞ ¼ R2 þ C
X

i

ni ð9Þ

jjxi � ajj2 �R2 þ ni ni �R2 ð10Þ

Due to the possible presence of noise in the dataset, the

parameter n is used to control the slack in the limits of the
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hypersphere. Parameter C is also considered to adjust the

volume-errors trade-off.

When a new testing sample is presented to the trained

SVDD, the distance from this new sample to the centre of

the hypersphere is calculated and if this distance is greater

than radius R, it is considered as an outlier.

4 Experiments and results

4.1 Experiments setup

The performance of each one-class technique was evalu-

ated according to the different configurations described

next:

– kNN:

– Number of neighbours (NN) = 1:5:25.

– Fraction of anomalies in the target set (m):
0 : 0, 05 : 0, 25.

– MST:

– Fraction of anomalies in the target set (m):
0 : 0, 05 : 0, 25.

– NCBoP:

– Number of projections p = 5, 10, 50, 100, 500, 1000.

– Expansion parameter k = 0, 5 : 0.1 : 1, 5.

– PCA:

– Fraction of anomalies in the target set (m):
0 : 0, 05 : 0, 25.

– Components b = 1 : 1 : 9.

– SVDD:

– Fraction of anomalies in the target set (m):
0 : 0, 05 : 0, 25.

– Kernel width (%) = 0.1 : 0, 1 : 10.

The process followed to evaluate the performance of each

classifier is based on the k � fold cross-validation method,

with k ¼ 5, which is depicted in Figure 7. This procedure

consists of dividing in a random way the target set in five

Fig. 7 Schematic description of

k � fold with k ¼ 5
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different groups. Then, five classifiers are implemented

using the 80 % of the data and leaving the 20 % to the test

phase. The use 5 folds ensures that all instances are con-

sidered for the training and test phases. Then, the classifier

is tested using the non-target set and 20 % of the target

data.

Furthermore, for each of the configurations tested, the

data followed three different conditioning prior the classi-

fier training:

– Type A: normalisation between the interval 0 to 1.

– Type B: normalisation using the mean and standard

deviation of each variable. This is also known as

ZScore normalisation [30].

– Type C: the data remains unaltered without any pre-

processing technique.

The performance of each classifier configuration is evalu-

ated using the well-known area under the receiving oper-

ating characteristics curve (AUC) measure [31]. The AUC

Table 1 Best results for each

technique and flow percentage

deviation

Deviation (%) Norm NN Nu AUC (%) STD (%) ttr (s)

kNN 5 Type C 1 0,05 94,27 0,31 4,02

10 Type C 1 0,05 96,58 0,57 3,92

15 Type C 1 0,05 97,38 0,54 3,99

20 Type C 1 0,05 97,45 0,36 4,16

25 Type C 1 0,05 97,61 0,46 4,05

Deviation (%) Norm - m AUC (%) STD (%) ttr (s)

MST 5 Type C - 0,15 91,40 0,47 7,54

10 Type C - 0,10 95,73 0,36 7,68

15 Type C - 0,15 97,78 0,29 7,92

20 Type C - 0,10 98,90 0,37 8,29

25 Type C - 0,05 99,53 0,17 7,70

Deviation (%) Norm k p AUC (%) STD (%) ttr (s)

NCBoP 5 Type C 1 1000 87,62 0,50 119,71

10 Type C 1 500 92,05 0,77 51,94

15 Type C 1 500 92,60 0,70 51,58

20 Type C 1 100 93,50 0,67 10,37

25 Type C 1 100 94,65 0,58 9,92

Deviation (%) Norm b m AUC (%) STD (%) ttr (s)

PCA 5 Type C 9 0,05 96,22 0,28 0,03

10 Type C 8 0,05 97,49 0,42 0,02

15 Type C 9 0,00 97,50 0,23 0,02

20 Type C 9 0,00 99,62 0,03 0,02

25 Type C 9 0,00 99,99 0,05 0,04

Deviation (%) Norm R m AUC (%) STD (%) ttr (s)

SVDD 5 Type C 1 0,15 61,97 0,96 160,84

10 Type B 1 0,00 77,78 0,53 223,20

15 Type B 1 0,00 85,59 2,17 214,44

20 Type B 1 0,00 95,91 0,18 218,89

25 Type B 1 0,00 98,23 0,13 219,21
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combines the true positive and false positive rates,

obtaining a unique measure of the classifier performance.

From a statistical point of view, this value represents the

probability of classifying a random positive instance as

positive [31]. Furthermore, in contrast to other parameters

such as sensitivity, precision or recall, AUC is not sensitive

to class distribution, which is a significant advantage

especially in one-class tasks [32]. This parameter is cal-

culated five times, one for each fold, and its mean value

and standard deviation between runs (STD, in %) are also

registered. As a comparative analysis of each technique is

sought, the time needed to train (ttr) each classifier is also

registered as a measure of the computational cost of the

classifiers.

To evaluate the proposal of a distributed one-class

classifier for detecting anomalies in different plant com-

ponents, three different variables are deviated from its

correct operation:

– Flow rate of epoxy resin (FE).

Table 2 Best results for each

technique and speed percentage

deviation

Deviation (%) Norm NN m AUC (%) STD (%) ttr (s)

kNN 5 Type C 1 0,05 95,34 0,27 3,96

10 Type C 1 0,05 97,50 0,72 3,44

15 Type C 1 0,05 97,60 0,49 4,04

20 Type C 1 0,05 97,51 0,43 3,50

25 Type C 1 0,05 97,70 0,51 3,97

Deviation (%) Norm - m AUC (%) STD (%) ttr (s)

MST 5 Type C - 0,15 94,85 0,29 8,09

10 Type C - 0,10 98,81 0,34 7,89

15 Type C - 0,05 99,06 0,16 7,82

20 Type C - 0,05 99,52 0,20 7,68

25 Type C - 0,05 99,65 0,19 7,85

Deviation (%) Norm k p AUC (%) STD (%) ttr (s)

NCBoP 5 Type C 1 50 94,71 0,63 5,26

10 Type C 1 50 98,73 0,27 5,50

15 Type C 1 50 98,97 0,36 5,01

20 Type C 1,2 1000 99,91 0,08 100,95

25 Type C 1,2 50 100,00 0,00 5,45

Deviation (%) Norm b m AUC (%) STD (%) ttr (s)

PCA 5 Type C 4 0,05 90,81 0,48 0,02

10 Type A 5 0,05 95,55 0,34 0,02

15 Type C 4 0,05 97,49 0,41 0,02

20 Type C 3 0,05 97,51 0,57 0,02

25 Type C 4 0,00 97,56 0,00 0,04

Deviation (%) Norm r m AUC (%) STD (%) ttr (s)

SVDD 5 Type C 4 0,00 86,26 5,34 211,56

10 Type C 3 0,00 89,79 8,28 228,39

15 Type B 1 0,00 90,28 0,16 206,23

20 Type B 1 0,00 92,87 0,24 203,14

25 Type B 1 0,00 98,98 0,20 200,63
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– Speed of catalyst pump (SE).

– Pressure measure in epoxy resin pump (PE1).

These anomalies are generated by modifying the original

measurements a �5%, �10%, �15%, �20% and �25%.

4.2 Results

This subsection describes the best results, in terms of AUC

for each technique, component with anomalous behaviour,

and percentage deviation. This information is reflected in

Tables 1, 2 and 3. Furthermore, to provide a deeper insight

of the results, the behaviour of each technique depending

on the deviated percentage is presented in Figs. 8, 9 and 10.

Focusing on the anomaly appearance of the flow meter

sensor, it is important to remark that PCA is in almost all

cases the technique with the best AUC value, with at least

Table 3 Best results for each

technique and pressure

percentage deviation

Deviation (%) Norm NN m AUC (%) STD (%) ttr (s)

kNN 5 Type C 1 0,05 97,35 0,38 3,45

10 Type C 1 0,05 97,57 0,42 3,93

15 Type C 1 0,05 97,69 0,62 3,92

20 Type C 5 0,05 97,50 0,33 4,53

25 Type C 1 0,00 99,75 0,60 4,06

Deviation(%) Norm - m AUC (%) STD (%) ttr (s)

MST 5 Type C - 0,15 97,97 0,39 7,91

10 Type C - 0,05 99,41 0,31 8,12

15 Type C - 0,05 99,65 0,18 7,66

20 Type C - 0,05 99,63 0,23 9,45

25 Type C - 0,05 99,64 0,18 7,89

Deviation (%) Norm k p AUC (%) STD (%) ttr (s)

NCBoP 5 Type C 1 1000 97,90 0,40 101,96

10 Type C 1 100 98,79 0,16 9,95

15 Type C 1,2 500 99,92 0,04 51,30

20 Type C 1,4 500 100,00 0,00 49,04

25 Type C 1,4 500 99,99 0,02 49,48

Deviation (%) Norm b m AUC (%) STD (%) ttr (s)

PCA 5 Type C 5 0,05 97,49 0,45 0,02

10 Type B 9 0,00 98,77 0,39 0,04

15 Type A 8 0,00 99,99 0,02 0,03

20 Type C 5 0,00 100,00 0,00 0,04

25 Type C 4 0,00 100,00 0,00 0,05

Deviation (%) Norm r m AUC (%) STD (%) ttr (s)

SVDD 5 Type C 4 0,00 88,17 7,21 242,89

10 Type C 3 0,00 86,25 11,03 237,67

15 Type B 1 0,00 91,14 0,28 200,78

20 Type B 1 0,00 94,40 0,44 219,02

25 Type B 1 0,00 96,20 0,78 226,43
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96,22 %. These results are achieved with a significantly

high number of components, varying between 8 and 9. In

these experiments, MST and kNN compete with PCA in

terms of AUC. However, they present a remarkable dis-

advantage comparing with PCA, which is the training time,

whose values are more than one hundred times greater.

NCBoP does not reach the level of PCA, MST and kNN,

but in all cases exceeds a minimum of 87,62 % AUC.

Finally, SVDD shows a gradually increase in the anomaly

detection task as the percentage deviation grows, starting

with a 61,97 % for a 5% deviation and finishing with a

98,23 % when the deviation is 25 %. Furthermore, SVDD

is the unique technique that offer the best results with

ZScore normalisation.

Regarding the detection of anomalous speed measure-

ments, the obtained results are slightly different than the

ones obtained with the flow meter deviations. In this case,

NCBoP and MST present the best performance in terms of

AUC. However, NCBoP has a computation time that is

significantly greater than the presented by MST. PCA and

kNN show similar performance, especially with 15 %, 20

% and 25 % deviation. It is interesting to emphasise the

fact that, in this case, the number of components b is sig-

nificantly lower than the obtained in first experiment. The

trend shown by SVDD in previous experiment is repeated

in this case, since the AUC increases gradually with the

percentage variation.

Fig. 8 Classifier performance depending on flow percentage deviation
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In respect of the third experiment, in which the pressure

measured is modified, PCA, MST and NCBoP compete

again for the best results, being PCA the fastest technique.

This is a key issue to select this technique in case of a tie.

SVDD is once again the worst technique taking AUC and

training time values. It is interesting to indicate that it is, as

it happened in the two previous experiments, the unique

technique whose best performance is achieved with ZScore

pre-processing. Finally, it worth mentioning that the

number of neighbours is one in all cases but one.

5 Conclusions and future works

The present work presents five different one-class classifier

techniques to detect anomalies in three components of an

industrial system used to obtain a bicomponent material.

These anomalies are artificially generated by deviating the

original measurement a variable percentage, modifying the

flow, pressure and speed measured. From the experiments

developed and the obtained results, in general terms, it can

be assumed that, in the three experiments, the one-class

techniques presented a successful performance. A valuable

contribution of this work consists of the implementation of

three one-class classifiers to consider the possibility

locating the source of the anomaly. Hence, when the

Fig. 9 Classifier performance depending on speed percentage deviation
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classifier assigned to the flow meter detects a deviation, it

can be used to isolate its measurements and avoid its

propagation. Besides this application, the idea of incorpo-

rating this distributed topology could reduce significantly

the maintenance cost, since early detection of wrong per-

formance can be addressed.

In future works, it could be considered the use of

imputation techniques or intelligent models to recover the

real data when it is lost due to wrong sensor performance.

Then, a combination of system modelling and distributed

one-class topology would impact in the system optimisa-

tion. Furthermore, an online training stage as the system is

in operation would improve the classifier performance.

Finally, the possibility of applying a prior clustering pro-

cess to obtain hybrid intelligent classifiers can be consid-

ered. Hence, each cluster would correspond to a different

operating point.
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Rolle JL (2020) Anomaly detection based on intelligent tech-

niques over a bicomponent production plant used on wind gen-

erator blades manufacturing. Revista Iberoamericana de
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