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Abstract
Microarray technology is known as one of the most important tools for collecting DNA expression data. This technology

allows researchers to investigate and examine types of diseases and their origins. However, microarray data are often

associated with a small sample size, a significant number of genes, imbalanced data, etc., making classification models

inefficient. Thus, a new hybrid solution based on a multi-filter and adaptive chaotic multi-objective forest optimization

algorithm (AC-MOFOA) is presented to solve the gene selection problem and construct the Ensemble Classifier. In the

proposed solution, a multi-filter model (i.e., ensemble filter) is proposed as preprocessing step to reduce the dataset’s

dimensions, using a combination of five filter methods to remove redundant and irrelevant genes. Accordingly, the results

of the five filter methods are combined using a voting-based function. Additionally, the results of the proposed multi-filter

indicate that it has good capability in reducing the gene subset size and selecting relevant genes. Then, an AC-MOFOA

based on the concepts of non-dominated sorting, crowding distance, chaos theory, and adaptive operators is presented. AC-

MOFOA as a wrapper method aimed at reducing dataset dimensions, optimizing KELM, and increasing the accuracy of the

classification, simultaneously. Next, in this method, an ensemble classifier model is presented using AC-MOFOA results to

classify microarray data. The performance of the proposed algorithm was evaluated on nine public microarray datasets, and

its results were compared in terms of the number of selected genes, classification efficiency, execution time, time com-

plexity, hypervolume indicator, and spacing metric with five hybrid multi-objective methods, and three hybrid single-

objective methods. According to the results, the proposed hybrid method could increase the accuracy of the KELM in most

datasets by reducing the dataset’s dimensions and achieve similar or superior performance compared to other multi-

objective methods. Furthermore, the proposed Ensemble Classifier model could provide better classification accuracy and

generalizability in the seven of nine microarray datasets compared to conventional ensemble methods. Moreover, the

comparison results of the Ensemble Classifier model with three state-of-the-art ensemble generation methods indicate its

competitive performance in which the proposed ensemble model achieved better results in the five of nine datasets.

Keywords Gene selection � DNA microarray data � Hybrid method � Multi-filter � Multi-objective wrapper �
Forest optimization algorithm � Ensemble classification

1 Introduction

One of the most important advances in medical technology

in the recent decade is the development of DNA.

Microarray technology makes it possible to solve the

problem of gene expression profiling [1]. Cancer occurs

mainly due to the changes in genes and their unwanted

mutations. Identification of these genes and their effects on

the development of cancer plays a major role in the diag-

nosis and treatment of such diseases. One of the important
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applications of microarray data is its use in identifying

cancer patients [2]. Accordingly, in recent years, extensive

studies have been conducted by relying on machine

learning and data mining methods to provide classification

methods in cancer diagnosis using microarray data. How-

ever, using machine learning methods to classify such data

is very challenging due to reasons such as a small number

of samples, a great number of genes, imbalanced data, data

complexity, and data shift [2].

The presence of a large number of genes makes it very

difficult to identify and select genes that are effective in the

disease. Also, it makes the classification models more

complex and increases the training time of these models.

Moreover, a small number of samples and the imbalanced

data make classification models after training to be less

generalizable to predict new data labels. To overcome the

challenges of microarray data, solutions such as gene

selection to reduce dimensions and ensemble learning to

increase the generalizability of the classification model

have been considered by many researchers [1–3]. The

solutions of reducing dimension in microarray data are

divided into two general classes of feature selection and

feature extraction. They have positive results such as

simplifying classification models, reducing learning time,

and usually increasing classification accuracy. For dimen-

sion reduction, feature extraction methods map the original

gene space to lower dimension space [4]. However, this

approach reduces the interpretability of the original genes

and the possibility of identifying the effect of the original

genes on the final result. Unlike the previous methods,

feature/gene selection aims at identifying a subset of

prominent genes among all genes and uses statistical

methods or meta-heuristic search methods to achieve this

objective. In feature selection methods, subsets of selected

genes are composed of genes of the main dataset. There-

fore, they allow researchers to have better interpretation

and analysis [5, 6]. Thus, feature/gene selection is one of

the suitable solutions to reduce the dimensions of

microarray data and selects genes that are effective in

different types of cancers. However, the problem of

selecting the subset of prominent genes in microarray data

is known as an NP-hard problem [7].

Gene selection methods can generally be divided into

five classes, namely filter, wrapper, embedded, ensemble,

and hybrid [2]. Wrapper methods usually include a meta-

heuristic algorithm as a search method to find sub-optimal

subsets and a prediction model. Accordingly, the perfor-

mance of the prediction model acts as a fitness function to

evaluate the quality of the found feature subsets in the

search process [8]. Filter methods rely on information

theory and statistical techniques, and these approaches

attempt to identify a sub-optimal subset of features such

that the members of these subsets have the least internal

correlation and the highest correlation with the output [9].

Furthermore, in recent years, researchers studied the

potential of using a combination of filter methods as multi-

filter (i.e., ensemble) to reduce the bias effect of filter

methods in gene selection and combine the strengths of

different filter methods [10–13]. Accordingly, multi-filter

methods usually include two or more filters and an

aggregation function (e.g., union, intersect, etc.) to com-

bine the results of the filter methods. Hybrid methods try to

exploit the positive points of both filter and wrapper

methods simultaneously so that the filter method, as a

preprocessing step, can reduce the dimensions of the gene

space and then the wrapper method can select prominent

genes among the remaining genes [1, 4, 14]. Given the

advantages of hybrid methods, they have been the subject

of intense research in recent years. Based on the search

method, hybrid methods can be divided into single-objec-

tive and multi-objective groups. Many hybrid single-ob-

jective methods such as GA [15–25], PSO [26, 27], FOA

[28], differential evolution algorithm (DE) [29], ant colony

optimization algorithm (ACO) [30, 31], shuffled frog

algorithm (SFA) [32], teaching–learning-based optimiza-

tion (TLBO), gravitational search algorithm (GSA)

(TLBOGSA) [33], and cuckoo optimization algorithm

(COA) [34] have been proposed so far. Additionally,

hybrid multi-objective methods have been considered by

many researchers in recent years for the simultaneously

optimizing the objectives of minimizing the number of

genes and maximizing the efficiency of the classification

model. Some of these methods are non-dominated sorting

GA II (NSGA-II) [35–38], MOPSO [39], MOGA [40],

multi-objective spotted hyena optimizer (MOSHO)

[41, 42], multi-objective simplified swarm optimization

(MOSSO) [10], MOACO [43], and so on.

Imbalanced data and the small number of samples are

other problems of microarray data that challenge the per-

formance of classification models in training and coping

with unseen data. One method to cope with such challenges

is to use ensemble learning models, which is in good

agreement with many studies that have utilized these

methods on the microarray datasets [44–47]. The aim of

developing such a system is to offer a trade-off solution

between test error and training error in an automated

classification model. Ensemble models have been used

effectively so far in a range of problems like feature

selection, missing features, imbalanced data, incremental

learning, concept drift learning, and other applications [48].

The main difference among these methods stems from

three factors: (1) the way of selecting the training data, (2)

the process of creating ensemble learner members, and (3)

the law of combining the output of classifiers [48]. The

ability of ensemble classification models in reducing

training error and increasing the generalizability of the
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model has made them usable in the area of feature selection

studies [49–57].

The problem of gene selection usually follows two

conflicting objectives, which include reducing the number

of genes and increasing the efficiency of classification.

Accordingly, it can be solved as a multi-objective opti-

mization problem (MOP). The final solution for MOPs is

usually presented in the form of a set of non-dominated

solutions, which is a trade-off between conflicting objec-

tives [58]. As a result, the gene selection problem could be

solved by utilizing wrapper methods with multi-objective

meta-heuristic algorithms as search methods

[35–38, 41, 42]. Also, given the research literature, studies

on solving the problem of gene selection using the hybrid

multi-objective method are more limited compared to those

of the hybrid single-objective method. Besides, many

studies show that solving the gene selection problem using

multi-objective metaheuristic methods could improve the

results [39, 42, 59, 60]. Most of the proposed hybrid

solutions have solved the problem of gene selection only

by considering the criterion of classification efficiency as a

single objective [2, 3, 5].

Given what was stated above, to solve the problem of

gene selection and to construct an ensemble classification

model in microarray data, a hybrid solution based on multi-

filter and novel adaptive chaotic multi-objective forest

algorithm (AC-MOFOA) wrapper method is presented in

this paper. In the proposed solution, multi-filter is

employed as a pre-processing step to reduce the dimen-

sions of the dataset. Due to the combination of several filter

methods (i.e., IG, Minimum Redundancy Maximum Rel-

evance (mRMR), RelifF, Correlation-Based Feature

Selection (CFS), and Fisher-score), the multi-filter method

has less bias in selecting distinct genes compared to single-

filter methods. Also, the multi-objective forest algorithm as

a wrapper minimizes the number of genes, maximizes the

classification criteria, and optimizes the ELM kernel

parameters, simultaneously. Accordingly, the final output

of the wrapper will be a set of non-dominated solutions that

has solutions with different gene numbers and classification

accuracy and provides the diversity needed to construct an

ensemble classification model. The results of the proposed

algorithm are compared with three single-objective meth-

ods (i.e., GA, adaptive GA, and TLBOGSA) and five

hybrid multi-objective methods (i.e., MOSSO, multi-ob-

jective chaotic emperor penguin optimization (MOCEPO),

multi-objective spotted hyena optimizer and salp swarm

algorithm (C-HMOSHSSA), non-dominated sorting PSO

(NSPSO), and multi-objective binary biogeography-based

optimization (MOBBBO)) on nine public microarray

datasets, which have the number of different genes, classes,

and samples. The main objectives of this study are as

follows:

• Providing a new solution based on multi-filter and

wrapper for gene selection in the microarray

• Introducing a new adaptive multi-objective forest

algorithm based on chaos theory and non-dominated

sorting

• Using multi-filter to pre-process data and reduce the

number of data genes

• Selecting effective genes simultaneously with optimiz-

ing KELM classifier parameters

• Constructing ensemble classifier using the results of the

final Pareto front

The novelty of our work can be highlighted as follows:

• A novel hybrid filter-wrapper method is proposed

• A brand new non-dominated sorting-based MOFOA is

presented

• A new adaptive chaotic operators is introduced to

MOFOA

• New combination of filters for multi-filter generation is

introduced

• A novel approach for ensemble generation from Pareto

front solutions is proposed

The rest of this article is organized as follows: In

Sect. 2, we will explain the fundamental principles of the

theory and previous methods of gene selection. In Sect. 3,

the proposed idea for solving the gene selection problem is

described. Section 4 presents the design of the experiments

and their details. In Sect. 5, the results of the experiments

are analyzed. Finally, in Sect. 6, conclusions and sugges-

tions for future works are presented.

2 Background

2.1 Basic theories

The basic theories of the methods used in this manuscript

have been presented in this subsection.

2.1.1 Forest optimization algorithm (FOA)

The search process in wrapper methods is usually based on

a metaheuristic method such as GA and PSO. The FOA is

one of the new metaheuristic algorithms that has been

introduced in recent years. This algorithm tries to provide a

solution for optimization problems by modeling trees’

reproduction, growth, and competition in the forest.

FOA has features such as high speed, low number of

function evaluations, effective global, and local search. In

recent years, this algorithm has been successfully used to

solve the problem of feature selection as a single-objective

approach [61, 62]. The general steps of FOA have been
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presented in Supplementary Information. FOA has two

important parameters, i.e., local seeding change (LSC) and

global seeding change (GSC). The number of children

generated by this operator for each parent is LSC. More-

over, the number of changed variables and selected trees in

the global seedling operator are some of FOA parameters

denoted by global seeding GSC and transfer rate,

respectively.

2.1.2 Extreme learning machine

The extreme learning machine (ELM) model, as one of the

newest classification models based on artificial neural

networks, was presented by Huang [63]. ELM is based on

single-hidden layer feedforward networks (SLFNs) [64].

This neural network model has been presented based on not

adjusting the parameters of the hidden-layer network.

Compared to conventional neural network training meth-

ods, ELM has features such as better generalizability, faster

learning, and not being trapped in local optimum [63]. For

linear separation of data and improving classification effi-

ciency, Kernel ELM, as a version of ELM, maps data from

a smaller space to a larger space. Based on the details

provided in the Supplementary Information, the perfor-

mance of KELM depends on the values of c of the kernel

function and C (i.e., the regularization parameter). Hence,

these two parameters need to be optimized.

2.1.3 Filter methods

Using statistical techniques and information theory, filter

methods measure the intrinsic relationship between the

genes and output and identify prominent genes. These

methods have low computational overhead and high scal-

ability. However, due to the lack of using a classification

model in the gene selection process, they might compro-

mise the accuracy of classification. Filter methods can be

divided into two classes, including univariate and multi-

variate. Univariate methods independently examine the

dependence of each gene on the target output, in which the

relations between the genes are ignored. In contrast, mul-

tivariate methods try to reduce the redundancy of gene

subsets by considering the dependence of each gene on the

target output and relationships between the genes. Multi-

variate methods have a higher computational overhead

compared to univariate methods. The description of the five

filter method used in this paper (i.e., IG, mRMR, RelifF,

CFS, and Fisher-score) is presented in Supplementary

Information.

2.1.4 Multi-objective optimization

Problems in the real world usually include the objectives

that need to be optimized simultaneously. To solve such

problems, a set of solutions that represents a tradeoff

among different objectives is required. The set of solutions

to multi-objective problems is known as Pareto optimal

solutions. A multi-objective optimization (MOO) problem

is defined as follows [58, 65, 66]:

min G~ :¼ G1 v~ð Þ;G2 v~ð Þ; . . .;Gk v~ð Þ½ � ð1Þ

subject to:

fi v~ð Þ� 0 i ¼ 1; 2; 3; :::;m ð2Þ
hj v~ð Þ ¼ 0 i ¼ 1; 2; 3; :::; t ð3Þ

where v~¼ v1; v2; :::; vn½ �T is a vector of decision variables,

Gi : R
n ! R; i ¼ 1; :::; k is objective functions, and

fi; hj : R
n ! R; i ¼ 1; :::;m; j ¼ 1; :::; t represents constraint

functions. The definitions of these parameters are as

follows:

Definition 1 The vector p~¼ p1; p2; :::; pkð Þ dominates the

vector q~¼ q1; q2; :::; qkð Þ as Pareto (p~� q~), if the follow-

ing relationship is established:

8i 2 1; . . .; kf g : pi � qi ^ 9i 2 1; . . .; kf g : pi\qi ð4Þ

Definition 2 The solution v~2 F (F represents the

acceptable solution space) is an optimal Pareto solution if

there is no solution v~0 2 F in which q~¼ G~ v~0� �
¼

G~1 v~0� �
; ::::;G~k v~0� �� �

dominates

p~¼ G~ v~ð Þ ¼ G~1 v~ð Þ; . . .;G~k v~ð Þ
� �

.

Definition 3 For a given MOP, F~ v~ð Þ, the optimal Pareto

set P� is defined as follows:

P� :¼ v~2 Fj:9v~0 2 F ; G~ v~0� �
� G~ v~ð Þ

n o
ð5Þ

Definition 4 For a given MOP, G~ v~ð Þ, the optimal Pareto

set P�, and optimal Pareto set, PF� is defined as follows:

PF� :¼ u~¼ G~ v~ð Þ j v~ 2 P�
n o

ð6Þ

As a result, the optimal Pareto front of the set F of all

decision variable vectors will include members that meet

the criteria 2 and 3.
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2.2 Literature review

Gene selection is one of the important methods in the

preprocessing of microarray data to reduce data dimensions

and simplify classification models. In general, gene selec-

tion methods can be divided into 5 groups: Filter, Wrapper,

Hybrid, Ensemble, and Embedded. In Filter methods, the

inherent relationship between genes and output is measured

using statistical techniques and information theory, and

related genes are identified. These methods include corre-

lation-based filter [67], ReliefF [68], symmetrical uncer-

tainty (SU) [67], information gain (IG) [4], and so on. In

addition, these methods have low computational overhead

and high scalability, but they might reduce the classifica-

tion accuracy because of not using a classification model in

the gene selection process. On the other hand, wrappers

include meta-heuristic search methods (e.g., genetic algo-

rithm (GA), forest optimization algorithm (FOA), and

particle swarm optimization (PSO)) and a classification

model that tries to identify a quasi-optimal subset of genes

by considering the classification performance criterion.

Wrappers usually have high-computational overhead, but

they provide better results than the filter due to using

classifiers in the search process. Hybrid methods typically

use a combination of a filter and a wrapper to select genes.

Among the mentioned methods, hybrid methods have

been considered by many researchers in recent years as

they combine positive features of filter and wrapper

methods. In hybrid methods, a filter is usually applied to

the data as data preprocessing step to select the genes that

have the most relationship with the output and the least

relationship within the set, and to reduce the initial data set

dimensions. Next, a wrapper is used to select a subset of

quasi-optimal genes among the remaining gene sets. We

review the hybrid methods of gene selection in this sec-

tion. Depending on the type of search method, hybrid

methods can be divided into single-objective and multi-

objective groups. Hybrid single-objective algorithms usu-

ally follow the objectives of minimizing the number of

selected genes or maximizing the efficiency of classifica-

tion or a combination of these objectives.

Shreem et al. [69] proposed a hybrid solution based on

Harmony search and the Markov blanket filter in which the

Markov blanket was considered as a local search to

improve harmony search solutions. In [31], a hybrid solu-

tion is presented based on the Fisher-score filter to reduce

the initial dimensions and the ACO algorithm for selecting

the optimal gene subset. Elyasigomari et al. [34] proposed

a hybrid solution based on the mRMR filter and the hybrid

algorithm of the COA and harmony search [34]. In this

method, the Harmony search method is used as a local

optimizer to improve COA solutions. In [25], a hybrid

method was proposed based on the T-test filter and the

Nested-GA algorithm in which GA has two sections of

outer and inner. The outer section selects genes based on

the accuracy of the SVM classifier and the inner section is

executed on the DNA methylation dataset. Shukla et al.

[24] proposed a new idea based on conditional mutual

information (MI) and adaptive GA filters. In another study,

a hybrid solution based on ensemble filter and GA was

presented [23]. In this method, three filter methods of

ReliefF, Chi-Square, and SU were used to construct the

ensemble filter. Based on the conducted study, the Union

merge function outperforms the Top N Gene. In [26], a

method was proposed based on correlation base filter and

improved PSO. Gangavarapu et al. [70] proposed a new

idea based on an ensemble filter that uses 5 filter methods

of mRMR, IG, CFS, CFSS, and oneRFeatureEval to form

the ensemble filter. Then, the parameters of the penalty

functions are optimized using Greedy search and GA. In

[71], a hybrid solution is presented based on artificial bee

colony (ABC) called PrABC, which is an objective func-

tion as a combination of classification accuracy and the

number of features. In this method, the dimensions of the

dataset are reduced using an ensemble filter based on IG,

correlation, and relief. Finally, PrABC is used to select the

optimal gene subset. Bir-Jmel et al. [30] presented an

innovative hybrid method using a filter based on the MWIS

graph and ACO. In the proposed method, a local search is

used to improve ACO solutions. In [28], a hybrid solution

is proposed based on ANOVA filter and enhanced Jaya-

based FOA. In this method, both parameters LSC and GSC

in the FOA are considered in the range of 1%–50% and

optimized using enhanced Jaya. In recent years, deep

learning methods have gained great research interest in

solving many real-world problems. Abo-Hammour et al. in

[72] presented a new approach for solving the prediction of

linear dynamical systems by GA. Accordingly, they have

utilized GA to simultaneously determine the input–output

data sequence of the model in the lack of any knowledge

concerning the order, the correct order of the model, and

the correct parameters. Furthermore, some applications of

the optimization algorithms in mathematics, such as

inverse kinematics problem and singular boundary value

problem, have been studied in [73–75]. In [76], a novel

methodology was proposed by combining deep neural

network (DNN) with GA. Based on the proposed scheme,

deep features have been extracted using DNN. Then, GA

has been applied to the extracted features to determine their

optimum combination. In the next step, several classifiers

such as SVM, KNN, etc., have been utilized to classify the

features. Moreover, in many studies, DNN has been used to

solve disease detection and prediction [77–79]. For

example, in [77], a new method for detection COVID-19

has been proposed. The proposed approach is based on the
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convolutional neural network (CNN) and convolutional

long short-term memory (ConvLSTM). The proposed

method has been trained on two datasets, namely: CT

images and X-ray images. This method has achieved 100%

accuracy and F1-score in some cases. Other hybrid single-

objective methods include GA [16–25], PSO [26, 27], FOA

[28], DE [29], ACO [30, 31], SFA [32], COA [34], and so

on.

Multi-objective metaheuristic algorithms optimize sev-

eral conflicting objectives in their search process [80].

Moreover, the problem of gene selection is inherently a

multi-objective optimization problem that has at least two

conflicting objectives: (1) minimizing the number of genes

and (2) maximizing the criterion of classification effi-

ciency. Many researchers have recently focused on solving

the problem of multi-objective gene selection. The solution

of such algorithms is a set of non-dominated solutions that

provide a tradeoff among different objectives for users. The

set of non-dominated solutions is also known as the Pareto

Front solutions.

In [40], a hybrid solution is proposed based on the rel-

evance filter and MOGA. In this method, first, the rele-

vance filter selects 100 genes and then MOGA continues

the search by considering the objectives of the accuracy of

classification and size of the subset of selected genes. Li

et al. [60] proposed a new idea by combining the Fisher

Score-Markov filter and the MOBBBO algorithm. In this

approach, Fisher-Markov as a preprocessing step reduces

dimensions of the database by removing irrelevant genes.

Next, MOBBBO simultaneously uses the search to find the

optimal subset of genes and optimize the parameters of the

SVM kernel function. In another proposed solution, a

combination of correlation coefficient and NSGA-II is

presented [36]. In [39], a hybrid method is presented by

considering Quartile filters and non-dominated sorting

MOPSO. Lai et al. proposed a hybrid idea based on the

averaged filter method (AFM) and MOSSO [10]. AFM is

an Ensemble Filter created by combining several filter

methods. In [81], a model is proposed by combining filter

and wrapper methods in which the T-test filter is consid-

ered as one of the objectives. Baliarsingh et al. [59] applied

the Fisher-score method along with the MOCEPO. In the

proposed method, conventional methods of generating

random numbers were replaced with chaos theory to

improve efficiency. In [11], a solution called

C-HMOSHSSA is presented by combining Fisher-score

and MOSHO and the Salp swarm algorithm (SSA). In

another study, a combination of a Multi-filter and BOFS

was used to solve the gene selection problem and construct

an ensemble classifier [11]. In [82], a hybrid solution was

presented based on Fisher-score and MOFOA in which the

concepts of repository and binary tournament selection are

used to solve the problem of multi-objective gene

selection. Divya et al. [41] have proposed a hybrid solution

based on IG filter and MOSHO considering the accuracy of

SVM and the number of the selected genes. Some other

hybrid multi-objective methods include NSGA-II [35–38],

MOPSO [10, 39, 83], MOGA [40], MOSHO [41, 42],

MOSSO [10], MOACO [43], MOBAT [84, 85], and so on.

Most of the studies conducted to solve the gene selection

problem have focused on single-objective metaheuristic

algorithms. Besides, many studies show that solving the

gene selection problem using multi-objective metaheuristic

methods could improve the results [39, 42, 59, 60]. In this

regard, studies conducted on hybrid multi-objective gene

selection methods are less than single-objective studies.

Thus, our study aims to present a hybrid multi-filter and

multi-objective wrapper solution based on the forest opti-

mization algorithm to solve the gene selection problem and

construct an ensemble classifier.

3 The proposed idea

Given what was stated in the previous section, it can be

concluded that the problem of gene selection is a multi-

objective problem that must simultaneously solve two

conflicting objectives of reducing the number of genes and

increasing the efficiency of the classification model. The

FOA algorithm is one of the latest metaheuristic algorithms

used as a single-objective and multi-objective to solve the

problem of feature/gene selection [28, 62, 82, 86]. How-

ever, based on the ‘‘no free lunch’’ theory, no solution is

optimal for all problems and a new and improved solution

can always be proposed. Hence, this study presents a new

solution based on multi-filter and AC-MOFOA to simul-

taneously solve the problem of gene selection and the

construction of ensemble classifiers.

In the proposed solution, the Multi-filter first reduces the

dimensions of the dataset by removing irrelevant and

redundant genes. The considered multi-filter consists of 5

filter methods of IG, Fisher-score, mMRM, CFS, and

ReliefF. AC-MOFOA is then presented as a new version of

the FOA algorithm based on the concepts of chaos theory,

adaptive operators, non-dominated sorting (NS), and

crowding distance. AC-MOFOA identifies quasi-optimal

gene subsets, considering the objectives of maximizing

KELM classification accuracy and minimizing the number

of selected genes. Based on the concepts of MOO, the

output of MOP problem-solving algorithms is presented as

a set of solutions that are not superior to each other. Also,

the members of the solutions set have the necessary variety

to construct Ensemble classifiers due to training with dif-

ferent subsets of datasets and different KELM classifiers.

Therefore, members of the final Pareto Front set are used to

construct the Ensemble classifier to obtain a final
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classification model for microarray data classification. To

have a good understanding, the general flowchart of the

proposed method is shown in Fig. 1, followed by describ-

ing the main sections.

3.1 Multi-filter step

Filter methods have low computational load and high

scalability. However, each filter approach has advantages

and disadvantages and using only one filter method to

identify related genes can cause bias in the final result.

Thus, in the proposed method, a multi-filter is used for the

initial preprocessing of the data and identification of subset

of genes that have the highest correlation with the output

and lowest internal correlation. The objective of multi-filter

is to reduce the bias effect of filter methods in gene

selection and to combine the strengths of different filter

methods. For this purpose, we carried out a series of

experiments using ten well-known filter methods to deter-

mine the high performance filter methods and top gene

selection threshold. The selected ten filter methods include

different multivariate and univariate methods. According to

the results presented in Sect. 5.1, five filter methods have

been selected to form the proposed multi-filter. The desired

multi-filter includes five filters, including IG, Fisher-score,

mMRM, CFS, and ReliefF. In this system, Fisher-score,

ReliefF and IG are univariate filter methods and mMRM,

and CFS are multivariate filter methods. In this step, each

of the five methods in the multi-filter is first applied to the

dataset and then 30% of the superior genes are extracted

from the output of each method based on the rank of the

genes. Then, using the voting mechanism and ‘‘min vote’’

threshold, the results of five filter methods are combined

and the subset of output genes of the multi-filter step is

determined. In this study, the min vote threshold was

considered to be 3.

3.2 Wrapper AC-MOFOA step

In the present study, a new version of the FOA called AC-

MOFOA is proposed. This new algorithm is based on the

concepts of chaos theory, adaptive operators, non-domi-

nated sorting, and crowding distance. One of the important

challenges in FOA is determining the optimal value of LSC

and GSC parameters. Thus, adaptive local seeding and

adaptive global seeding operators were proposed to auto-

matically adapt the LSC and GSC values during the search

process to solve this challenge in AC-MOFOA. Chaos

theory was also used to improve AC-MOFOA diversity and

faster convergence. AC-MOFOA optimizes KELM model

parameters in addition to searching for quasi-optimal gene

subsets. AC-MOFOA pseudo code is displayed in Algo-

rithm 1, with its steps described in the following. Fur-

thermore, Table 1 of the Supplementary Information file

describes all the variables of Algorithm 1.

Fig. 1 The flowchart of the proposed method

Table 1 Selected datasets summary

Datasets # of genes # of Classes # of Samples

SRBCT 2308 4 83

Tumors_9 5726 9 60

Leukaemia3 7129 3 72

Colon_Prostate 10,937 2 355

Lung 12,601 5 203

GCM 16,064 14 190

Breast 24,482 2 97

Rsctc_5 54,614 4 89

Rsctc_6 59,005 5 92

Neural Computing and Applications (2023) 35:11531–11561 11537

123



3.2.1 Initialization

In AC-MOFOA, each tree is denoted as a vector that rep-

resents the values of tree age, C and c parameters related to

KELM, and values related to gene selection

i.e:; v1; v2; . . .; vnð Þ. In this method, the size of each tree is

nþ 3, which includes n number of data genes, and three

variables including age, C, and c. Figure 2 illustrates the

structure of a tree or solution.

AC-MOFOA uses Chaos theory to initialize the trees.

Chaos theory is one of the new techniques used to improve
the search ability of metaheuristic algorithms. Chaos can

be described as the behavior of a non-linear dynamic

Fig. 2 Tree structure in AC-MOFOA
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system which is highly sensitive to the initial state and can

be calculated by deterministic algorithms. In addition to

having random features, chaos theory has other features

such as sensitivity, stochasticity, and ergodicity to pre-

liminary situations. Based on these features, chaos theory

ensures diversity among the population-based metaheuris-

tic algorithm solutions and enhances the convergence

performance of these algorithms [59, 87, 88]. For this

purpose, the logistic map function will replace the gener-

ation of random numbers. The logistic map functions have

main behaviors: chaotic and convergent. The chaotic and

convergent behavior leads to exploration and exploitation,

respectively [89]. The logistic map function is defined as

follows:

vtþ1
i ¼ 4 � vti � 1� vti

� �
ð7Þ

where vti represents the value of chaotic map for i-th

variable, in which t and t þ 1 represent the iteration num-

ber. Note that v0i is randomly initiated in the interval 0; 1ð Þ.
In the next iteration of AC-MOFOA to calculate v2i using

seeding operators, Eq. (7) will applied on v1i . In the pro-

posed solution, based on the KELM studies, the parameters

C and c are considered in range of 2�8; 28½ � [90]. Due to

initializing the values of C and c, vti in Eq. (7) is replaced

with Ct and ct where the results of this equation mapped to

2�8; 28½ �. The value of the age variable will be zero for all

new trees generated by AC-MOFOA operators.

The values of the variables v1; v2; . . .; vn belong to an

interval of 0; 1ð Þ, which are mapped to binary space based

on Eq. (8). In Eq. (8), if the value of the vi is greater

than0.5, the binary value of the gene will be equal to 1;

otherwise, it will be equal to 1. A value of 1 means that the

gene is selected while a value of 0 means that it is not

selected.

f við Þ ¼ 1 if vi � 0:5
0 otherwise

�
ð8Þ

According to Algorithm 1, the trees in the Forest will be

initialized in step 5. Next, the main loop of the AC-

MOFOA starts in step 6. Afterward, in step 7, all trees in

the forest will be evaluated according to the objective

functions (i.e., classification accuracy and selected genes

ratio).

3.2.2 Handling multi-objective

To solve the problem of multi-objective gene selection,

some changes must be applied to FOA. For this purpose,

the idea of NS and crowding distance presented in NSGA-

II [91] was employed. NS is a technique for ranking Pareto

optimal solutions based on the concept of dominance. M

and N are the number of objectives and solutions,

respectively. NS first extracts the set of solutions that are

not dominated by any of the solutions obtained and forms

the Pareto front F1. Then, among the remaining solutions,

the solutions that were dominated only by members of F1

are extracted to form F2 and this process continues

accordingly. The set of solutions F1 is considered as the

Pareto optimal solutions. The NS step is carried out in step

8 of the AC-MOFOA. After applying NS on Forest popu-

lation, the Pareto front F1 will be determined in step 9.

Moreover, in step 10, the age of all trees in F1 will be set to

zero. According to FOA, the local-seeding operator only

applies to trees with age equal to zero. So, Step 10 allows

the local-seeding operator to exploit around the found

Pareto front F1 and improve the solutions in F1.

Crowding-distance is used in NSGA-II to prioritize

members within each Fi and direct search to less crowded

areas. Crowding-distance is calculated using Eq. (9):

cdmi ¼ cdmi þ objiþ1
m � obji�1

m

objmax
m � objmin

m

ð9Þ

where m ¼ 1; 2; . . .;M is the number of objectives, i is the

number of the solution in the list sorted by m-th objective,

and objim represents the value of the m-th objective function

for the solution i. The crowding-distance value for the

boundary points is assumed to be1. A smaller value of cdi
means that there are other solutions adjacent to the solution

i, and the solution i is in a more crowded space, and vice

versa. To direct the search to less crowded areas, sorting

within each Fi will be done in a descending order from

larger cd values to smaller values. In step 11 of the AC-

MOFOA, the crowding distance will be calculated on the

solutions in F1, which later be used in the parent selection

phase of the local-seeding operator.

3.2.3 Population control

Forest size control is one of the most important operators of

the FOA. In this process, old and improperly fitted trees are

removed from the Forest and added to the candidate pop-

ulation. After implementing the adaptive chaotic local

seeding operation, the age of all the trees in the Forest

increases by one unit. In AC-MOFOA, the age of F1

member trees is considered to be 0. To limit the population,

in step 12, trees older than Max-Age are removed from the

Forest and added to the candidate population. If the Forest

size is still larger than the Area-Limit after removing the

old trees, the trees with the highest Pareto rank will be

removed from the forest and added to the candidate pop-

ulation (steps 13–17). Additionally, if there is a need to

remove a part of Fi, trees based on cd value (from lower

value to higher value) are removed from Fi and added to

the candidate population.
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3.2.4 Adaptive chaotic local-seeding

Determining the LSC value is one of the challenges of FOA

and is determined by trial and error based on the dimen-

sions of the problem. In order to overcome this challenge,

we have introduced the adaptive local-seeding operator in

which the LSC value is determined adaptively by the

algorithm itself. Accordingly, LSC value is first set at 20%

of the data set dimensions and then it is updated in each

step through the following equation.

LSC ¼ LSC

e1=T

� �
ð10Þ

where T represents the current number of iterations of the

algorithm. Based on Eq. (10), the minimum LSC value will

be 1. The value of LSC will be calculated in step 18 of AC-

MOFOA.

Next, the local seeding operator will be applied to the

selected parents. The local seeding operator has been

introduced in the FOA to generate exploitation capability.

It generates an LSC number of new trees for each parent

around trees with an age of zero. The local seeding oper-

ator in AC-MOFOA is a single-parent operator. Each

parent is selected among the F1 members using the roulette

wheel. In this method, members with larger cd values are

more likely to be selected to increase the diversity between

solutions. This operator changes the value of a variable in

the parent tree using logistic map function according to

Eq. (7). An example of this operator is illustrated in Fig. 3.

Local seeding operator implemented using a For-loop in

AC-MOFOA (steps 19–24). In step 20, a parent will be

selected from F1 using the roulette-wheel method.

According to the above explanation, the selection proba-

bilities will be proportionate to the crowding distance of

each solution in F1. Moreover, in step 21, a LSC number of

new trees will be generated using the adaptive chaotic local

seeding function. Furthermore, the new trees will be added

to Forest in step 22. Afterward, the counter of the loop will

be increased by LSC in step 23.

3.2.5 Adaptive chaotic global-seeding

Another important parameter of FOA is the GSC parame-

ter. Setting its optimal value is one of the challenges of

FOA. In the proposed solution, the GSC value is set

adaptively by the algorithm itself to overcome this chal-

lenge. In this method, the GSC value is first set at 30% of

the dataset dimensions and then is updated in each step

through Eq. (11):

GSC ¼ GSC

e1=T

� �
þ 1 ð11Þ

Based on Eq. (11), the minimum value of GSC will be 2.

Accordingly, in step 26 the new value of GSC will be

calculated.

The global seedling operator is used to create explo-

ration capability to generate new trees in FOA. This

operator selects based on the size of the transfer rate

parameter from the trees in the candidate population and

then changes the GSC number of the variables in each tree.

To change variables, a chaotic number in the allowable

range of the variable is generated using Eq. (7) and

replaces its previous value. Figure 4 illustrates the function

of this operator.

In step 27, several trees will be selected as parents from

the candidate population with respect to the transfer rate

parameter. Furthermore, in steps 28–31, the adaptive

chaotic global seeding function will be applied to each

selected tree to generate new trees.

3.2.6 Objective functions

AC-MOFOA has two objectives of maximizing the accu-

racy of the classification and minimizing the number of

genes. The classification accuracy (Acc) is calculated using

Eq. (12):

Acc ¼ TPþ TN

FPþ FNþ TPþ TN
ð12Þ

The parameters FP, TP, FN, and TN represent false

positive, true positive, false negative, and true negative,

respectively.

3.3 Creation of ensemble classifier

Imbalanced data and the small number of samples are other

issues of microarray data that challenge the performance of

classification models in training and coping with unseen

data. One way to cope with such challenges is to use

ensemble learning models. The aim of developing such a

system is to provide a trade-off solution between bias error

(training error) and variance error (test error) in an

Fig. 3 Example of a local seedling operator with LSC ¼ 2

Fig. 4 Example of Global seedling operator performance in AC-

MOFOA with GSC ¼ 3
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automated classification system. One of the important

features in constructing an ensemble model is to create

diversity in basic classifiers. Several methods have been

proposed to create diversity in basic classifiers, e.g., the use

of different classification models or training each classifi-

cation model with different subsets of datasets. The final

solution of AC-MOFOA is a set of non-dominated solu-

tions, each including a different subset of genes and a

KELM with different kernel parameters. Due to the opti-

mization of C and c parameters in AC-MOFOA, the KELM

classifiers in the final Pareto set have different kernel and

regularization parameters. Furthermore, each classifier has

been trained on different gene combinations of the data set.

Therefore, it can be stated that the members of the final

Pareto front have sufficient diversity in terms of basic

classifiers and training subsets to construct an ensemble

classifier. Accordingly, the output of the final Pareto set

(F1) members is combined using the voting mechanism to

form the final ensemble classifier.

4 Experimental design

To design the experimental scenarios, nine microarray

datasets [92, 93] were used considering the diversity in the

number of samples, genes, and classes (Table 1). After

reducing the dimensions in the multi-filter step, each of the

datasets is randomly divided into two batches (80% for

training and 20% for the test) while maintaining the ratio of

classes. To evaluate the subset of selected genes, the

KELM classifier with RBF kernel function is used and the

kernel cð Þ and ELM Cð Þ parameters are optimized by the

proposed solution. KELM and tenfold cross-validation

(CV) were used to evaluate the subset of selected genes [8].

In the first phase of the experiments, we compared our

proposed multi-filter with three other studies (i.e.,

[23, 70, 71]), which have used a combination of filter

methods as preprocessing step. In the second phase, we

have compared the proposed hybrid multi-filter multi-ob-

jective wrapper approach with three hybrid single-objec-

tive methods, namely: GA [23], Adaptive GA [24], and

TLBOGSA [33]. Afterward, five Hybrid multi-objective

methods, namely C-HMOSHSSA [42], MOBBBO [60],

MOCEPO [59], MOSSO [10], and NSPSO [39] were

selected for comparing and evaluating the AC-MOFOA

results. Moreover, to compare the results of the proposed

ensemble method, three conventional and three novel

multi-objective ensemble methods were selected. The

selected conventional ensemble methods were Random

Forest, Bagging, and Adaboost. Furthermore, NSGA-II

[94], NSGA-II [95], and sp-MODE [96] were selected as

novel ensemble methods.

Python 3.7 programming language is used to implement

all methods. We also used the ELMClassifier function in

the Python-ELM v0.3 Library with default settings. A PC

with 16 GB ram and Intel Core i7 6700HQ hardware was

used for performing the tests.

To compare the results fairly, the parameters of the

selected algorithms are obtained based on the information

of reference articles or through the Taguchi experiment

design method [97]. In all algorithms, the number of

individuals (i.e., tree, habitat, hyena, salp, and particle) is

equal to 60 and the termination condition is considered to

be 40,000 evaluations. The results were also examined in

50 independent runs. In algorithms with continuous

expression, the threshold for selecting or not selecting a

feature is considered to be 0.5. Table 2 presents a summary

of the parameters of compared algorithms.

A total of 50 executions were used for comparing the

results based on the Pareto front. Accordingly, the obtained

Pareto sets in 50 independent executions are first placed in

a Union set, and then non-dominated solutions are

extracted among them to form the final Pareto set [80].

Furthermore, the average Pareto set was extracted from the

Union set. The Average Pareto set demonstrates the aver-

age behavior of a multi-objective method in different runs

[80, 98–102]. Also, in the next section, Box-plot charts are

used to represent some of the obtained results. These charts

were plotted based on the data collected in the Union set.

4.1 Comparison criteria of the multi-objective
metaheuristics

To compare the results of the multi-objective methods,

three criteria have been considered: 1) Hypervolume indi-

cator (HV), 2) Success Counting measure (SCC), and 3)

Spacing metrics. The details of these criteria presented as

bellow:

4.1.1 Hypervolume indicator (HV)

Diversity and convergence measures are used to evaluate

the performance of multi-objective metaheuristic algo-

rithms in identifying the optimal Pareto front. The diversity

measure assesses the level of diversity of Pareto front

solutions and the convergence measure assesses the degree

of convergence of solutions to the main Pareto front.

Hypervolume is one of the criteria used for evaluating the

performance of multi-objective metaheuristic algorithms.

This criterion simultaneously evaluates both diversity and

convergence measures [103, 104]. Hypervolume is calcu-

lated based on the following equation:

HV ¼ volume [
Pj j

i¼1
vi

	 

ð13Þ
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where P is the set of non-dominated individuals of the

found Pareto front, and vi is the volume of the individual i.

4.1.2 Success counting

One of the quantified criteria for comparing the perfor-

mance of multi-objective algorithms is the success count-

ing criterion (SCC) [105]. Based on this criterion, to

quantify the performance of multi-objective algorithms, the

final Pareto front of each method is aggregated in set P, and

then the Pareto front obtained by all methods is extracted

from the members of set P. After this step, the level of

contribution of each method in the formation of the optimal

Pareto front is calculated using Eq. (14).

SCC ¼
Xn

i¼1

Si ð14Þ

In Eq. (14), if the solution i belongs to the studied

method, Si ¼ 1; otherwise, Si ¼ 0. Also, n represents the

total number of members of the optimal Pareto front.

According to this criterion, a method with higher SCC

values shows better performance in identifying the final

Pareto front.

4.1.3 Spacing metric

To evaluate the diversity among the Pareto front solutions,

the spacing metric will be used [102]. This criterion

illustrates how uniformly the solutions in Pareto set have

been distributed. This metric is calculated based on

Eq. (15).

S Að Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XAj j

i¼1

d � di
� �

= Aj j � 1ð Þ

vuut ð15Þ

where A is the Pareto front set, di is the distance of i-th

member of A and the nearest solution to it, and the mean of

di is shown by d: The lower value of this criterion illus-

trates a more uniform distribution of the Pareto set

solutions.

5 Experiments and results

In this section, the test results are presented in several

subsections: (1) providing multi-filter step results in terms

of classification accuracy and dimension reduction rate, (2)

comparison of the AC-MOFOA with single-objective

hybrid methods, (3) comparison of AC-MOFOA with

multi-objective algorithms according to the final Pareto

front, SCC, and objective function distribution, (4) AC-

MOFOA performance evaluation using Student T-test on

HV, and spacing criteria, (5) presenting the comparison

results of the examined methods in terms of CPU execution

time, and space and time complexity, and (6) analyzing the

results of the ensemble classifier. Each of the subsections is

described in the following.

5.1 Analyzing the multi-filter results

The multi-filter step is the first step in the proposed hybrid

solution for pre-processing and reducing the data dimen-

sions. Thus, we first analyze the results of this step. First,

we examine the results of the filter methods to determine

the top gene selection threshold and high-performance

Table 2 Parameters and settings of selected algorithms

Algorithms Representation Operators Parameters

GA [23] Binary 2-point Cross-over, uniform mutation Exchange p = 0.5, mutation flip q = 0.01, Mutation
percentage = 0.3

Adaptive GA [24] Binary 2-point Cross-over, Conditional mutation Pc and Pm calculated adaptively

TLBOGSA [33] Binary Presented operators Pc = 0.7, Pm = 0.4, q;x ¼ 0:7, c1; c2 ¼ 2

MOBBBO [60] Binary Basic Habitat Migration and Mutation

Strategy

Habitat modification probability = 1, mutation rate = 0.5

C-HMOSHSSA

[42]

Continuous Standard Spotted Hyena and salp swarm

operators

c1; c2; c3 are random numbers, L is max iteration allowed,
g[ 1

MOCEPO[59] Continuous Standard Emperor Penguin operators M ¼ 2, r1; r2, are logistic map numbers

MOSSO [10] Continuous Standard SSO operators cg\cp\cw, are random numbers

NSPSO [39] Continuous Standard PSO operators r1; r2, are random numbers,0\a\1

AC-MOFOA Continuous Adaptive Chaotic Local and Global seeding transfer-rate = 30%, lifetime = 15, LSC = 20%,

GSC = 30% of variables
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filter methods. In this experiment, we have considered

three different thresholds (i.e., 25%, 30%, and 35%) to

select top-ranked genes. Furthermore, ten well-known filter

methods have been considered regarding their types (i.e.,

univariate and multivariate). Accordingly, the results of

these experiments on five microarray datasets are presented

in Table 3. Based on the results, in most cases, filter

methods achieve better classification accuracy by selecting

30% of top-ranked genes. Afterward, we sort the filter

methods based on the best result of each method on dataset

i to determine the high-performance methods. According to

Table 3, the five high-performance methods in most data-

sets are IG, Fisher-score, mMRM, CFS, and ReliefF. Thus,

these five methods will be selected as members of the

proposed multi-filter.

Based on Table 4, multi-filter consists of five filter

methods of IG, Fisher-score, mMRM, CFS, and ReliefF. It

could reduce the number of genes in all datasets by at least

73%. The highest reduction in the number of genes was

observed in the Colon-Prostate dataset with 80.9% and the

lowest reduction was observed in Rsctc_5 dataset with

73.43%. Also, comparing KELM accuracy results in two

modes of training with all genes and training with selected

genes suggests an improvement in classification accuracy

for selected genes (Table 4). Due to employing the com-

bination of univariate and multivariate filter methods,

Multi-Filter ability and efficiency increased in selecting the

most prominent genes from the dataset; also the bias of

using a single filter method can be decreased. Thus, it can

be concluded that the Multi-Filter step as preprocess step

Table 3 The classification accuracy results of different filter methods based on the top genes selection threshold (i.e., 25%, 30%, and 35%)

Dataset Type Selection

threshold

Tumors_9 Leukaemia3 Colon_Prostate Breast Rsctc_6

Information gain (IG) Uni 35% 77.89 96.78 96.03 75.11 76.71

30% 80.68 96.58 96.81 77.46 79.13

25% 79.73 95.91 95.76 76.51 77.27

Gain ratio Uni 35% 75.45 93.91 95.29 78.67 73.15

30% 77.24 94.47 95.56 75.54 74.31

25% 76.11 94.26 94.93 77.82 73.89

Symmetrical Uncertainty Uni 35% 73.28 95.38 94.85 68.29 74.43

30% 76.97 94.67 94.28 71.68 76.2

25% 75.92 94.23 94.44 72.28 78.74

Fisher Score Uni 35% 78.59 96.09 96.37 76.7 75.28

30% 77.46 96.69 97.42 75.83 76.37

25% 79.86 96.4 96.2 79.68 75.11

Chi-square Uni 35% 74.51 94.43 96.61 69.39 75.64

30% 78.37 95.65 96.03 72.47 74.56

25% 75.88 95.33 95.72 71.56 76.04

ReliefF Uni 35% 77.85 95.82 96.67 76.23 76.73

30% 79.86 97.06 96.14 79.18 79.41

25% 77.85 94.83 96.37 77.74 77.16

Correlation Uni 35% 78.37 93.13 95.93 70.82 73.92

30% 77.72 94.59 96.33 73.96 74.73

25% 75.93 93.94 96.65 72.09 75.28

Correlation-based feature selection (CFS) Multi 35% 81.49 96.37 97.18 77.15 75.66

30% 78.98 97.16 97.31 81.44 80.16

25% 75.93 96.49 96.94 78.12 77.92

Fast Correlation-based feature selection (FCBF) Multi 35% 76.73 96.37 96.65 74.33 74.86

30% 76.59 96.51 97.52 77.23 76.52

25% 75.93 96.13 96.94 76.64 78.21

Minimum-Redundancy-Maximum-Relevance

(mRMR)

Multi 35% 79.31 96.26 97.42 77.29 76.97

30% 82.7 97.25 97.68 78.67 80.35

25% 79.02 96.47 97.29 80.75 78.48
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could effectively reduce dimensions of the datasets, and

improve the classification accuracy.

Furthermore, we have compared the proposed multi-

filter step with three other recent studies (i.e., [23, 70, 71],).

The compared studies are hybrid methods that have

implemented a multi/ensemble filter as a preprocessing

step. According to each approach’s multi/ensemble filter

step, the comparison results were presented in Table 5.

Based on Table 5, the proposed multi-filter achieved better

classification accuracy on six of nine datasets. Moreover,

the proposed approach obtained the same results with [23]

and [70] in Colon-Prostate and Breast, respectively.

However, in GCM, the [23] acquired better results than our

approach.

From the series of experiments presented in this section,

it can be seen that the proposed multi-filter is efficient as

preprocessing step in most cases. The proposed approach

could reduce the number of genes in the dataset by

removing redundant and irrelevant genes, which improves

the classification performance.

5.2 Analyzing of the AC-MOFOA results

In this section, first, we analyze the comparison results of

the proposed hybrid multi-filter and AC-MOFOA wrapper

with the recent hybrid single-objective approaches. After-

ward, we compare the performance of the proposed

approach with other hybrid multi-objective studies.

5.2.1 Comparison with hybrid single-objective approaches

To compare the results of the proposed hybrid multi-filter

AC-MOFOA with hybrid single-objective studies, three

hybrid single-objective methods, namely: GA [23], Adap-

tive GA [24], and TLBOGSA [33], were selected. The

results of these experiments are illustrated in Fig. 5.

Moreover, in Fig. 5, AC-MOFOA-ND represents the non-

dominated solution found in all runs, and AC-MOFOA-

Ave is the average Pareto front. According to Fig. 5, the

proposed approach achieved better results than the single-

objective approaches concerning the number of selected

genes and classification accuracy. The non-dominated

solution found by AC-MOFOA dominates the solutions of

Table 4 Result of applying multi-filter step

Datasets # of genes KELM acc # of selected genes by multi-filter % gene reduction ratio KELM acc. on selected genes

SRBCT 2308 88.23 472 79.5% 90.72

Tumors_9 5726 78.98 1209 78.8% 84.41

Leukaemia3 7129 97.22 1836 74.2% 97.66

Colon_Prostate 10,937 95.74 2081 80.9% 97.89

Lung 12,601 90.24 2745 78.21% 93.97

GCM 16,064 70.53 3653 77.25% 78.03

Breast 24,482 68.04 5992 75.52% 86.53

Rsctc_5 54,614 69.66 14,507 73.43% 72.38

Rsctc_6 59,005 81.523 15,511 73.71% 82.69

Table 5 Comparison of the proposed multi-filter with other ensemble filters based on the KELM accuracy

Datasets Multi-filter method [23] Multi-filter method [70] Multi-filter method [71] Proposed multi-filter

SRBCT 89.93 86.06 88.69 90.72

Tumors_9 82.37 81.61 79.54 84.41

Leukaemia3 96.85 96.24 95.77 97.66

Colon_Prostate 97.89 95.49 96.23 97.89

Lung 92.54 91.62 89.51 93.97

GCM 78.62 77.83 76.86 78.03

Breast 85.41 86.53 82.92 86.53

Rsctc_5 72.38 69.19 70.18 72.38

Rsctc_6 82.08 80.57 81.73 82.69
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the single-objective methods in most cases. Moreover, the

average Pareto front of AC-MOFOA shows the average

behavior of the AC-MOFOA in all 50 independent runs.

Based on the results, in terms of the average Pareto front,

AC-MOFOA achieved similar or better results than the

single-objective methods. However, in some datasets like

Breast, the hybrid approach [23] acquired the solutions

which are better than the average Pareto front of AC-

MOFOA. The experiments showed that solving the gene

selection problem using multi-objective optimization

approaches can improve the results.

5.2.2 Comparison with hybrid multi-objective approaches

To evaluate the performance of AC-MOFOA and compare

its results with C-HMOSHSSA, MOBBBO, MOCEPO,

MOSSO, and NSPSO methods, Figs. 6, 7, 8, 9, 10 were

plotted based on the final Pareto front, classification

accuracy distribution, and distribution of selected gene

numbers in two modes of test and train. Based on Fig. 6,

AC-MOFOA in 7 datasets could achieve higher classifi-

cation accuracy by selecting fewer genes, and AC-MOFOA

in 2 datasets (including SRBCT and Breast) showed

Fig. 5 Comparing AC-MOFOA with other hybrid single-objective algorithms based on non-dominated solutions and average Pareto front on the

test set. AC-MOFOA-ND represents the non-dominated solutions, and AC-MOFOA-Ave is the average Pareto Front
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performance similar to C-HMOSHSSA in terms of set

objectives. Moreover, AC-MOFOA in all datasets could

significantly increase the classification accuracy by con-

siderably reducing the number of genes. For example, in

the breast dataset, AC-MOFOA by selecting 4 of 5592

genes (a set of genes selected by the Multi-filter) could

achieve a classification accuracy of 100%.

To compare the level of contribution of each method in

the formation of the final Pareto front, the SCC results on

the test dataset were displayed in Table 6. Based on

Table 6, in most datasets AC-MOFOA could achieve

higher SCC values than other methods, suggesting that AC-

MOFOA has a greater contribution in identifying the final

Pareto front.

Fig. 6 Comparing AC-MOFOA with other multi-objective algorithms based on non-dominated solutions on the test set
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Metaheuristic algorithms have stochastic nature and

achieve variant results in different executions. Thus, to

compare the results of these algorithms, it is better to

compare the distribution of solutions obtained in all 50

executions. Figure 7 presents the distribution of the accu-

racy of the solutions obtained by AC-MOFOA in the test

data. Based on this figure, the accuracy of AC-MOFOA

solutions in 50 independent executions in terms of statis-

tical criteria such as mean and median in most datasets is

better than that of other hybrid multi-objective methods.

AC-MOFOA also outperformed other methods in terms of

maximum and minimum accuracy. AC-MOFOA could

increase the efficiency of KELM classification by

Fig. 7 Comparison of the classification accuracy distribution of AC-MOFOA solutions on the test set
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optimizing the RBF kernel cð Þ and ELM Cð Þ parameters

simultaneously with reducing the number of genes.

Figure 8 compares distributions of the selected genes

numbers by AC-MOFOA and other multi-objective meth-

ods in 50 independent executions. Based on Fig. 8, it can

be seen that AC-MOFOA outperforms other multi-objec-

tive algorithms in most datasets in terms of the maximum

and the minimum number of selected genes. Also, in 7

cases of datasets, the proposed method could provide better

results than other methods in terms of the mean and median

number of selected genes. Only in rsctc_5 and Tumors_9

datasets, C-SHMOSHSSA, and MOSSO methods, respec-

tively, outperformed AC-MOFOA in the objective function

of minimizing the number of genes.

Fig. 8 Comparison of the number of selected genes distributions of AC-MOFOA solutions on the test set
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When comparing the distribution two objectives, they

were examined independently and were different from the

results in which both of these objectives were examined

simultaneously using the concepts of dominance. For

example, an algorithm may have achieved solutions with a

higher number of genes but lower classification accuracy,

while this solution has been dominated by other solutions

in that algorithm.

Figure 9 presents the results of comparing the AC-

MOFOA Pareto front with the other 5 methods on the train

set. According to this figure, compared to other methods,

AC-MOFOA solutions in six of nine datasets achieved

higher accuracy by selecting the same or fewer number of

Fig. 9 Comparison of AC-MOFOA with other multi-objective algorithms based on non-dominated solutions on the train set
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genes. For example, in the rsctc_5 dataset, AC-MOFOA

obtained 80.35% accuracy while selecting 52 genes, which

was better than the other five methods. Furthermore, in two

of nine datasets, the proposed approach acquired similar

results compared to other methods. AC-MOFOA in

SRBCT and Colon-Prostate reached similar results to

C-HMOSHSSA and MOCEPO, accordingly. However, in

the Breast dataset, C-HMOSHSSA achieves similar or

better solutions compared to AC-MOFOA. Analysis of the

SCC criterion in the training data is shown in Table 7.

According to this table, AC-MOFOA had more contribu-

tion in identifying the final Pareto front and could identify

more than 50% of the final Pareto front in 8 datasets,

Fig. 10 Comparison of the classification accuracy distribution of AC-MOFOA solutions on the train set
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indicating its ability to detect the solutions with a fewer

number of genes and higher classification accuracy.

Figure 10 shows the results of comparing multi-objec-

tive algorithms based on the classification accuracy distri-

bution on the train set. As can be seen from this figure, AC-

MOFOA in Tumors_9, Leukemia3, GCM, rsctc_5, and

rsctc_6 datasets obtained higher classification accuracy

compared to other methods. In Addition, in eight datasets,

AC-MOFOA has acquired better accuracy with respect to

the minimum value of accuracy. Moreover, AC-MOFOA

outperforms other methods in terms of mean and median

accuracy. However, in four datasets, AC-MOFOA has

similar performance compared to other methods in term of

maximum accuracy.

The obtained results indicate that AC-MOFOA outper-

formed other methods in terms of achieving the optimal

Pareto front and involving in the formation of the final

Pareto front. In detail, high initial values of LSC and GSC

in the adaptive local and global seeding operators lead to

enhance the exploitation and exploration capabilities of the

AC-MOFOA. Local seeding operator is applied to the

solution of F1 that boosts the ability of AC-MOFOA to

improve the Pareto solutions further. Moreover, employing

the global seeding operator on the Candidate Population

gives a chance to less fitted trees for better exploration of

the problem space. In addition, AC-MOFOA uses NS to

identify the Pareto front and rank the solutions.

Furthermore, AC-MOFOA implements the crowding dis-

tance, which increases its ability to direct the search to the

less crowded areas of the Pareto front, leading to a more

uniform final Pareto front. Also, a separate study on the

distribution of each objective (namely, classification

accuracy and the number of selected genes) shows that AC-

MOFOA solutions were superior to other methods in most

datasets in terms of statistical criteria such as mean, med-

ian, upper and lower bounds.

5.3 Performance evaluation based
on Hypervolume and Student t-test

To evaluate the efficiency and effectiveness of AC-

MOFOA compared to other multi-objective algorithms,

Student T-test was performed on normalized values of

hypervolume. To perform the t-test, the hypervolume val-

ues were first calculated in 50 independent executions for

the MOSSO, MOCEPO, C-HMOSHSSA, MOBBBO,

NSPSO, and AC-MOFOA algorithms. Next, the t-test was

performed with a significance level of 0.05. Tables 8 and 9

show the t-test results in both test and train modes,

respectively. Comparisons were made from left to top,

respectively. Superior, similar, and worse performance of

the AC-MOFOA compared to the corresponding algorithm

are displayed by ‘‘ ? ’’, ‘‘ = ’’, and ‘‘-’’, respectively.

Table 6 SCC measure

comparison on the test set
Datasets AC-MOFOA MOCEPO MOBBBO C-HMOSSA MOSSO NSPSO

SRBCT 4 0 2 1 0 0

Tumors_9 3 0 0 0 1 0

Leukaemia3 3 1 0 0 0 0

Colon_Prostate 4 0 0 0 0 0

Lung 4 2 0 0 0 0

GCM 6 0 0 3 0 0

Breast 3 0 0 2 0 0

Rsctc_5 6 0 0 4 0 0

Rsctc_6 6 1 0 4 0 0

Table 7 SCC measure

comparison on the train set
Datasets AC-MOFOA MOCEPO MOBBBO C-HMOSSA MOSSO NSPSO

SRBCT 2 1 0 0 0 0

Tumors_9 3 0 0 1 0 0

Leukaemia3 2 2 0 0 0 0

Colon_Prostate 4 1 0 0 0 0

Lung 3 2 0 0 0 0

GCM 6 0 0 2 0 0

Breast 2 0 0 3 0 0

Rsctc_5 6 0 0 4 0 0

Rsctc_6 9 1 0 3 0 0
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As can be seen from Table 8, the AC-MOFOA results in

all test datasets are significantly superior to the three

methods of MOBBBO, NSPSO, and MOSSO. Moreover,

MOCEPO provided similar results to AC-MOFOA only in

the Lung database and showed worse performance in other

cases. AC-MOFOA could also achieve superior results

over C-HMOSHSSA in 5 out of 9 datasets and had similar

results in 4 datasets.

Table 9 shows the results of the t-test on the Hyper-

volume values of the train data. According to the results of

the t-test, it can be concluded that AC-MOFOA outper-

formed other methods in most datasets.

AC-MOFOA showed similar results with MOCEPO and

C-HMOSHSSA in only a few cases. For example, we can

refer to three datasets of Lung, SRBCT, and Leukemia3 in

which AC-MOFOA had a similar performance to

MOCEPO.

5.4 Performance evaluation based on Spacing
metric and Student t-test

Diversity is one of the important criteria in evaluating the

Pareto front solution. For this purpose, we have used the

spacing metric to evaluate the diversity and uniformity of

the Pareto sets. The spacing metric is calculated according

to Eq. (15) and indicates how uniformly solutions are

distributed. According to this criterion, a smaller SðAÞ
value infers more uniformly distributed solutions.

T-test results on the spacing metric values are presented

in Tables 10 and 11. According to Table 10, AC-MOFOA

has similar results in finding a uniform Pareto front com-

pared to MOCEPO and C-HMOSHSSA on seven of the

nine datasets. Furthermore, in the SRBCT and Rsctc_6,

AC-MOFOA performed better than C-HMOSHSSA and

MOCEPO, respectively. Moreover, the proposed approach

is significantly better than other methods in the lung

dataset. Based on Table 10, AC-MOFOA has significantly

better results compared to NSPSO, MOSSO, and

MOBBBO in six of the nine cases.

Table 11 presents the results of the spacing metric on the

train data. Based on the results, AC-MOFOA achieved

similar or better results compared to other multi-objective

approaches in most cases. For example, AC-MOFOA sig-

nificantly performed better than NSPSO in all datasets.

However, the only exception is the GCM, where MOSSO

has acquired more uniform results compared to AC-

MOFOA. The Spacing metrics results indicate that the

proposed approach could perform similar or better than

other methods in terms of finding a more uniform Prato

front.

Table 8 T-test of hypervolume

ratios in the test data
Datasets MOCEPO MOBBBO C- HMOSHSSA MOSSO NSPSO

SRBCT ? ? ? ? ?

Tumors_9 ? ? ? ? ?

Leukaemia3 ? ? ? ? ?

Colon_Prostate ? ? ? ? ?

Lung = ? ? ? ?

GCM ? ? = ? ?

Breast ? ? = ? ?

Rsctc_5 ? ? = ? ?

Rsctc_6 ? ? = ? ?

Table 9 T-test of hypervolume

ratios in the train data
Datasets MOCEPO MOBBBO C- HMOSHSSA MOSSO NSPSO

SRBCT = ? ? ? ?

Tumors_9 ? ? ? ? ?

Leukaemia3 = ? ? ? ?

Colon_Prostate ? ? ? ? ?

Lung = ? ? ? ?

GCM ? ? = ? ?

Breast ? ? = ? ?

Rsctc_5 ? ? = ? ?

Rsctc_6 ? ? ? ? ?
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5.5 Investigating the time and space complexity

Time and space complexity analysis is commonly used to

analyze the performance of computer algorithms. There-

fore, in this section, we discuss AC-MOFOA complexity

analyses. By analyzing the AC-MOFOA algorithm, it can

be seen that the two steps of 8 and 11 have the highest time

complexity among all the steps of the algorithm. In step 8,

a non-dominated sorting operation is performed with the

time order of O MN2
� �

, assuming that M is the number of

objectives and N is the number of trees. Also, based on a

study conducted by Jensen [106], with an optimal imple-

mentation, the time complexity of OðNlogM�1NÞ can be

achieved. In Step 11, crowding-distance is calculated based

on time complexity of O MNlogNð Þ. Based on the men-

tioned points, the time complexity of AC-MOFOA will be

from the O MN2
� �

in the normal implementation and

OðNlogM�1NÞ in the optimal implementation. Jensen [106]

reported that NS-based algorithms in the normal imple-

mentation are from O MN2
� �

.

AC-MOFOA has two memory sections that are used to

store Forest and Candidate Population, respectively.

Assuming that the dimensions of each tree are k, the space

complexity required to store the Forest will be from

O N 	 kð Þ. The space complexity of Candidate Population

will also be from O Ncand: 	 kð Þ. Therefore, it can be

concluded that the general space complexity of AC-

MOFOA is from O max N;Ncand:ð Þ 	 kð Þ.
Figure 11 presents the results of comparing the mean

execution time of AC-MOFOA with other multi-objective

algorithms. The mean execution time of algorithms is

calculated based on the 50 independent executions time on

each of the datasets. Analyzing the AC-MOFOA execution

time shows that this method had a shorter execution time

than MOCEPO, MOBBBO, C-HMOSHSSA, and NSPSO.

Due to its single-parent structure, AC-MOFOA only needs

to select one parent among the Pareto Front members.

Thus, it spends less time in the parent-selection step. Also,

AC-MOFOA only needs to make limited changes in the

structure of the parent tree to generate new trees, resulting

in the reduced computational overhead of global and local

seeding operators. Furthermore, implementing the chaos

theory on local and global seeding operators increases the

AC-MOFOA convergence speed. At the same time, it

maintains the necessary diversity needed for effective

search of the problem space. As a result of this, the exe-

cution time of AC-MOFOA can be reduced compare to the

traditional methods. Among the methods compared, the

MOSSO algorithm had a shorter execution time than AC-

MOFOA in some scenarios because of using the Archive

structure to maintain the Pareto front and being a single

parent.

Table 10 T-test of spacing

metric in the test data
Datasets MOCEPO MOBBBO C- HMOSHSSA MOSSO NSPSO

SRBCT = ? ? ? ?

Tumors_9 = = = = ?

Leukaemia3 = = = ? ?

Colon_Prostate = ? = ? ?

Lung ? ? ? ? ?

GCM = ? = = ?

Breast = = = ? ?

Rsctc_5 = ? = = =

Rsctc_6 ? ? = ? ?

Table 11 T-test of Spacing

metric in the train data
Datasets MOCEPO MOBBBO C- HMOSHSSA MOSSO NSPSO

SRBCT = = = ? ?

Tumors_9 = = = = ?

Leukaemia3 = ? = = ?

Colon_Prostate = ? = ? ?

Lung ? ? ? ? ?

GCM = ? = - ?

Breast ? ? = ? ?

Rsctc_5 = ? = = ?

Rsctc_6 ? ? = = ?
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5.6 Studying the results of the ensemble
classifier

In this section, we analyze the results of the Ensemble

classifier made from members of the Pareto Front. The

comparison results of the proposed Ensemble classifier

with the three ensemble learning methods (i.e., Adaboost,

Bagging, and Random Forest) are shown in Table 12.

Analysis of the results suggests that the proposed Ensemble

classifier in all datasets could improve the classification

accuracy. The proposed method also outperformed the

other methods in 7 datasets. For example, in Breast dataset,

the proposed method could improve the classification

accuracy by more than 30% compared to the non-

Fig.11 Comparison of the mean execution time of AC-MOFOA with other multi-objective algorithms (in seconds)
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optimized KELM. In fact, due to the optimization of the

RBF kernel cð Þ and ELM Cð Þ function parameters, AC-

MOFOA could improve the classification efficiency of

each of the Pareto Front KELMs simultaneously with

reducing the number of genes. Accordingly, the combina-

tion of improved KELMs could provide better results

compared to conventional ensemble learning methods.

However, the proposed method in two datasets of

Leukemia3 and Lung yielded less accurate solutions than

the Random Forest and Bagging methods.

For more analysis, we compared the proposed ensemble

approach with three novel ensemble methods, i.e., NSGA-

II [94], NSGA-II [95], and sp-MODE [96]. The results of

the experiments have been illustrated in Fig. 12. According

to Fig. 12, the proposed ensemble method has obtained

better results than other methods in five datasets, namely:

SRBCT, Leukemia3, Colon_Prostate, Breast, and Rsctc_5.

For example, in Leukemia3, the proposed method reached

97.86% classification accuracy, while the second-best

method (i.e., NSGA-II [94]) achieved 96.49% accuracy.

Moreover, in Tumors_9 and GCM, the proposed method

and NSGA-II [95] acquired similar results. On the other

hand, NSGA-II [94] in Rsctc_6 and NSGA-II [95] in Lung

obtained better classification accuracy than the proposed

ensemble method. Based on the results, the proposed

ensemble method is an effective approach in classifying the

Microarray data and could provide similar or better results

compared to other methods in most cases.

5.7 Further discussion

Based on the obtained results, the proposed method could

successfully achieve the set objectives (i.e., reducing the

dimensions of microarray datasets, increasing the accuracy

of the classification, and constructing the Ensemble Clas-

sifier). The considered Multi-Filter includes five filter

methods, including IG, Fisher-score, mRMR, CFS, and

ReliefF. The selected combination includes univariate and

multivariate Methods. In this system, univariate methods

rank genes based on their individual relation with output.

On the other hand, multivariate methods rank genes based

on their intra-relations and relation with output. By

reducing the bias of single-filter methods, Multi-filter could

select prominent and influential genes of the dataset and

reduce dimensions of them to an acceptable level. Addi-

tionally, Multi-filter considers the dependency of each gene

with output and redundancy between genes. Furthermore,

AC-MOFOA simultaneously reduced the size of the gene

subset and improved classification accuracy using the NS,

crowding distance, chaos theory, adaptive local, and

adaptive global seeding operators.

The use of adaptive local and global seeding operators

enabled the AC-MOFOA to overcome the challenge of

determining LSC and GSC, which leads to broader global

and local search to find the optimal Pareto front in the early

stages. Due to the implementation of the chaos theory

concepts in local and global seeding operators, AC-

MOFOA could achieve faster convergence compared to the

traditional methods. Furthermore, the local seeding opera-

tor in AC-MOFOA uses the solutions of F1 for generating

new trees, which improves AC-MOFOA’s search ability

toward the optimal Pareto front. Besides, the use of NS and

crowding distance enabled the algorithm to perform well in

identifying the uniform and divers Pareto fronts. Finally,

members of final Pareto front, including pairs of subset

genes and KELM, were utilized to construct the Ensemble

classifier. It is of note that the members of the Pareto front

have the necessary diversity to construct an ensemble

learner because of using different gene subsets and KELM

classifiers with different optimized parameters. The results

show that the proposed Ensemble classifier outperforms

conventional and novel Ensemble classification methods in

terms of classification accuracy and generalizability.

Moreover, by selecting the most prominent genes rela-

ted to specific cancer diseases, medical scientists could

focus on a small subset of genes to study the effects of each

gene in causing cancer disease. Furthermore, the cost of

experiments for diagnosing cancer will be reduced

[22, 53, 107]. Additionally, the proposed ensemble classi-

fier has high classification performance, which can be used

Table 12 Comparison results of

proposed Ensemble Classifier

with conventional ensemble

methods

Datasets KELM Proposed ensemble classifier Random forest Adaboost Bagging

SRBCT 88.23 98.65 91.97 95.18 94.59

Tumors_9 78.98 95.13 92.67 93.15 90.6

Leukaemia3 97.22 97.86 97.93 96.74 94.13

Colon_Prostate 95.74 96.92 96.08 95.27 95.78

Lung 90.24 97.6 92.14 91.61 98.04

GCM 70.53 79.11 74.24 72.05 76.19

Breast 68.04 97.45 82.51 88.36 91.31

Rsctc_5 69.66 73.52 70.48 71.66 71.98

Rsctc_6 81.523 83.94 79.73 80.73 82.64
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for early diagnoses and prognosis of cancer. Accordingly,

this could improve the treatment effectiveness and enhance

the survival chance of the patients.

6 Conclusion

In the present study, a hybrid method of Multi-filter and

AC-MOFOA was presented to solve the problem of gene

selection and construct Ensemble Classifiers for the

microarray datasets. Based on experiments and results, it

could successfully achieve the set objectives. The proposed

multi-filter was developed by combining five filter meth-

ods, namely IG, Fisher-score, CFS, mRMR, and ReliefF,

using the voting mechanism. The combination of several

univariate and multivariate filter methods in constructing

Multi-filter has reduced the bias effect compared to single

filter mode and, as a result, the proposed Multi-filter as a

pre-processing step could reduce the dimensions of the data

and increase the classification accuracy. Moreover, the

results of this step we compared with three multi/ensemble

filter approaches. According to the results, the proposed

Fig.12 Comparison of the classification accuracy of the proposed ensemble approach with other recent ensemble approaches
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multi-filter could obtain better classification accuracy by

selecting the prominent genes in six of nine datasets

compared to other methods. Moreover, the proposed

approach obtained the same results with other methods in

Colon-Prostate and Breast, respectively. However, only in

GCM, it achieved an accuracy worse than the method in

[23]. In the second step of the proposed hybrid method,

AC-MOFOA was presented using the concepts of NS,

crowding distance, chaos theory, and adaptive operators.

The second step of the proposed method’s objectives was

selecting the quasi-optimal subset of genes, optimizing the

KELM classification parameters, and increasing the clas-

sification accuracy. AC-MOFOA uses NS to identify the

Pareto front and rank the solutions. In addition, using the

crowding distance, the ability to direct the AC-MOFOA

search to the less crowded areas of the Pareto front

increased, leading to a more uniform final Pareto front.

Using chaos theory and adaptive local and global seeding,

AC-MOFOA could improve its global and local search

without needing to set the LSC and GSC parameters.

Moreover, utilizing the logistic map as a chaos function in

global and local seeding operators, the convergence speed

and search diversity of AC-MOFOA have been improved.

Finally, in the third step of the proposed method, the

Ensemble Classifier model was formed using the final

Pareto front KELM classifiers. To evaluate the effective-

ness and efficiency of the proposed solution, the results

were compared with three hybrid single-objective gene

selection methods (i.e., GA, Adaptive GA, and TLBOGSA)

and five hybrid multi-objective gene selection methods of

MOSSO, MOCEPO, C-HMOSHSSA, NSPSO, and

MOBBBO on nine microarray datasets with different

dimensions. Based on the results, AC-MOFOA in most

datasets could simultaneously increase classification accu-

racy by reducing the dimensions of the datasets. Moreover,

the distribution analysis of the accuracy of solutions and

the number of genes selected by AC-MOFOA based on

statistical criteria confirm its effectiveness. Furthermore,

the hypervolume indicator, spacing metric, and SCC

analysis show that AC-MOFOA achieves better results on

identifying the optimal Pareto front. For example, SCC

metric analyses indicated that AC-MOFOA identifies more

than 50% of the final Pareto front in test datasets. In

addition, as can be seen from the Hypervolume ratio

results, the AC-MOFOA results in all test datasets are

significantly superior to the three methods of MOBBBO,

NSPSO, and MOSSO. Moreover, MOCEPO provided

similar results to AC-MOFOA only in the Lung dataset and

showed worse performance in other cases.

Additionally, the proposed Ensemble Classifier model

provides better performance for microarray data classifi-

cation by increasing the accuracy of classification com-

pared to conventional ensemble learning methods (i.e.,

Adaboost, Bagging, and Random Forest) and recent

methods. Accordingly, the proposed ensemble method has

obtained better results than other methods in five datasets:

SRBCT, Leukemia3, Colon_Prostate, Breast, and Rsctc_5.

For example, in Leukemia3, the proposed method reached

97.86% classification accuracy, while the second-best

method achieved 96.49% accuracy. Besides, in Tumors_9

and GCM, the proposed method acquired similar results

compared to other methods. In conclusion, AC-MOFOA

could successfully solve the problem of gene selection and

construction of the Ensemble classifier.

However, due to developments and advances in DNA

microarray that have resulted in increasing dimensions and

samples of such data, conventional computers will lose

their ability to solve the problem of gene selection and

microarray data classification. Hence, there is an urgent

need to develop methods based on big data architecture. In

future studies, we will review and develop scalable meth-

ods based on multi-objective metaheuristic algorithms in

the big data context. The microarray data are usually highly

imbalanced, which makes the classification task very

challenging. To improve the classification performance,

other classification metrics such as precision and specificity

should be included in gene selection methods as objective

functions. Due to the explosive growth of the non-domi-

nated solution in the objective space with more than three

objectives, the efficiency of multi-objective methods

decreases [108, 109]. As a result, it is necessary to provide

a new many-objective metaheuristic algorithm to solve the

gene selection problem. Therefore, in future studies, we

will focus on studying a many-objective version of the

Forest optimization algorithm. From another perspective,

deep learning models are proven to be very successful in

solving many real-world problems. For future direction,

using deep learning models such as deep ELM on

microarray data classification can be considered by

researchers. Optimizing the structure of deep ELM

[110–112] can be done using metaheuristic algorithms, in

which variable-length vectors can be utilized to present the

different network structures. Solving the gene selection

problem and deep ELM structure optimization simultane-

ously using low/high-level hybrid metaheuristics algo-

rithms is an interesting research idea.
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