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Abstract
To predict the mortality of patients with coronavirus disease 2019 (COVID-19). We collected clinical data of COVID-19

patients between January 18 and March 29 2020 in Wuhan, China . Gradient boosting decision tree (GBDT), logistic

regression (LR) model, and simplified LR were built to predict the mortality of COVID-19. We also evaluated different

models by computing area under curve (AUC), accuracy, positive predictive value (PPV), and negative predictive value

(NPV) under fivefold cross-validation. A total of 2924 patients were included in our evaluation, with 257 (8.8%) died and

2667 (91.2%) survived during hospitalization. Upon admission, there were 21 (0.7%) mild cases, 2051 (70.1%) moderate

case, 779 (26.6%) severe cases, and 73 (2.5%) critically severe cases. The GBDT model exhibited the highest fivefold

AUC, which was 0.941, followed by LR (0.928) and LR-5 (0.913). The diagnostic accuracies of GBDT, LR, and LR-5

were 0.889, 0.868, and 0.887, respectively. In particular, the GBDT model demonstrated the highest sensitivity (0.899) and

specificity (0.889). The NPV of all three models exceeded 97%, while their PPV values were relatively low, resulting in

0.381 for LR, 0.402 for LR-5, and 0.432 for GBDT. Regarding severe and critically severe cases, the GBDT model also

performed the best with a fivefold AUC of 0.918. In the external validation test of the LR-5 model using 72 cases of

COVID-19 from Brunei, leukomonocyte (%) turned to show the highest fivefold AUC (0.917), followed by urea (0.867),

age (0.826), and SPO2 (0.704). The findings confirm that the mortality prediction performance of the GBDT is better than

the LR models in confirmed cases of COVID-19. The performance comparison seems independent of disease severity.
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1 Introduction

Coronavirus Disease 2019 (COVID-19) is a new form of

respiratory disorder caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) [1]. As of Sept 26

2020, there have been more than 32 million cases and

985 thousand deaths relating to COVID-19 [2]. Patients
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with COVID-19 may develop acute respiratory distress

syndrome and may occasionally progress to multiorgan

failure [3]. Latest reports suggest that the rate of hospi-

talization due to COVID-19 infection ranges from 20.7 to

31.4%. The ICU admission rate ranges from 4.9 to 11.5%

[4]. The mortality among confirmed cases is 6.5% [2]. The

drastic increase of COVID-19 cases leads to a growing

demand for medical equipment and intensive care unit

admission [5]. Clinical decision models for the prognosis

of confirmed COVID-19 cases may support the clinician’s

decision-making, prioritize healthcare resources effec-

tively, and relieve the burden of healthcare systems.

Machine learning-based methods are widely adopted in

the medical domain [10–12]. The proliferation of machine

learning techniques has made it possible for hospitals to

conduct a deep analysis of patients’ medical record. As

such, patients may be able to receive more comprehensive

radiology diagnosis results and prediction of their disease

progression. Although a host of existing studies target the

prediction of COVID-19 disease progression [6], most

prediction models for disease progression are single-center

studies with small sample sizes (26–577 cases). Addition-

ally, these studies were developed with multivariable

logistic regression [6–9], which may lead to an increased

risk of overfitting.

To bridge the gap between machine learning and

COVID-19 prognosis, we propose to develop and evaluate

a variety of relevant machine learning models for pre-

dicting the mortality of patients with COVID-19. Specifi-

cally, we build the following two models for the purpose:

gradient boosting decision tree (GBDT) and logistic

regression (LR) model. Further, we develop a simplified

LR model, the LR-5 model, which uses 5 selected features

only. Our experimental results show that all models are

capable of achieving good performance in mortality pre-

diction for confirmed COVID-19 patients. In particular,

GBDT performs better than LR for severe cases. Never-

theless, our proposed LR-5 model exhibits superior per-

formance in mortality prediction in comparison to GBDT

and LR.

1.1 Problem statement

The problem of predicting the mortality of COVID-19

patients is defined as a binary classification problem.

Specifically, we sample COVID-19 patients from hospitals

who have sufficient medical information. The final out-

come of a patient is labeled by either discharged (y = 0) or

died (y = 1). The input data for prediction is collected

within 24 h when patients were enrolled in hospitals. The

selected patient features include demographic variables,

complications, initial medical check results, clinical

symptoms, and laboratory test results.

1.2 Solutions

We build a gradient boosting decision tree (GBDT) and

logistic regression (LR) model to solve the binary classi-

fication problem.

1.2.1 GBDT modeling

CART regression tree We use the CART regression tree

as the decision tree in our GBDT model. The rationale of

using CART regression tree rather than CART classifica-

tion tree is that each GBDT iteration targets the fitting of

the gradient, which is a continuous value. The technical

challenge here is to find an optimal split point among the

combination of all features and their corresponding possi-

ble values. For this purpose, we use a square error to

evaluate the fitting degree.

1.2.2 Algorithm for generating regression tree

We proceed to present how to generate our CART

regression tree, which is detailed as follows.

Input: Training data D;

Output: Regression tree f (x);

Our high-level idea is to construct a binary decision tree.

Specifically, we recursively split the underlying space into

two sub-spaces and calculate the output on each sub-space.

Our detailed steps are presented as follows.

Step 1: Find an optimal splitting variable j and its

splitting point s by solving the formulation as follows:

min
j;s

min
c1

X

xi2R1 j;sð Þ
yi � c1ð Þ2 þmin

c2

X

xi2R2 j;sð Þ
yi � c2ð Þ2

2
4

3
5

Step 2: Given a selected pair (j, s), split the underlying

space and determine the corresponding output, which is

computed as follows:

R1 j; sð Þ ¼ x x jð Þ � s;R2 j; sð Þ ¼ x
�� ��x jð Þ [ s

cm ¼ 1

N

X

x12Rm j;sð Þ
yi; x 2 Rm;m ¼ 1; 2

Step 3: Continue Steps 1 and 2 until the termination

condition is satisfied.

Step 4: Split the input space into M sub-spaces R1,

R2,…, RM, and generate the decision tree as follows:

f xð Þ ¼
XM

m¼1

ĉmI x 2 Rmð Þ

Gradient boosting Next, we introduce our gradient

boosting algorithm, which is based on a boosting tree. The

procedures are presented as follows.

Step 1: Initialize f0 xð Þ ¼ 0.
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Step 2: For each m = 1, 2, …, M, compute the residual

as follows:

rmi ¼ yi � fm�1 xð Þ; i ¼ 1; 2; . . .;N

Step 3: Learn a regression tree by fitting rmi. The output

is hm(x).

Step 4: Update fm(x), where fm(x) = fm–1 ? hm(x), and

obtain the gradient tree for the regression problem:

fM xð Þ ¼
XM

m¼1

hm xð Þ

GBDT algorithm Finally, we present our GBDT algo-

rithm as follows.

Step 1: Initialize a weak learner.

f0 xð Þ ¼ argmin
c

XN

i¼1

L yi; cð Þ

Step 2: For each m = 1, 2, …, M:

Step 2(a): For each sample i = 1, 2,…, N, calculated the

residual (i.e., negative gradient) as follows:

rim ¼ � oL yi; f xið Þð ÞÞ
of xið Þ

� �

f xð Þ¼fm�1 xð Þ

Step 2(b): Take the residual, rim, as the new value, and

for each i = 1, 2,…, N, regard xi and rim as the training data

of the next tree. Assume that fm(x) is the new regression

tree and its areas of leaf nodes are denoted by Rjm, where

j = 1,2,…, J. Here, J denotes the number of leaves in a

given regression tree.

Step 2(c): For each j = 1,2,…, J, compute the corre-

sponding optimal fitting value as follows:

!jm ¼ argmin|fflfflffl{zfflfflffl}
Y

X

xi2Rjm

L yi; fm�1 xið Þ þ !ð Þ

Step 2(d): Build an enhanced learning model as follows:

fm xð Þ ¼ fm�1 xð Þ þ
XJ

j¼1

!jmI x 2 Rjm

� �

Step 3: Get the final model as follows:

f xð Þ ¼ fM xð Þ ¼ f0 xð Þ þ
XM

m¼1

XJ

j¼1

!jmI x 2 Rjm

� �

1.2.3 Logistic regression (LR) modeling

LR is a linear model, which is known for its high efficiency

and simple interpretation. Because that LR requires regu-

larization, the parameters used for L1 and L2 regulariza-

tions are applied to continuous regularization

transformation. As such, we choose to adopt L2 for regu-

larization. The rationale is that L2 exhibits better

performance compared with L1. The formulation is pre-

sented as follows:

g zð Þ ¼ 1

1þ e�z

The linear boundary is defined as follows:

z ¼ hTx ¼ h0x0 þ h1x1 þ � � � þ hnxn ¼
Xn

i¼0

hixi

Here, the vector of training data is x ¼
x0; x1; x2; x3; . . .; xn½ �s and the optimal parameter is h ¼
h0; h1; h2; . . .; hn½ �T : The prediction function is as follows:

hh xð Þ ¼ g hTx
� �

¼ 1

1þ e�hT x

The value of the above function represents the proba-

bility of y = 1. Thus, the probabilities that x is classified

into class 1 and class 0 are, respectively, presented as

follows:

P y ¼ 1jx; hð Þ ¼ hh xð Þ
P y ¼ 0jx; hð Þ ¼ 1� hh xð Þ

1.2.4 5-index LR modeling

To further improve the performance of our prediction task

for clinical use, we develop a novel 5-index LR (LR-5)

modeling method. Our high-level idea works as follows.

First, each explanatory variable goes through an F-test and

t-test, respectively. When a variable becomes less signifi-

cant in comparison to subsequently introduced variables,

we remove it accordingly. Next, we iteratively run the

aforementioned process until no significant variables are

introduced into our regression function and no existing

variables are removed from the function. As such, we may

guarantee that the final explanatory variables are optimal.

Based on the above idea, our detailed steps are presented

as follows. In the beginning, we take initial explanatory

variables are our input and run a simple regression process

for each variable. Next, we introduce other explanatory

variables based on the regression function mapped from the

explanatory variables that have the most significant con-

tribution to the variables being explained. After the process

of gradual regression, the variables that remained in the

model are considered to be both significant and nearly free

of multicollinearity.
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2 Experiments

2.1 Study population and data sources

This retrospective study was conducted between January

18 2020 and March 29 2020 in Tongji Hospital of Tongji

Medical College, Huazhong University of Science and

Technology. A total of 3057 patients were diagnosed with

COVID-19 during the study period. The medical records of

those patients were accessed. The inclusion criteria were

patients with laboratory confirmed COVID-19 and with

definite outcomes (death or discharged). The exclusion

criteria were as follows: Patients were still on hospital-

ization and did not develop the outcome by the end of the

study period; patients lost to follow-up, or patients died

within 24 h after admission. Patients were discharged from

the hospital after both clinical recovery and detection of

negative SARS-Cov-2 RNA twice in 24 h apart.

The diagnosis of COVID-19 was based on the Chinese

Clinical Guidance for COVID-19 Pneumonia Diagnosis

and Treatment (7th version) [13]. Four levels of disease

severity for COVID-19 were defined by the guidance: mild,

moderate, severe, and critically ill. In this study, we clas-

sified the mild and moderate as non-severe cases, while the

rest two levels as severe cases. The primary outcome in this

study was death during hospitalization.

2.1.1 Data collection

The medical records of all eligible patients were screened,

and data extraction was completed by the research team.

Demographic, clinical, laboratory, radiological character-

istics, and treatment and outcomes data were obtained with

data collection forms from electronic medical reports.

2.1.2 Features extraction and selection

A total of 1224 features were initially extracted from

electronic medical records. Univariate chi-square and t-test

were used to compare the distribution differences between

the survivor and non-survivor group. Eventually, 152 fea-

tures with p B 0.05 were selected for further model

development (see Supplementary Appendix A for list of

features), including demographic variables (age and sex),

comorbidities (hypertension, diabetes, heart disease,

malignant tumor, etc.), initial vital signs (body tempera-

ture, systolic blood pressure, respiration rate, and heart

rate), clinical symptoms (fever, cough, dyspnea, etc.),

blood gas analysis, routine blood test, biochemical exam-

ination, flow cytometry detection as well as cytokine

profiles.

2.1.3 Machine learning and external validation

Figure 1 has illustrated the process of machine learning.

The gradient boosting decision tree (GBDT), LR model,

and simplified LR (LR-5) model with 5 selected features

were built. The GBDT model was initially trained using all

152 features in the training set, and only 83 features were

retained in the final prediction model (selected 83 features

were listed in Supplementary Appendix B). To make our

LR model more user-friendly for clinicians, we developed

a simplified 5 index LR model (LR-5) using only five

features with statistical significance selected by stepwise

regression. The five features in the LR-5 model were serum

lactic dehydrogenase (LDH), urea, leukomonocyte (%),

age, and SPO2. Finally, we also conducted an external

validation test for LR-5 model using clinical data of all

nationwide confirmed cases of COVID-19 during Feb 29

and March 29 2020 from Brunei. A total of 72 confirmed

cases of COVID-19 in Brunei were recruited. Based on the

LR-5 model, patients’ data of leukomonocyte (%), BUN,

age and SPO2 were collected for analysis, while data on

LDH were unavailable. LDH was then filled using the

median value estimated from the training set of Wuhan

data (median = 239 U/L).

2.1.4 Statistically analysis

Continuous variables were presented as median with

interquartile range (IQR). Categorical variables were pre-

sented as n(%). v2 test and t-test were used to compare

differences among non-survivors and survivors. All vari-

ables were found to have a statistically significant associ-

ation (two-tailed, p value\ 0.05). The prediction ability of

different models was compared using the fivefold area

under curve (AUC), positive predictive value (PPV), neg-

ative predictive value (NPV), sensitivity, specificity,

accuracy, Youden’s index, and threshold . To testify

models’ ability of death prediction based on disease

severity, we also compared the performance of different

models in two subgroups: the non-severe (mild and mod-

erate) group, severe (severe and critically severe) group.

Each patients’ data were transformed and contained 152

features, which was then randomly assigned to either the

training set (80%, n = 2339) or the testing set (20%,

n = 585). Models were trained in the training set, and

fivefold areas were calculated based on testing set for

further model comparisons.

2.1.5 Baseline characteristics of patients

A total of 3057 patients with COVID-19 were hospitalized

in the study, 97 patients were excluded for loss to follow-

up, 11 were still on hospitalization during the study period,
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25 patients died within 24 h (Fig. 2). A total of 2924

patients were eventually included in the final analysis,

257(8.8%) of whom died during hospitalization and 2667

(91.2%) survived. There were 1481 (50.6%) males, and the

median age of the cohort was 59 years old. Approximately

43% patients had comorbidities, the most common disease

was hypertension (29.6%), followed by cardiovascular

disease (34.1%), diabetes (13.6%), coronary disease

(7.1%), cerebrovascular disease (3.0%), malignancy

(2.4%), COPD (1.2%). There were 21 (0.7%) mild cases,

2,051 (70.1%) moderate case, 779 (26.6%) severe cases,

and 73 (2.5%) critically severe cases of COVID-19 on

admission (Table 1). The death event occurred in 0 mild

cases, 95/1,956 (4.86%) in moderate cases, 134/645

(20.8%) in severe cases, and 28/45 (62.2%) critically sev-

ere cases.

2.1.6 Comparisons of the baseline between survivors
and non-survivors

Table 1 presents the comparison of the baseline character-

istics between survivors and non-survivors. Compared to

survivors, non-survivors were older

(69.577[62.709–78.333] vs. 60.703[48.381–68.692] years,

p\ 0.001), and more likely to be female (68.5% vs. 47.5%,

p\ 0.001). Comorbidities were more common in non-sur-

vivors, with 60.3% in non-survivors and 41.5% in survivors

(p\ 0.001). Specifically, the cardiovascular diseases

(46.7%), chronic obstructive pulmonary disease (COPD)

(3.1%) and cancer (6.6%) were prominent in non-survivors.

Lower lymphocyte (0.585[0.42–0.80] vs. 1.29[0.89–1.73],

p\ 0.001), lower high-density lipoprotein cholesterol

(HDL-C) (0.76[0.55–0.92] vs. 0.98[0.81–1.22], p\ 0.001)

and higher neutrophils (7.465[4.5–11.622] vs.

3.58[2.62–11.622], p\ 0.001) and neutrophil-to-lympho-

cyte ratio (NLR) (12.211 [6.49–23.396] vs.

2.69[1.756–4.57], p\ 0.001) level were found in non-sur-

vivors than survivors. Lactic dehydrogenase (LDH), high-

sensitivity C-reactive protein (hs-CRP), blood urea nitrogen

(BUN) and pro-inflammatory cytokines as such IL-6, TNF-

a, IL-10 were higher in non-survivors than survivors.

2.1.7 Comparisons of different models in the full cohort

The top ten features with the highest predictive accuracy in

the models are shown in Table 2. Three models were

finally developed and tested with fivefold cross-validation

(Table 3). LR model comprised 152 features and GBDT

Fig. 1 The process of our model
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models had 83 features. We then simplified LR model as

LR-5 comprised the top 5 common clinical indices. The

overall fivefold AUC of LR, LR-5, and GBDT models were

0.928, 0.913 and 0.941, respectively, among which, GBDT

models have the largest AUC. Similarly, the estimated

AUC on the testing set was also highest in GBDT model

(0.939), followed by LR (0.928) and LR-5 (0.915). The

diagnostic accuracy was 0.889 in GBDT, 0.868 in LR, and

0.887 in LR-5. GBDT model also obtained the highest

sensitivity (0.899) and specificity (0.889). The NPV of all

three models exceeded 97%, while the PPV was not high in

all models, with 0.381 for LR, 0.402 for LR-5, and 0.432

for GBDT.

2.1.8 Performance of models in COVID-19 patients
with different disease severity

As patients with mild or moderate COVID-19 are not

hospitalized due to the scarcity of medical resources in

most countries, we tried to test models under different

clinical scenarios. Table 3 also shows the performance

result of models stratified by disease severity. All models

performed excellently in non-severe cases with an accuracy

of 0.922, 0.938, and 0.924 in LR, LR-5, and GBDT models,

respectively. LR model, however, had the highest AUC on

testing set. In severe cases, the accuracy of LR model for

predicting mortality was the lowest (0.732), followed by

the LR-5 model (0.743). The GBDT model performed the

best in severe cases with an accuracy of 0.799. The GBDT

also showed the highest fivefold AUC (0.918) as well as

the highest AUC on the testing set (0.897) in severe cases.

The NPV remained high in both severe and non-severe

cases. The PPV of GBDT model for predicting death was

even greater in severe cases (0.483) than overall cohort

(0.432), indicating an excellent ability in early identifica-

tion of patients with poor outcomes.

2.1.9 External validation test in 72 patients in Brunei

Among the total 72 confirmed cases of COVID-19, 2

patients died during follow-up while the rest 70 survived

(Appendix C). In compared to those deceased, survivors

had significantly higher lymphocyte (31.45%[10.3–59.2%]

vs. 14.1%[13.6–14.6%], p = 0.022) and lower BUN

(mmol/L) (3.48[1.1–8.12] vs. 4.95[4.0–5.9], p = 0.045). In

the validation test of the LR-5 model, leukomonocyte (%)

turned to show the highest AUC (0.917), followed by urea

(0.867), age (0.826), and SPO2 (0.704) (data not shown).

3 Discussion

In this study, we applied machine learning algorithms to

develop prognostic models for predicting mortality in

confirmed cases of COVID-19. All models performed well

in the overall population. Particularly, prediction perfor-

mance of the GBDT was superior to LR models in the

subgroup of severe COVID-19. Furthermore, we developed

a simplified LR-5 model with 5 indices as a convenient tool

for clinical doctors that showed an acceptable AUC and

accuracy.

Fig. 2 Statistical result of

patients
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Table 1 Baseline characteristic of the patients on admission

Features Total (N = 2924) Survival (n = 2667) Death (n = 257) P AUC

Age (years), median (IQR) 61.876(49.737–69.539) 60.703(48.381–68.692) 69.577(62.709–78.333) \ 0.001 0.718

Gender (%)

Female 1443 (49.4) 1267 (47.5) 176 (68.5) \ 0.001 0.605

Male 1481 (50.6) 1400 (52.5) 81 (31.5) \ 0.001 0.605

Underling comorbidity (%)

Any 1263 (43.2) 1108 (41.5) 155 (60.3) \ 0.001 0.594

Cardiovascular disease 998.0 (34.1) 878.0 (32.9) 120.0 (46.7)

Coronary disease 208.0 (7.1) 173.0 (6.5) 35.0 (13.6) \ 0.001 0.536

Hypertension 865.0 (29.6) 764.0 (28.6) 101.0 (39.3) 0.001 0.553

Cerebrovascular disease 87.0 (3.0) 70.0 (2.6) 17.0 (6.6) 0.001 0.520

COPD 35.0 (1.2) 27.0 (1.0) 8.0 (3.1) 0.009 0.511

Diabetes 397.0 (13.6) 358.0 (13.4) 39.0 (15.2) 0.445 0.509

Malignancy 70.0 (2.4) 53.0 (2.0) 17.0 (6.6) \ 0.001 0.523

Infectious disease 92.0 (3.1) 78.0 (2.9) 14.0 (5.4) 0.037 0.513

Tuberculosis 52.0 (1.8) 44.0 (1.6) 8.0 (3.1) 0.130 0.507

CKD 17.0 (0.6) 12.0 (0.4) 5.0 (1.9) 0.013 0.507

Hepatitis 45.0 (1.5) 40.0 (1.5) 5.0 (1.9) 0.591 0.502

Severity of COVID-19 on admission (%)

Mild 21 (0.7) 21 (0.8) 0 (0.0) 0.250 0.504

Moderate 2051 (70.1) 1956 (73.3) 95 (37.0) \ 0.001 0.682

Severe 779 (26.6) 645 (24.2) 134 (52.1) \ 0.001 0.640

Critical 73 (2.5) 45 (1.7) 28 (10.9) \ 0.001 0.546

Clinical manifestation (%)

Fever 1964.0 (67.2) 1788.0 (67.0) 176.0 (68.5) 0.677 0.507

Cough 1510.0 (51.6) 1381.0 (51.8) 129.0 (50.2) 0.648 0.508

Pant 42.0 (1.4) 33.0 (1.2) 9.0 (3.5) 0.009 0.511

Dyspnea 962.0 (32.9) 844.0 (31.6) 118.0 (45.9) \ 0.001 0.571

Dizzy 63.0 (2.2) 48.0 (1.8) 15.0 (5.8) \ 0.001 0.520

Pharyngalgia 129.0 (4.4) 128.0 (4.8) 1.0 (0.4) \ 0.001 0.522

Temperature (�C) 36.8 (0.7) 36.8 (0.7) 37.0 (0.9) \ 0.001 0.585

Pulse (rates/min) 90.8 (22.0) 90.4 (20.0) 95.5 (27.5) \ 0.001 0.571

RR (rates/min) 23.5 (2.0) 23.4 (2.0) 25.2 (10.0) \ 0.001 0.682

SBP (mmHg) 175.2 (24.0) 179.1 (23.0) 133.1 (26.0) 0.134 0.522

DBP (mmHg) 81.0 (17.0) 81.1 (16.0) 80.3 (17.0) 0.211 0.516

SPO2 (%) 95.4 (3.0) 96.2 (2.0) 87.1 (15.0) \ 0.001 0.729

Laboratory test, median (IQR) \ 0.001

WBC (9 109/L) 5.78(4.55–7.39) 5.69(4.49–7.145) 8.595(5.677–12.928) \ 0.001 0.721

Neutrophil (9 109/L) 3.73(2.67–5.28) 3.58(2.62–4.945) 7.465(4.5–11.622) \ 0.001 0.790

Lymphocyte (9 109/L) 1.22(0.81–1.68) 1.29(0.89–1.73) 0.585(0.42–0.8) \ 0.001 0.847

NLR 2.906(1.81–5.418) 2.69(1.756–4.57) 12.211(6.49–23.396) \ 0.001 0.883

Platelets (9 109/L) 222.0(170.0–284.0) 225.0(176.0–289.0) 152.0(112.0–222.0) \ 0.001 0.728

ESR (mm/h) 28.0(13.0–55.0) 27.0(12.0–54.0) 35.0(18.0–60.0) 0.008 0.562

LDH (U/L) 241.0(192.5–328.0) 233.0(189.0–305.0) 485.0(363.0–639.0) \ 0.001 0.876

CRP (mg/L) 10.2(1.6–55.9) 7.8(1.4–43.2) 103.7(59.85–162.4) \ 0.001 0.873

HDL-C (mmol/L) 0.96(0.79–1.2) 0.98(0.812–1.22) 0.76(0.55–0.92) \ 0.001 0.743

Procalcitonin (lg/L) 0.06(0.04–0.12) 0.06(0.04–0.09) 0.245(0.13–0.712) \ 0.001 0.870

Ferritin (ng/mL) 473.0(233.675–915.2) 421.7(213.7–792.35) 1436.8(771.75–2444.5) \ 0.001 0.826

Total bilirubin (lmol/L) 8.85(6.6–12.1) 8.6(6.4–11.7) 12.0(8.7–17.6) \ 0.001 0.692
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The demographic and clinical characteristics of this

cohort were representative. Most of the risk factors found

in non-survivors have been reported in previous study

[14–16]. The top ten features in the models included LDH,

BUN, lymphocyte count, age, SPO2, platelets, CRP, IL-10,

HDL-C, and SaO2, most of which have been repeatedly

documented in the literature [6, 17, 18]. These variables

reflected different aspects of the characteristics of COVID-

19, for example, respiratory failure (SpO2 and SaO2), renal

dysfunction (BUN). Notably, the indicators of the systemic

inflammation (LDH, CRP, IL-10, Platelets) comprised

almost half of the top ten features. Systemic inflammation

has been reported in severe COVID-19 [19]. The cytokine

storm may play a crucial role in the development of res-

piratory failure and consequently organ failure [20, 21].

Higher cytokine level (IL-2R, IL-6, IL-10, and TNF-a) has

been found in non-survivor group patients in this study,

which was consistent with previous studies [21, 22].

Moreover, one of the top ten features in the machine

learning models was IL-10, which is a cytokine with potent

anti-inflammatory properties that can induce T cell

exhaustion [23, 24]. This might partially contribute to the

lymphopenia in severe COVID-19.

Table 1 (continued)

Features Total (N = 2924) Survival (n = 2667) Death (n = 257) P AUC

ALT (U/L) 22.0(14.0–38.0) 22.0(14.0–37.0) 24.0(17.25–42.0) 0.001 0.562

AST (U/L) 25.0(18.0–36.0) 24.0(18.0–34.0) 41.0(29.0–58.0) \ 0.001 0.755

Prealbumin (g/L) 231.0(167.0–278.0) 236.0(178.0–279.0) 118.0(99.5–141.5) \ 0.001 0.843

Albumin (g/L) 36.7(32.6–40.85) 37.4(33.4–41.3) 31.3(28.2–34.2) \ 0.001 0.191

BUN (mmol/L) 4.5(3.5–5.8) 4.4(3.4–5.5) 8.3(5.5–12.775) \ 0.001 0.811

Creatinine (lmol/L) 68.0(56.0–83.0) 67.0(56.0–81.0) 86.5(67.0–110.75) \ 0.001 0.704

eGFR (ml/min) 93.4(79.3–104.0) 94.3(81.9–104.9) 73.2(48.7–90.6) \ 0.001 0.740

TNF-a (pg/ml) 8.1(6.5–10.5) 7.9(6.4–10.0) 11.45(9.025–18.975) \ 0.001 0.760

IL-2R (pg/ml) 405.0(281.0–649.0) 381.0(277.0–581.0) 1096.5(726.75–1717.0) \ 0.001 0.881

IL-6 (pg/ml) 6.03(2.76–22.525) 5.025(2.63–18.362) 59.69(23.16–122.0) \ 0.001 0.887

IL-8 (pg/ml) 10.9(7.6–18.075) 10.4(7.325–16.65) 23.95(13.55–52.35) \ 0.001 0.785

IL-10 (pg/ml) 8.6(6.3–13.4) 7.9(6.1–11.6) 14.6(9.525–25.5) \ 0.001 0.748

Continuous variables were expressed as medians with interquartile range (IQRs) ALT, alanine aminotransferase; AST, aspartate aminotrans-

ferase; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney diseases; WBC, white blood cell count; CRP, C-reactive protein;

ESR, erythrocyte sedimentation rate (ESR); NLR, neutrophil-to-lymphocyte ratio; LDH, lactic dehydrogenase; eGFR, estimated glomerular

filtration rate; HDL-C = high-density lipoprotein cholesterol; SBP = systolic blood pressure; RR, respiratory rate; DBP, diastolic blood pressure;

BUN, blood urea nitrogen; AUC, area under curve

Table 2 Top ten features with highest predictive ability

Feature no. Feature added P value of coef AUC on train AUC on test

1.0 LDH \ 0.001 0.840 0.876

2.0 BUN \ 0.001 0.882 0.877

3.0 Lymphocyte (%) \ 0.001 0.895 0.903

4.0 Age \ 0.001 0.903 0.911

5.0 SPO2 \ 0.001 0.915 0.917

6.0 Platelets \ 0.001 0.923 0.925

7.0 CRP \ 0.001 0.930 0.921

8.0 IL-10 0.001 0.932 0.930

9.0 HDL-C 0.005 0.934 0.932

10.0 SaO2 0.005 0.935 0.931

LDH, lactic dehydrogenase; BUN, blood urea nitrogen; CRP, C-reactive protein; HDL-C = high-density lipoprotein cholesterol; AUC, area

under curve
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The models in this study were derived from real-world

data with comprehensive details, thus the selection bias

was limited and the results were more representative than

other models. All of the three models performed well with

an AUC of 0.911–0.943 and NPVs exceeded 97%. How-

ever, the PPVs were relatively low, which was consistent

with all the other prediction models reported in the litera-

ture. The major reason for this could be the dynamic

change of the disease. All the models in this study as well

as in the literature were derived from baseline data col-

lected on admission, where highly heterogeneity exited. A

dynamic model could have better performance.

Compared with LR models, GBDT performed better in

mortality prediction in both full cohort and subgroup of

different severity. GBDT is not sensitive to missing data,

therefore can serve as a good tool for early detection of

potential critical patients and optimize the medical

resource allocation. In contrast, the LR model has superi-

ority on high-speed calculation and provides results handy

for interpretation, which might be more user-friendly in

clinics. However, this LR full model included 161 features

and the application could be cumbersome for daily clinical

practice, especially when the healthcare systems were

confronting severe human resource shortage. As a simpli-

fied model, the LR-5 model incorporating only 5 common

variables with an excellent PPV and satisfying accuracy

could be recommended as a simple tool for clinical use.

We also conducted external validation for the LR-5

model based on all nationwide confirmed cases of COVID-

19 during Feb 29 and March 29 2020 from Brunei (n = 72).

As a prediction tool, the LR-5 model showed a strong

ability in death prediction with a very high AUC of 0.97,

which implies the high reliability of this LR-5 for death

prediction in populations of other countries. However, it

shall be noted that selection bias due to small sample size

could never be eliminated and further external validation

study using a larger sample size should provide the

warranty.

There were several limitations in this study. Firstly, we

only used fivefold cross-validation rather than external

validation due to the lack of external data. Second, only the

Chinese patients were included, the generalizability and

implementation of these models across different settings

and populations remain unknown.

In conclusion, three models were developed in this

study. GBDT models performed the best in different

severity. LR-5 is a simple tool for routine care.
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