
ORIGINAL ARTICLE

Improving optimization of convolutional neural networks through
parameter fine-tuning

Nicholas Becherer1 • John Pecarina1 • Scott Nykl1 • Kenneth Hopkinson1

Received: 16 May 2017 / Accepted: 13 November 2017 / Published online: 25 November 2017
� The Author(s) 2017. This article is an open access publication

Abstract
In recent years, convolutional neural networks have achieved state-of-the-art performance in a number of computer vision

problems such as image classification. Prior research has shown that a transfer learning technique known as parameter fine-

tuning wherein a network is pre-trained on a different dataset can boost the performance of these networks. However, the

topic of identifying the best source dataset and learning strategy for a given target domain is largely unexplored. Thus, this

research presents and evaluates various transfer learning methods for fine-grained image classification as well as the effect

on ensemble networks. The results clearly demonstrate the effectiveness of parameter fine-tuning over random initial-

ization. We find that training should not be reduced after transferring weights, larger, more similar networks tend to be the

best source task, and parameter fine-tuning can often outperform randomly initialized ensembles. The experimental

framework and findings will help to train models with improved accuracy.

Keywords Convolutional neural networks � Transfer learning � Computer vision � Parameter fine-tuning

1 Introduction

Convolutional neural networks (CNNs) are machine

learning models that extend the traditional artificial neural

network by adding increased depth and additional con-

straints to the early layers. Recent work has focused on

tuning their architecture to achieve maximum performance

on benchmarks such as the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [1, 2].

CNNs are not a new topic in the field of computer

vision. They can trace their origins back to the early 1980s

with Fukushima’s Neocognitron [4]. More directly, they

were shown to be highly effective in the 1990s when used

for handwritten digit recognition and eventually in industry

for automated check readers [5, 6]. They rely on several

successive convolutional layers to extract information from

an image. Since convolution is a shift and slide operation, it

is invariant to translations in the data. Most importantly,

these convolutional layers are fully learnable through the

backprop algorithm, meaning they can identify low- and

high-level patterns through supervised training [7]. How-

ever, they fell out of favor in the new millennium because

of their difficulty scaling to larger problems [8]. Problems

beyond the optical character recognition or low-resolution

imagery were either too computationally expensive or

lacked enough training data to avoid overfitting.

Recently, they have stepped back into the spotlight as

these problems have been overcome. In 2012, Krizhevsky

et al. [1] leveraged several recent advances to overcome

these issues in the 2012 ILSVRC. First, they used NVI-

DIA’s CUDA programming language to implement their

CNN on a highly parallel GPU, reducing run time by orders

of magnitude [9]. Second, the ImageNet competition

included a dataset on the scale of millions of images

automatically sourced from the Internet [10]. Combined

with several new techniques such as dropout regularization

[11] and simple data augmentation, they presented a model

dubbed AlexNet that won the competition. Since the

& John Pecarina

john.pecarina@us.af.mil

Nicholas Becherer

nbechere@citadel.edu

Scott Nykl

scott.nykl@afit.edu

Kenneth Hopkinson

kenneth.hopkinson@afit.edu

1 Air Force Institute of Technology, Dayton, OH 45433, USA

123

Neural Computing and Applications (2019) 31:3469–3479
https://doi.org/10.1007/s00521-017-3285-0

http://orcid.org/0000-0002-1010-6146
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3285-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3285-0&domain=pdf
https://doi.org/10.1007/s00521-017-3285-0

introduction of AlexNet, the winning entries for the Ima-

geNet competition have all been CNNs [2, 12, 13]. These

newer CNNs have largely advanced the field by making the

basic CNN architecture deeper. The Oxford Visual

Geometry Group’s Visual Geometry Group (VGG) net-

work experimented with 11–19 learnable weight layers,

finding that 19 was the optimal architecture [13]. The

current leading network, GoogLeNet, has 6.7 million

learnable weights across 22 layers [2]. Others have focused

on improving the performance of CNNs through data

augmentation and training techniques [14]. Yet ultimately,

all techniques still required large amounts of training data

to be effective.

The issue compelling the need for large amounts of data

is due to the fact that CNN training is an extremely com-

plex optimization problem. They typically use stochastic

gradient descent (SGD) to find the minima for a loss

function and this technique uses large labeled training

datasets to minimize effectively. Since SGD is a greedy

method, it is not guaranteed to find the global minima. This

means that initialization can have an effect on the final

outcome. These weights are usually initialized by sampling

from a Gaussian distribution [15]. However, it has been

shown that a transfer learning technique known as

parameter fine-tuning can improve the performance of a

CNN compared to random initialization (sometimes to a

substantial degree) [3].

However, there is a transfer learning technique that can

help overcome a lack of training data. Parameter fine-

tuning is a method wherein a network is pre-trained on a

different data set and then retrained on the target set.

Research has shown this method boosts the performance of

a network over random initialization [3]. However,

research on this topic is still relatively scarce. This paper

will present several gaps in our understanding as well a

framework for investigating them. We investigate three

main areas. The first is the optimal learn rate for transferred

layers. The second is to analyze how different source

datasets affect the outcome on a number of target datasets.

Lastly, we compare an ensemble of fine-tuned networks to

an ensemble of randomly initialized networks. These

experiments are done through an experimental framework

that allows a single variable to be manipulated and studied

across several datasets. Lastly, we apply this methodology

to a unique dataset aggregated from several sources and

present the results.

This paper is organized as follows. Section 2 describes

related work in the area of transfer learning for CNNs, and

Sect. 3 exposes our experimental framework. In Sect. 4,

we investigate the claim made by Girshick [18] that the

reduction in the learning rate may improve the accuracy of

the transfer task. We evaluate the use of various source

data sets in Sect. 5, and in Sect. 6 we explore the use of

ensembles of transfer networks. A conclusion discussion

and suggestion of future work is described in Sect. 7.

2 Related works in transfer learning
for CNNs

Transfer learning is the study of using data gained from one

problem in machine learning and applying it to another

related, yet different, problem. With CNNs, there are two

main ways to apply transfer learning. The first is to remove

the output layer of a trained network and use the raw output

of the previous fully connected layer as a generic feature

vector that describes a particular image. These features are

then used in a number of algorithms which were originally

designed around using SIFT or SURF features [16, 17].

Since CNNs are inherently only capable of image classi-

fication, extra algorithmic work is necessary to apply it to

another problem. The second transfer learning technique is

known as parameter fine-tuning, detailed above. This is the

focus of this paper.

After the publication of Krizhevsky’s AlexNet, Girshick

et al. demonstrated both kinds of transfer learning in a

single paper [18]. They fine-tuned AlexNet trained on the

ImageNet dataset to target the 2007 PASCAL VOC data-

set. They note that fine-tuning significantly increases per-

formance; however, they do not report any numbers. One

particular interesting claim made is that they reduce the

learning rate during fine-tuning in order to avoid ‘clob-

bering the initialization’ of the original CNN. They provide

no further reasoning or evidence that this is optimal. This

paper investigates this claim and finds it to be suboptimal.

After fine-tuning, they then pass regions of the image

through their CNN and classify the region with SVMs

based on the raw output of the CNN. Their methodology is

extremely similar to an algorithm that relies on SIFT fea-

tures, but outperforms it [19]. Girshick et al. [18] are

among the first to demonstrate that CNNs can be used

effectively for other computer vision problems.

The work of both Razavian et al. [20] and Azizpour

et al. [21] also focuses on applying CNNs to other prob-

lems. In general, they find that CNNs coupled with SVMs

provide competitive results to existing state-of-the-art

solutions for many datasets. The paper from Azizpour in

particular identifies all the factors involved in transfer

learning. However, they only test two different source

datasets which are similar in nature. This paper provides

and executes an experimental framework for testing dif-

ferent source networks on several different target datasets.

Research from Yosinski et al. [3] focuses exclusively on

parameter fine-tuning. Yosinski et al. randomly divide the

ImageNet dataset in half. For each half, they train on one

half and then target the second half. In both cases, the fine-

3470 Neural Computing and Applications (2019) 31:3469–3479

123

tuned network outperformed the randomly initialized net-

work. They also provide evidence against the claim made

by Girshick et al. [18] by showing that halting the learning

in the transferred layers can greatly reduce the perfor-

mance. Lastly, they attempt to see if the effect is still

present when more dissimilar datasets are used relative to

the source. They do this by separating the dataset into man-

made and natural subsets. They find this delivers less

improvement compared to the original split. However, this

split does not quite capture visual dissimilarity correctly.

Since CNNs operate on visual information, more distant

tasks should be more visually dissimilar. Consider the case

of lemon, tennis ball, and microwave (all classes in the

dataset). Visually, a tennis ball and a lemon are similar

because of similar shape and color. However, microwave is

considered closer to tennis ball than lemon under the cat-

egorical man-made definition. The dataset we present

better encapsulates visual dissimilarity.

Another question not currently addressed in the litera-

ture is the effect of fine-tuning on ensembles of CNNs. The

top performing entries of each year’s ILSVRC have all

used ensembles of CNNs [1, 2, 12, 13]. Any given CNN

may overfit to some particular class or classes of data.

Because of the stochastic nature of SGD, however, dif-

ferent CNNs trained on the same dataset are unlikely to all

overfit exactly the same way. By averaging the output of

each individual CNN, the propensity to overfit is reduced,

leading to an overall model that is more general [22]. The

next section explains the experimental framework used to

address the various gaps in the literature in the area of

parameter fine-tuning.

3 Experimental framework and dataset

Herein we provide an exposition of an experimental

framework and dataset to investigate transfer learning and

parameter fine-tuning. To give context to the reader, Fig. 1

shows a simple example of parameter fine-tuning, depict-

ing a network trained on a source task (left) to be applied to

a network trained on a target task (right). The source task

network, with green nodes, proceeds through training with

learned weights represented by blue lines and mapped to

two outputs. To transfer the network, a layer is cut off (in

this case only the output layer, but not necessarily so).

However, due to the mismatched nature of the outputs both

in classification and number, the weights in the final

remaining layer must be reinitialized, which is represented

in the figure by red lines. After transfer, the learned weights

optimize SGD to the target task with three outputs.

To investigate gaps in the topic of parameter fine-tuning,

this paper addresses three open questions:

1. Should learning be reduced in transferred layers?

2. What type of dataset serves as the best source task?

3. Do ensembles of fine-tuned CNNs outperform ensem-

bles of randomly initialized CNNs?

In order to answer these questions, we assembled a

dataset that aggregates seven different fine-grained data-

sets, described in Table 1 with a breakdown of the data’s

characteristics. Each dataset has one major classification

and a number of minor classification labels. For example,

the plane dataset has a major class label of simply plane. It

has 78 minor class labels such as Boeing 737 and Spitfire.

We refer to the major classes as generalist (G) and the

minor as classes as high-fan (HF) for the way they ‘fan out’

the dataset.

This allows us to create several configurations using the

same aggregated dataset. When a network is trained on the

entirety of the dataset, it is referred to as a superset net-

work. Depending on how the data are labeled, the superset

network may either be a generalist or a high-fan network.

A generalist classifies all images at the major class level

(e.g., plane vs. bird). A high-fan network classifies every-

thing at the minor class level (e.g., 737 vs. Spitfire vs.

Cardinal vs. Crow). Generalist and high-fan networks also

have a variant where a single subset is removed. For

example, there are the generalist-without-planes (GWP)

and high-fan-without-planes (HFWP). A network trained

only on a single subset of data is a specialist network.

Fig. 1 Fine-tuning visualized,

where the network on the left is

trained on a task similar to the

transfer task. At right the pre-

trained network, the output

layer is cut off and the final

weight layer is transferred to a

network with varied outputs

(colour figure online)

Neural Computing and Applications (2019) 31:3469–3479 3471

123

Specialist networks always classify at the minor class level.

Figure 2 shows an example of the different dataset con-

figurations. It shows the number of images and a notional

set of classes in each major class (for readability). This will

be discussed further in Sect. 5.

The experimental framework is based on using different

initializations for each specialist network. The first is ran-

dom initialization, which is referred to as a scratch

initialization, and is used as a control. The other four come

from transferring the weights learned in the superset net-

works. This framework has a number of inherent advan-

tages. By using 7 different subsets of data, we effectively

have 7 different trials to verify results. We can also mea-

sure the effect on different types of datasets. For example,

the bird subset has a large number of classes but little

training data per class, while the dog dataset has fewer

Table 1 A high-level overview

of the multiple class image

datasets

Major class Images Train Test Categories Median Source

Vegetable 17,562 13243 4409 24 800 ImageNet [10]

Cat 2392 1795 597 12 200 Oxford Pets [23]

Flower 8189 6180 2009 102 66 Oxford Flowers [24]

Bird 11,788 8872 2916 200 60 CalTech-UCSD Birds [25]

Sign 5886 4424 1462 24 189 KUL Belgian Signs [26]

Dog 71,947 53,982 17,965 111 800 Stanford Dogsa [27]

Plane 17,800 13,350 4450 78 100 FGVC [28], Mashb [8]

Total 135,654 101,846 33,808 551 91

aSupplemented with data from the given ImageNet synsets
bThis dataset is not publicly available

Fig. 2 Different configurations

of the multiclass image dataset.

At top left a generalist

(G) dataset is shown, then a

generalist dataset without planes

(GWP, top right). At bottom

left, a high-fan (HF) dataset,

depicting notional subclasses,

finally, high-fan-without-planes

(HFWP) is shown at bottom

right

3472 Neural Computing and Applications (2019) 31:3469–3479

123

classes and a much larger amount of training data per class.

Data are split 75% for training and 25% for testing. Test

data are never used for training on any network. In order to

normalize the effect of transfer learning and make the

effect comparable across multiple datasets, we use the

following formula to measure the error reduction rate:

Reduction rate ¼ 1� Scratch errors� transfer errorsð Þ
Scratch errors

:

ð1Þ

There are many parameters that can be adjusted when it

comes to training CNNs. Typically, one would tune each

parameter to find the best set for their particular problem.

However, we are interested only in the effect of fine-tun-

ing. In order to isolate this effect, we use the same set of

hyperparameters for all networks. This likely leads to

suboptimal performance for particular datasets, but optimal

performance is not our goal. Unless otherwise noted, the

parameters described below are used across all

experiments.

The basic network architecture to be used for this

experiment is the same one as in AlexNet [1]. AlexNet has

5 convolutional layers and three fully connected layers

attached to a SoftMax layer at the output that generates a

probability distribution of all possible classes. While other

architectures have been used to achieve better results on the

ILVSRC challenge, AlexNet is used for several reasons.

First, it is a well-known architecture and has become a

standard architecture for experiments on CNNs themselves

[3]. Second, even with high-powered GPUs, training a

CNN takes days, and more complicated models take longer

(the authors of VGG reported that training took 2-3 weeks

on similar hardware [13]). Given the number of CNNs that

need to be trained for this experiment, time is a nontrivial

factor.

There still remains a number of network hyperparame-

ters to be defined. Many of these hyperparameters were

chosen by experimenting until the network began to train

effectively. Large minibatches can lead to slow conver-

gence, while smaller minibatches may lead to suboptimal

convergence. Minibatch size was set to 256. The learn rate

was initially set to .001. It was reduced by half every

25,000 training iterations. It is unlikely that this is the best

learning strategy for every dataset. However, the goal of

this research is not to find the best possible results for each

dataset; rather we are trying to study the effect of fine-

tuning, so we standardized on a schedule of learning rate

multipliers and number of training iterations to measure

affects across the datasets. Tweaking the learning strategy

for every dataset would multiply the amount of training

required, which would have made an experiment on this

scale unfeasible due to time constraints. It takes a 3-4 days

to capture results on a particular setting. Most networks

converged to an optimal solution in less than 100,000

training iterations and then began to overfit; however, for

the sake of consistency and thoroughness, all networks

were trained for 200,000 iterations. Training consisted of

100 iterations followed by a complete test against the entire

validation set. When a network’s accuracy is reported, it is

the model that had the best accuracy on the validation set.

However, the best model was never used for transferring.

The model saved at 200,000 iterations was always the

source model. This is in line with the research done by

Azizpour et al. [21], which found that early stopping was

less beneficial than overfitting, although the benefit of

overfitting diminishes beyond 200,000 iterations.

All experiments were done using Berkeley Caffe [29].

Caffe was chosen because it supports GPU-accelerated

training which makes research on this scale feasible. It also

makes it simple to transfer learned weights. Furthermore, it

is very popular and well supported by the community. It is

expected that the same results would be achieved regard-

less of deep learning framework used. The main difference

is the interface and underlying implementation, not the

algorithm.

4 Optimizing learn rate

The first experiment was designed to evaluate the claim

by Girshick et al. [18] that there is some value in

reducing the learning rate during fine-tuning. To test this

claim, we applied a learn rate multiplier to the transferred

layers. By varying our learn rate multiplier from 0 to 1,

we can measure the effect of preserving the initialization.

Using a multiplier of 0 freezes the learning in the trans-

ferred layers and absolutely preserves the initialization.

We increase the multiplier to 1 in .2 increments. By the

time we have a multiplier of 1, we have effectively

eschewed the learn rate multiplier and only use the global

learn rate. A network with no transferred layers is trained

from scratch to serve as a baseline comparison. For this

experiment, the transferred weights came from pretraining

on the generalist network.

Using the planes subset as the target dataset, Fig. 3

shows the result that using a learning rate multiplier is

suboptimal to simply using the global learning rate.

Completely freezing the initialization led to an accuracy of

18.584%. It was omitted from Fig. 3 in order to prevent

compressing the scale of the rest of the results shown in the

figure. Other than that, all other fine-tuned networks out-

performed the scratch initialization. The global learning

rate performed the best overall. This contradicts the claim

of Girshick for the situation where the classification task is

aimed at a straightforward labeling of the designated

dataset.

Neural Computing and Applications (2019) 31:3469–3479 3473

123

Recalling the mechanisms of training a CNN that

involve minimizing an optimization problem, the function

to be minimized is the cross-entropy loss function of the

network. Since cross-entropy loss is a nonconvex function,

it may have many local minima that are different from the

global minima. Relying on a greedy algorithm like

stochastic gradient descent causes convergence to the local

minima rather than the global minima. By choosing a better

initialization, better minima may be found. Reducing the

learn rate of the network after transferring weights does

nothing to affect the initialization; if anything, it prevents

the valley of the local minima from being efficiently tra-

versed. For this reason we recommend the global learning

rate for straightforward labeling tasks. Attempting to

interpret Girshick’s claim another way, it may be possible

to achieve higher classification accuracy if a secondary

classification task is to be pursued. We hope to approach

that answer in part in the next section.

5 Analyzing effect of the source task

The next experimental question analyzes what type of

dataset may serve as the best source for the labeling task, in

other words, what data should be used in pretraining. An

open question for fine-tuning is which dataset should be

chosen for pretraining. As mentioned earlier, our dataset

better allows us to measure the effect of source task. Using

our dataset, we can control for factors such as the type of

source task, the visual similarity of the source task, and the

amount of training data in the target task. For each major

class in the dataset, we train a specialist network with 5

different initializations. The first is the scratch or random

initialization. This serves as the control and acts as the

baseline against which all other initializations are com-

pared. The remaining initializations come from transferring

weights trained on different configurations of the entire

dataset. They are the generalist, high-fan, generalist-with-

out, and high-fan-without datasets where the without net-

work has had the major class of the target task removed.

These serve as a more visually distant source task com-

pared to the full dataset. With these different initializations,

we can measure the effect source task has on fine-grained

image classification as well as the effect that visual simi-

larity has. Furthermore, by repeating this experiment on

each major class subset, we can see the effect of increased

amounts of training data, starting with Fig. 4, described

next.

Figure 4 shows the results from the first five specialist

networks. All networks showed an improvement over

random initialization regardless of which source was used

for fine-tuning. The benefit varied from task to task. For

example, both the bird and flower datasets have similar

amounts of data in the training set. However, the flower

network had a much larger increase in both absolute and

relative terms of accuracy compared to the bird dataset. In

general, the more distant high-fan-without and generalist-

without networks underperformed their more visually

similar counterparts. The one exception to this trend is the

high-fan-without initialization for the vegetable network

was the highest performing initialization for that specialist

network.

Figure 5 shows the results from the dog and sign net-

works, which seem to be the outliers. The dog specialist

network is noteworthy because the high-fan-without ini-

tialization actually underperformed the random scratch

initialization. In the 28 fine-tuned networks trained for this

experiment, this was the only instance of this happening.

The other initializations also provided very little benefit

over random initialization, although they did provide some

benefit. The results for the sign specialist network are also

shown. These are noteworthy due to the high performance

of the scratch network. It was not realized at the time of

data collection, but as of 2013 the signs dataset is con-

sidered solved [30]. Because it is less difficult and has little

room for improvement, this type of dataset is a poor choice

for incorporation and is not recommended for transfer

learning.

Figure 6 shows the normalized results for all 7 subsets

of data. Overall, the high-fan initialization was most often

the best choice, turning out to be the top performing ini-

tialization 3 out of 7 times. Table 2 shows the raw data for

each network as well as the mean of the data. The mean

also indicates that the high-fan initialization generally leads

to the best performance. However, it was noted that the

Fig. 3 The results from varying the learn rate multiplier in the

transferred layers using the planes subset of the dataset. The scratch

network is the control, and the frozen trial was omitted for sake of

clarity

3474 Neural Computing and Applications (2019) 31:3469–3479

123

mean indicates that the generalist was the worst performing

initialization. This is due to the anomalous behavior of the

sign specialist network, where all other initializations

outperform the generalist initialization. In no other dataset

does the generalist-without initialization outperform the

generalist initialization. When the mean is recomputed

without the results from the sign dataset, the high-fan

networks remain the best initialization and the generalist no

Fig. 4 The results from the first five specialist networks. From left to right: bird, cat, flower, plane, and vegetable. A sample image from each

dataset is shown above the graph for that major class

Neural Computing and Applications (2019) 31:3469–3479 3475

123

longer is seen as underperforming the generalist-without

networks.

The results also show that the more visually dissimilar

without networks tend to underperform their more similar

cousins. This demonstrates that more visually similar tasks

should be chosen as the source task. However, there

doesn’t seem to be a clear connection between the amount

of training data available in the target task and the effect on

parameter fine-tuning. Both the flower and bird datasets

had very little training data available. The best flower

initialization leads to an error reduction rate of 52.73%,

while the best bird initialization only had an error reduction

rate of 9.60%. Meanwhile, the dog dataset, which had the

most training data, benefited the least from parameter fine-

tuning. The vegetable dataset, which had a similar amount

of training data per class but far fewer classes, had a more

typical benefit.

6 Ensembles of transfer networks

Ensembles of classifiers have long been known to outper-

form individuals classifiers because the propensity of any

single model to overfit is reduced [5]. Ensembles of CNNs

work by simply passing the same image through each

individual CNN and taking the mean of each probability

distribution to obtain the ensemble’s probability distribu-

tion of the output. Since fine-tuned networks tend to out-

perform networks trained from scratch, it seems intuitive

that an ensemble of fine-tuned networks would outperform

an ensemble of scratch networks. In order to test this, we

trained an additional three scratch networks for each major

class (except for the sign dataset). This allows direct

comparison of 4 scratch networks to the four fine-tuned

networks trained in the above experiment. Figure 7 shows

the results for the plane specialist networks. As expected,

Fig. 5 The results for two outlier specialist networks, dog and sign. A sample image from each dataset is shown above the graph for that major

class

Fig. 6 The error reduction rate of every different datasets. This

method normalizes the results and allows us to compare the effect

between datasets

3476 Neural Computing and Applications (2019) 31:3469–3479

123

the ensembles produced fewer errors than the best model

individually. However, it was surprising to see that the best

fine-tuned network outperformed the entire ensemble of

scratch networks. In fact, the ensemble of scratch networks

only outperformed one of the fine-tuned networks. This is

particularly interesting because training and deploying an

ensemble of 4 CNNs requires 4 times as many computa-

tional resources, whereas fine-tuning a single network at

most requires only twice the training time and no additional

resources for deployment.

Figure 8 shows the results for all major classes. The

trend observed in the plane dataset is repeated in all other

major classes with one exception. The dog subset, which

benefited very little from parameter fine-tuning, has the

ensemble of scratch networks outperform the best fine-

tuned network. Still, the ensemble of fine-tuned networks

outperformed the ensemble of scratch networks, though.

Recall that the high-fan-without initialization underper-

formed the scratch network. It was thought that removing

this network from the ensemble might improve the per-

formance of the ensemble. However, doing this caused the

overall accuracy to drop from 42.4 to 42.21%. Ensembles

of CNNs are more accurate than the individual networks

that comprise them. By improving the accuracy of the

individual networks through parameter fine-tuning, it

seems obvious that the performance of the ensemble would

improve as well. Our results confirm this assumption.

7 Conclusion and future work

This paper makes several important contributions. First,

we find that contrary to the assertion of Girshick [18],

there is no benefit to reducing the learning in a fine-tuned

network. The initialization provides a benefit but the

initialization is not better that full training on the target.

Next, in the study of different source tasks, we observed

that pretraining on a dataset with a wide variety of finely

grained images provides a better source task than a

smaller variety of more general classes. Furthermore,

pretraining on a dataset with no overlap with the target

dataset provides less of a benefit than a more visually

similar source dataset. The amount of training data in the

Table 2 The reduction in error

rate for each dataset
Dataset Generalist (%) High-fan (%) Generalist w/out (%) High-fan w/out (%)

Sign 18.1657 54.5414 60.6114 54.5414

Vegetable 21.2968 22.0706 20.5247 22.3421

Dog 2.7095 2.4938 1.5842 - 4.4402

Cat 44.6799 48.2259 36.1694 46.8075

Flower 45.7029 52.7343 39.9724 44.8423

Bird 8.9763 9.6034 5.5840 5.1137

Plane 18.6788 10.1740 16.2494 3.9466

Mean 22.871 28.5491 25.8136 24.7362

Mean w/out Sign 23.674 24.217 20.014 19.769

Fig. 7 Comparison of ensembles for the plane subset. The best fine-

tuned network alone outperforms the ensemble of scratch networks

Fig. 8 The accuracy of the best scratch and fine-tuned networks

compared to their respective ensembles

Neural Computing and Applications (2019) 31:3469–3479 3477

123

target task seems to have little correlation with the benefit

provided by parameter fine-tuning. Lastly, we study the

effect of fine-tuning ensembles of networks. As expected,

an ensemble of fine-tuned networks outperforms an

ensemble of randomly initialized networks. However, it

also seems to be the case that a single fine-tuned network

can outperform an entire ensemble of randomly initialized

networks. The results demonstrate that parameter fine-

tuning almost always leads to an improvement in image

classification accuracy. Given these results, we see no

reason not to utilize parameter fine-tuning. The only

possible downside is the increased training time required

for pretraining. However, if using an existing network

architecture with available trained models, there may be

no increase in training time. Many applications, such as

automatic navigation of unmanned vehicles, require a

high degree of accuracy in order to rely on a computer

vision solution. This technique may help state-of-the-art

solutions reach their required thresholds.

There are several directions in which this work could

extend. An obvious example would be to apply parameter

fine-tuning to a production system to demonstrate that the

effect is valid in real-world scenarios. One would be to find

the optimal ensemble composition. For example, would the

plane specialist ensemble perform better with four sepa-

rately trained generalist initializations or does the variety of

four different initializations produce the benefit? Another

area would be to combine our methodology with that of

Azizpour et al. [20] to measure the effect of source task on

other computer vision problems. Yet another interest area

would be to apply our methodology a new architecture

such as GoogLeNet to see if our results scale to a much

larger CNN [2]. These and certainly other works may

extend from this type of research. The value of doing so

will continue to refine the theory behind convolutional

neural networks since the field is so new. Insights gained

from these experimental observations may allow for

stronger mathematical constructs and insights to be estab-

lished. In the meantime, they help inform researchers on

best practices for training and pretraining networks for

image classification.

Acknowledgements This work was sponsored by the Vehicles

Directorate of the Air Force Research Laboratory. The views

expressed in this article are those of the author and do not necessarily

reflect the official policy or position of the Air Force, Defense

Department or the U.S. Government.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Krizhevsky A, Sulskever I, Hinton GE (2012) ImageNet classi-

fication with deep convolutional neural networks. In: Advances in

neural information processing systems, pp 1–9

2. Szegedy C, Liu W, Jia Y, Sermanet P (2014) Going deeper with

convolutions. arXiv Prepr. arXiv 1409.4842

3. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable

are features in deep neural networks? In: Advances in neural

information processing systems (Proceedings NIPS), vol 27,

pp 1–9

4. Fukushima K, Miyake S (1982) Neocognitron: a new algorithm

for pattern recognition tolerant of deformations and shifts in

position. Pattern Recognit 15(6):455–469

5. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE,

Hubbard W, Jackel LD (1990) Handwritten digit recognition with

a back-propagation network. In: Advances in neural information

processing systems, vol 2

6. LeCun Y, Bottou L, Bengio Y (1997) Reading checks with

multilayer graph transformer networks. In: International confer-

ence on acoustics, speech, and signal processing, pp 151–154

7. LeCun Y, Bengio Y, Hinton GE (2015) Deep learning. Nature

521(7553):436–444

8. Mash R, Becherer N, Woolley B, Pecarina J (2016) Toward

aircraft recognition with convolutional neural networks. In:

National aerospace and electronics conference

9. Strigl D, Kofler K, Podlipnig S (2010) Performance and scala-

bility of GPU-based convolutional neural networks. In: 2010 18th

Euromicro conference on parallel, distributed network-based

process, pp 317–324

10. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009)

ImageNet: a large-scale hierarchical image database. In: 2009

IEEE conference on computer vision and pattern recognition,

pp 2–9

11. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhut-

dinov RR (2012) Improving neural networks by preventing co-

adaptation of feature detectors. arXiv e-prints, pp 1–18

12. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y

(2013) OverFeat: integrated recognition, localization and detec-

tion using convolutional networks. arXiv Prepr. arXiv,

p 1312.6229

13. Simonyan K, Zisserman A (2014) Very deep convolutional net-

works for large-scale image recognition. In: ImageNet Challenge,

pp 1–10

14. Howard AG (2013) Some improvements on deep convolutional

neural network based image classification. arXiv Prepr.

arXiv1312.5402, pp 1–6

15. Krähenbühl P, Doersch C, Donahue J, Darrell T (2015) Data-

dependent initializations of convolutional neural networks. In:

International conference on computer vision, pp 1–12

16. Lowe DG (1999) SIFT. Comput Vis 2:1150–1157

17. Bay H, Tuytelaars T, Van Gool L, Leonardis A, Bischof H, Pinz

A (2006) SURF: speeded up robust features. Comput Vis

3951:404–417

18. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature

hierarchies for accurate object detection and semantic segmen-

tation. In: Proceedings of the IEEE conference on computer

vision and pattern recognition, pp 580–587

19. Uijlings JRR, Van De Sande KEA, Gevers T, Smeulders AWM

(2013) Selective search for object recognition. Int J Comput Vis

104(2):154–171

20. Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S, (2014)

CNN features off-the-shelf: an astounding baseline for recogni-

tion. In: Proceedings of the IEEE conference on computer vision

and pattern recognition workshops, pp 806–813

3478 Neural Computing and Applications (2019) 31:3469–3479

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

21. Azizpour H, Sharif Razavian A, Sullivan J, Maki A, Carlsson S,

(2015) From generic to specific deep representations for visual

recognition. In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops, pp 36–45

22. Giacinto G, Roli F (2001) Design of effective neural network

ensembles for image classification purposes. Image Vis Comput

19(9–10):699–707

23. Parkhi OM, Vedaldi A, Zisserman A, Jawahar CV (2012) Cats

and dogs. In: 2012 IEEE conference on computer vision and

pattern recognition, pp 3498–3505

24. Nilsback M-E, Zisserman A (2006) A visual vocabulary for

flower classification. In: Computer vision and pattern recognition,

pp 1447–1454

25. Welinder P, Branson S, Mita T, Wah C (2010) Caltech-UCSD

birds 200. CalTech 200:1–15

26. Timofte R, Zimmermann K, Van Gool L (2014) Multi-view

traffic sign detection, recognition, and 3D localisation. Mach Vis

Appl 25(3):633–647

27. Khosla A, Jayadevaprakash N, Yao B, Fei-Fei L (2011) Novel

dataset for fine-grained image categorization: Stanford dogs. In:

First work. Fine-grained visual categorization. IEEE Conference

on computer vision and pattern recognition

28. Maji S, Rahtu E, Kannala J, Blaschko M, Vedaldi A (2013) Fine-

grained visual classification of aircraft. TechReport

29. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R,

Guadarrama S, Darrell T (2014) Caffe: convolutional architecture

for fast feature embedding. In: Proceedings of ACM international

conference on multimedia—MM’14, pp 675–678

30. Mathias M, Timofte R, Benenson R, Van Gool L (2013) Traffic

sign recognition—How far are we from the solution? In: 2013

international joint conference on neural networks (IJCNN),

pp 1–8

Neural Computing and Applications (2019) 31:3469–3479 3479

123

	Improving optimization of convolutional neural networks through parameter fine-tuning
	Abstract
	Introduction
	Related works in transfer learning for CNNs
	Experimental framework and dataset
	Optimizing learn rate
	Analyzing effect of the source task
	Ensembles of transfer networks
	Conclusion and future work
	Acknowledgements
	References

