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Abstract
Hydrocarbon production from a gas condensate reservoir has a major concern to the petroleum industry around the world.
Due to pressure decline in a reservoir, liquid drops out of solution and cause a significant reduction of well productivity. As
a result, huge amount of valuable oil stays underground. The proper production management for a gas condensate reservoir
minimizes or eliminates the blocking problems. Optimization of condensate recovery can be achieved through appropriate
selection of production and injection rates. However, determination of the optimal rates is a complex problem, involving many
factors including geological uncertainty, rock petrophysical characteristics, fluid properties, economic costs, and technical
ability. In this research, nature-inspired optimization algorithms are employed to evaluate the potential of production boost.
Numerical testing and comparative study revealed that investigated natural-inspired algorithms outperform widely reported
in the literature optimization methods and provide a higher quality solutions. The primary concern of this research is to
develop an optimal gas condensate production strategy in terms of economic efficiency by utilization of nature-inspired
optimization algorithm and providing their ability to generate better quality solution than engineering approach as well as
gradient optimization.

Keywords Nature-inspired algorithms · Gas condensate reservoir · Production optimization

1 Introduction

Oil and gas reservoirs can be divided into five categories
based on fluid types (McCain 1990): black oil—consists
of heavy, non-volatile hydrocarbons; volatile oil—contains
fewer heavy molecules and more intermediate components
(C2H6–C6H14); condensate–condensate gas is very similar
to volatile oils in terms of produced oil; however, the reser-
voir temperature of the condensate gas reservoir is greater
than the critical temperature of the fluid; and volatile oil
is liquefied at original reservoir pressure and temperature,
and a condensate gas is in gaseous state; wet gas–natural
gas that is rich in significant heavy hydrocarbons such as
propane, butane and other liquid hydrocarbons; dry gas–
natural gas that appears in the absence of condensate and
liquid hydrocarbons or gas from which condensable hydro-
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carbons were removed. Hydrocarbons produced from gas
condensate reservoir have a major concern to the petroleum
industry around the world. Gas condensate reservoirs are sig-
nificantly different from conventional reservoirs in terms of
thermodynamic properties and flow characteristics. Reser-
voir performance prediction and optimization require careful
analysis and project management (Fasesan et al. 2003;
Bozorgzadeh et al. 2006). During production process, reser-
voir pressure falls below dew point and a liquid phase rich in
heavy ends drops out of solution in near wellbore zone. As a
result, volume of condensate becomes immobile and does not
take part in the flow stage (App et al. 2007). The phase behav-
ior of gas condensate reservoir type is strongly dependent on
phase envelope and thermodynamic conditions of reservoirs
fluid. A typical P–T (pressure–temperature) phase diagram
(Fig. 1) has the critical temperature lower than the reser-
voir temperature; however, the cricondentherm temperature
is larger than the reservoir temperature. The microscopic
condensate droplets tend to be trapped in pores causing addi-
tional pressure drop in near wellbore zone (Fig. 2). In the
zones far from well, the liquid is immobile due to low satu-
ration and capillary forces. Moving through the well center
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Fig. 1 A typical phase diagram for gas condensate reservoir. Because
of the isothermal pressure depletion, single phase fluid is split into
liquid and gas after crossing dew point line. The liquid–gas fractions
are marked by lines, based on Rahimzadeh et al. (2016)

Fig. 2 Different regions where condensate dropout occurs due to
pressure depletion. Condensate saturation below critical (Sor) caused
immobility, based on Rahimzadeh et al. (2016)

liquid saturation is higher than critical value (Sor) and mobil-
ity increases. Condensate blockage problems are registered
in the numerous hydrocarbon fields. Arun field operated by
Mobil lost over 50% of its initial productivity due to conden-
sations issues (Afidick et al. 1994; Barnum et al. 1995). Shell
reported 67% productivity loss (Smits et al. 2001) because
of the same aspect.

Various remedial actions to alleviate the pressure drop
caused by gas condensate blockage through years were pro-
posed. Themost common activity is gas injection tomaintain
reservoir pressure above dew point line. Dry gas injections
were implemented in Sleipnerost Ty (Huerta Quinones et al.

2010) and Margham condensate gas field in Dubai (Ernster
et al. 1988). In the field practice, dry gas (consisting ofmostly
methane) has been often used as injection gas; nevertheless,
some researchers proposemore widely available and cheaper
substitute in the form of CO2, nitrogen, air, C4H10 + C5H12

injection, rich gas injection (Siregar et al. 1992; Sanger et al.
1998; Sadooni and Zonnouri 2015; Xiong et al. 2007; Lewis
and Couples 1993; Asar et al. 1988). However, due to mixing
of nitrogen, CO2 and others with reservoir fluid, significant
liquid dropout occurs, even though the pressure ismaintained
above the dew point value of the gas. Abel et al. (1970) intro-
duced two schemes of gas injection: full and partial pressure
maintenance. The most widely used technique to improve
gas condensate reservoir performance is gas cycling (Kle-
insteiber et al. 1983). The objective of the cycling in gas
condensate reservoir is to maintain pressure close to the dew
point and recover more wet gas with a maximum condensate
yield. The problem is that during the life of the reservoir,
breakthrough appears and the condensate yield decreases in
some wells located close to the gas injectors.

Efficiency prediction of gas condensate field development
strategy is usually carried out by enumeration of certain
amount of possibilities (trial and error method). Over the
past few years, several investigators proposed approaches to
evaluate gas condensate reservoirs and optimize condensate
recovery. Kamari et al. (2017) researched the influence of
reservoir pore size on condensate PVT properties and con-
cluded that increase in pore sizes and reservoir temperature
increases dew point pressure. Sakhaei et al. (2017) developed
the study of enhancement condensate production through
wettability alteration. Su et al. (2017) performed experimen-
tal investigation and modeling simulation. Results revealed
that the gas injection technique is more effective than water
flooding method. Zhou et al. (2016) evaluated the critical gas
rate necessary to prevent liquid loading in deep condensate
gas wells. Kalugin et al. (2015) proposed to use the steepest
descent method with fractional step to determine the optimal
production rates which can increase volume of recovered
gas condensate. For clarity, only depletion mode was con-
sidered. Ghorbani et al. (2017) suggested to use the firefly
optimization algorithm for prediction of gas flow rates from
gas condensate reservoirs throughwellhead chokes. Kaydani
et al. (2016) established themulti-gene genetic programming
model for dew point determination with sensitivity analy-
sis. Mahdiyar and Jamiolahmady (2014) developed the new
methodology for the optimization of fracture design in gas
condensate fields.

Because of reservoir heterogeneity, the configuration of
exposure well and different factors, it is dubious that solution
found during scenario evaluation process is really optimal.
For that reason, several nature-inspired optimization algo-
rithms, which are metaheuristic models, offer high-quality
solution for the given optimization problem, which are
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applied to develop optimal gas condensate production strat-
egy. Nature-inspired algorithms mimics nature mechanisms
and principles which increased the evolutionary adaptabil-
ity of individuals to the environment, enabling survival and
reproduction. For years, humans have utilized the guidance of
nature in finding the most appropriate solution for complex
engineering problems (Yazdani and Jolai 2016). However,
due to principle of “No free lunch theorems” there is no
optimization technique for solving all optimization problems
(Wolpert and Macready 1997). Different algorithms possess
capabilities for solving different types of optimizing issues,
since it is difficult to predict the best algorithm for every opti-
mization problem in terms of objection function value and
computational cost.

Motivated by the above consideration, in this paper, par-
ticle swarm optimization (PSO), genetic algorithm (GA),
grasshopper optimization algorithm (GOA), moth-flame
optimization (MFO) colony and Grey Wolf optimization
(GWO) were in detail analyzed to find the best solution
which influence and determine the right gas condensate
field management. PSO and GA were chosen because of
large amount of real case optimization studies, not only for
petroleum engineering field. The GOA, MFO and GWO are
relatively newalgorithms andwere chosendue to their bench-
mark results comparing with different methods (Heidari and
Pahlavani 2017; Sulaiman et al. 2015; Mei et al. 2017; Med-
jahed et al. 2016; Kamboj 2016; de Moura Oliveira et al.
2016). Obtained results were compared with expert knowl-
edge approach for the gas condensate recovery process and
with adjoint gradient optimization. From the experimental
results, the investigated natural-inspired algorithms outper-
form knowledge—the base gradient optimization approach.

The remainder of this paper is organized as follows:
Section 2 briefly presents the basic concept of gas conden-
sate field production optimization, work flowchart, objective
function definition and description of the utilized algorithms;
in Sect. 3, experimental results and performance compari-
son are given; in Sect. 4, conclusions and future work are
described.

2 Methodology

In this section, the optimization workflow process is pre-
sented in detail. Moreover, synthetic numerical model and
involved optimization algorithms are also described.

2.1 Optimization problem definition

Hydrocarbon flow through porous media can be written as
a set of non-linear functions ( f ()) representing conservative
relations (1) (Ramirez 1987):

dx(t)/(dt) = f (x,�x, u) in Ω × t (1)

where x is reservoir state vector and u is control variable.
Flow equations are solved in volume–time domain (Ω × t)
of problem where start and end of simulation are t0 = 0
and t f , respectively. Optimization gas condensate reservoir
depletion problem can be written in continuous form as (2):

yM = max
[xM (t),uM (t)]

∫ t f

t0
J

(
xM (t), uM (t), t

)
dt (2)

where yM is solution quality after performingM iterations of
optimization loop and J () is an objective function depended
on the state and control vector in time t . Detailed objective
function takes the form of profit coming from condensate
sales reduced by cost of gas injection (3):

J
(
xM (t), uM (t), t

)

= 40
$

stb
·
∫ t f

t0
QP

(
xM (t), uM (t), t

)
dt

− 0.01
$

Mscf
·
∫ t f

t0
QI

(
xM (t), uM (t), t

)
dt

(3)

Cumulative condensate production and gas injection rates
from all wells are described as QP and QI, where qI and qP
are individual rates for Np production and NI injection wells,
respectively (4):

QP

(
xM (t), uM (t), t

)
=

Np∑
j=1

q j
P

(
xM (t), uM (t), t

)

QI

(
xM (t), uM (t), t

)
=

NI∑
k=1

qkI

(
xM (t), uM (t), t

) (4)

Equation (1) was solved numerically by ECLIPSE soft-
ware; therefore, continuousvolume–timedomainwasdivided
into control steps. Following this, simulation time was split
into Nt discrete time steps�t . Elements of control vector are:
individual gas production (w) and injection rates (qI), which
for every discrete time step cover simulation time domain
(5):

u =

⎡
⎢⎢⎣

w1
1 . . . w

Nt
1 q1I ,1 . . . qNt

I ,1
...

. . .
...

...
. . .

...

w1
Np

. . . w
Nt
Np

q1I ,NI
. . . qNt

I ,NI

⎤
⎥⎥⎦

T

(5)

Condensate withdraw rate (w(t)) is a function of gas pro-
duction (qP(t)), reservoir state (x(t)), petrophysical charac-
teristics and fluid properties as well as fluid–rock interaction
(h(x(t))) (6):
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w(t) = g (qP(t), x(t), h(x(t))) (6)

Individual gas production and injection rates were bound
by their lower and upper limit: 0 Mscf/day ≤ w ≤
5000 Mscf/day and 0 Mscf/day ≤ qI ≤ 2000 Mscf/day,
respectively.

Given problem of gas condensate flow in porous media
was evaluated by numerical simulation of the synthetic field.
Reservoir parameters are in detail described in the below
subsection.

2.2 Numerical model of gas condensate reservoir

A numerical 13-well model was constructed using gas con-
densate fluid and reservoir properties based on SPE 10
benchmarkmodel. For this purpose, Schlumberger ECLIPSE
E300 compositional reservoir simulator (version 2016.2)was
utilized. This simulatorwas successfully applied for the com-
positional problems by Maleki et al. (2012) and Nasriani
et al. (2015). Fully implicit solution is selected for solving
the mathematical models and governing equations for objec-
tive problem.

Heterogeneous reservoir simulation model (Fig. 3) con-
tains six layers and has a three-dimensional system and
consists of 30×30×6 grid cell arrangement, corresponding
to the x, y and z direction. Simulation model covers area of
9842.52 ft × 9842.52 ft × 92.42 ft. Initial reservoir pressure
(324 bar) is above dew point (dew pressure Pd = 308 bar)
at temperature of 355 K. PVT fluid properties were studied
using three-parameter Peng–Robinson equation of state. Pro-
duction wells exposure layers 3–6, while injection wells are
open in 1–2 layers. Wells distribution is presented in Fig. 4.
Simulation time was set for 15 years with a half year control
step. Minimum bottom hole pressure for production wells
was 68.9 bar. Production wells were controlled by gas pro-
duction rate (in surface conditions). Pressure maintenance
was performed by gas injection with maximum bottom hole
pressure equal 413 bar. Reservoir temperature was expected
to be constant during gas injection (no thermal effects).

2.3 Optimizationmethods

To evaluate best gas condensate production strategy, compar-
ison betweenbase case scenario (expert knowledge), gradient
optimization aswell as nature-inspired algorithmwas carried
out. The following section is introduced in order to let readers
to better understand solution methodology.

2.3.1 Expert knowledge approach for gas condensate
recovery process

Gas condensate recovery process should be investigated for
every reservoir independently. The petrophysical and fluids

Fig. 3 Distribution of reservoir permeability in millidarcy (mD). Value
range from 4.76 to 58.42 mD, arithmetic mean 30.42 mD, SD 8.71 mD,
variance 75.88 mD

Fig. 4 Distribution of production (P) and injection (IN) wells on ana-
lyzed field

properties are unique and affect development strategy. In case
of direct solution copied from similar field or closely located,
someengineering problemsmayoccur.As indicated byCoats
et al. (1985), gas cycling with full pressure maintenance is
most promising technique to enhance condensate production;
therefore, base simulation was performed with the following
assumptions:

– individual injection rate for 9 injection wells was set to
1000 Mscf/day,

– individual withdraw rate for 4 production wells was set
to 2250 Mscf/day.

Injection and production rates were kept at the constant level
during recovery time. The conventional simulation approach
is referred as ENG on the result graph.
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2.3.2 Gradient optimization method

The problem is to maximize the objective function over
time period T (from t0 to t f ); thus, the main constraints
are described by the system equations (1). The optimiza-
tion variable (u) is referred as controlling input in terms of
production and injection gas rates. Equations set (1) can also
be expressed as (Ramirez 1987; Brouwer and Jansen 2004):

gk(xk+1, xk, uk) = 0 (7)

By introducing Lagrange multiplier λ, the problem can
be transformed into an equivalent unconstrained problem
(Ramirez 1987; Brouwer and Jansen 2004):

dJ

du
=

Nt−1∑
k=0

[
∂ Jk
∂uk

+
(

λT
k+1

∂gk
∂uk

)]
uk (8)

Derivative of objection function was used to determine
the search direction for the improved vector control in every
iteration:

um+1 = um + ωmdm (9)

where dm = −dJ/du and ω is step size multiplier. Given
search direction, d, the standard line search algorithm is to
determine some step size multiplier,ω, which maximizes the
objective function value Passino (2005):

J (um + ωmdm) = min
ω∈[0,ω0]

J (um + ωdm) (10)

As a initial solution for gradient optimization um=0

engineering approach with adequate assumption was used.
Solution gradient was obtained by internal algorithm of the
utilized reservoir numerical simulator.

2.3.3 Nature-inspired algorithms

Five nature-inspired algorithms (GOA, MFO, GWO, PSO
and GA) were applied to solve the optimal gas condensate
productionmanagement and algorithmswere compared each
other in terms of solution quality and convergence speed. For
every algorithms solution, population consisted of N = 20
individuals. All algorithms were terminated after 30 gener-
ation. Due to used numerical simulation for the objective
function evaluation, each objection function called demand
complete run; therefore, convergence speed is the crucial
parameter. Efficiency comparison of the same initial pop-
ulation of solutions was implemented to keep reliability
of nature-inspired algorithms. In the worldwide literature
database, there are only few papers about implementation
nature-inspired algorithms to solve optimization problem

connected with oil and gas industry. Best to the authors
knowledge, this is the first application of MFO and GOA
in reservoir engineering. Widely reported PSO and GA can
be found in the related works (Eberhart and Kennedy 1995;
Song et al. 2016).

Grasshopper optimization algorithm (GOA) was devel-
oped by Saremi et al. (2017). Algorithm mimics social
behavior of insects, where individuals join the largest swarm
(Simpson et al. 1999). Life cycle of grasshopper consists of
the three phases: eggs, nymph and adulthood. The unique
aspect of every form can be found. The main characteristics
of grasshoppers in the larval phase are slow movement and
small steps. In contrast, long range and abrupt movement are
essential features of the swarm during adulthood. In mathe-
matical position of i th, GOA particles form can be written as
(11) Saremi et al. (2017):

Xd
i = c

⎛
⎝ N∑

j=1, j �=i

c
ubd − lbd

2
s
(∣∣∣xdj − xdi

∣∣∣
) x j − xi

di j

⎞
⎠ + T̂

(11)

where ubd and lbd are upper and lower bounds in the
Dth-dimensional search space, s() function indicates social
forces, c is a decreasing coefficient to tighten the comfort
zone, the repulsion zone, and the attraction zone and T̂ is the
best solution found. Parameter c is a tuning operator describ-
ing:(I) exploration balances and exploitation balances of the
entire swarm around the target, (II) the attraction, the comfort
and repulsion zones between grasshoppers.

Moth-Flame Optimization Algorithm was established by
Mirjalili (2015), and inspiration was drawn from moth
navigation skill during night, which is called transverse ori-
entation. In thismethod of orientation,mothsmaintain a fixed
angle on a distant source of light with respect to the Moon.
It is very effective mechanism for traveling long distances
in a straight path (Gaston et al. 2013). Despite transverse
orientation effectiveness, it can be observed that moths fly
spirally around the light because of artificial light tracking.
Mathematical form assumes positions of each moth (par-
ticle) in search space, flame position (source of light) and
value of objective function for moths and flame. It has to be
noted that bothmoths and flame are solutions. The difference
between them is the way that investigator treats and updates
them in each iteration. Moths are the actual searching agents
that move around the search space, whereas flame is the best
position of moths to be reached. In order to mathematically
model moth-flame optimization, position of every moth has
to be updated with respect to flame using the following spiral
equation (12) (Mirjalili 2015):

Xi = Die
bt cos(2π t) + Fj (12)
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where Di indicates distance between i th moth for j th flame,
b is a spiral constant, and t is a random number in range
[−1, 1].

Mirjalili inspired by graywolves behavior developedGray
Wolf Optimization (GWO) algorithm Mirjalili et al. (2014).
The GWO is an evolutionary computing-based technique
which simulates the hierarchy of gray wolves pack. Detailed
description of haunting mechanism was described by Muro
et al. (2011). Inmathematical convention counting, surround-
ing, and assailing the prey (updated solution) can be written
as (13) Mirjalili et al. (2014):

Xd
i (n + 1) = Xd

p (n) − Ad
i

∣∣∣Cd
i X

d
p (n) − Xd

i (n)

∣∣∣ (13)

where Xi is a vector position of wolves, Xp is a position of
prey, A is an attracting parameter, and C is a random vec-
tor introducing exploration element. In mathematical model,
the social hierarchy of wolves when designing GWO the
best solution is called alpha (α). Consequently, the second
and third the best solution are named beta (β) and delta
(δ), respectively. The rest of the solutions are assumed to
be omega (ω).

2.4 Optimization framework

To find the optimal gas condensate reservoir developing
plan, every possible solution u from N -elements popula-
tion is evaluated by reservoir simulation. Control variables
were transferred to simulator by functional keywords. The
results fromsimulation (total condensate production and total
required cumulative lean gas injection) were used to calcula-
tion of objection function value (3). Optimization flowchart
for population-based algorithms is presented in Fig. 5. Opti-
mization frameworkwas implemented inMATLAB software
in conjunction with Schlumberger Eclipse Simulator which
is industry reference reservoir simulation tool. To keep relia-
bility of nature-inspired algorithm, efficiency comparison of
the same initial population was implemented. For every of
proposed nature-inspired algorithms, elitismwas introduced,
what allowed to pass from the best solution to the next gen-
eration.

2.5 Performance of nature-inspired algorithms

Aforementioned algorithms were examined in terms of con-
vergence speed and exploration ability. Convergence (σ )
in mth generation for populated-based algorithm can be
expressed as (14) (He and Lin 2016):

σm = 1 −
(∣∣∣∣ y

∗ − ymmax

y∗ − ym=0
max

∣∣∣∣
)1/m

(14)

Create solu-
tion space with
respect to limits

Set optimization
counter m = 0

Create initial pop-
ulation of possible

solutions um

Set individual solu-
tion counter n = 1

Transform con-
trol vector to

simulator keywords

Perform gas
condensate pro-

duction simulation
with respect to
design variables

Read simula-
tion results

Calculate objective
function value

Calculate
objective

function for
all

individuals:
n = N?

n = n+1

Optimization
stopping

criteria are
meet?

m = m+1

Create a new
population of
solution as a

function of previous
control and results

Pick best solution
in last population

no

yes

no

yes

Fig. 5 Optimization workflow for population-based optimization algo-
rithm, due to elitism best solution can be pick from last population

where y∗ is a global optimum solution, ymmax is the best
solution found in population in mth generation and ym=0

max
is the best solution in initial population. Population diver-
sity measures the distribution of individuals. The diversity
changing rate is a way to monitor the degree of conver-
gence/divergence. Diversity of solution (Ψ ) in mth gener-
ation can be written as (15) (Ni and Deng 2014) :

Ψ m =
√∑N

i=1

(
ymi − ȳm

)2
N

(15)

where ȳm is average solution for mth generation.

3 Results and discussion

This section provides experiment results with discussions.
Results which are put forward in this section are straightfor-
ward optimization indicator in terms of objective function
value and parameters which have significant impact on solu-
tion. Effect ofwell rate controlwas carried out by comparison
of solution matrix. Exploration and exploitation abilities of
algorithms were investigated in conjunction with statistical
analysis of obtained results.

3.1 Optimization results

As a result of engineering approach simulation 172.55 MM$
of objection function valuewas obtained. By including gradi-
ent optimization, proper production and injection policy can
increase solution quality to 178.14 MM$. Optimization loop
for GA, GOA, GWO, MFO and PSO was terminated after
620 objective function calls. From the results, it is clear that
the PSO algorithm and MFO algorithm can obtain the best
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Fig. 6 Progress of objective function evaluation during optimization
run

results equal to 218.76 MM$ and 213.75 MM$, respectively.
Solutions delivered by GA, GOA and GWO are worse by
17.85% (179.71 MM$), 18.83% (177.56 MM$) and 15.46%
(184.93 MM$) contrasting with PSO results. Evaluation of
fitness function is illustrated in Fig. 6. Comparison of the
obtained results indicates that all of proposed nature-inspired
optimization algorithms outperform engineering approach
of gas condensate recovery problem. Summary results of
objective function values are presented in Fig. 7. Genetic
algorithm delivered better results by 4.15%, GOA 2.90%,
GWO 7.17%, MFO 23.88% and PSO 26.78% in respect
to engineering knowledge, thus providing the necessity of
optimization work. Objective function value increased from
172.55 MM$ to 178.14 MM$ (+ 3.24%) for base case study
using gradient optimization. The results revealed that PSO
generates the best project profitability. The results are in
line with previous investigation where the authors employed
PSO and four different nature-inspired optimization algo-
rithms to find optimal polymer injection strategy to enhance
oil recovery. We indicated that of all the five implemented
nature-inspired algorithms are comparable in magnitude and
among them, PSO allowed to find the highest net present
value (NPV) (Janiga et al. 2017).

3.2 Effect of wells rate control on optimization
process

Investigation of control parameters (injection and produc-
tion rates) was carried out in three generation points and
is presented in Fig. 8 (after second and third). Diversity of
objective function value (− 1.71 MM$ in second generation
between MFO–PSO and − 6.61 MM$ in third generation)
has reference in control matrix and is illustrated in Fig. 9,
where in case of injection, 49.62% of controls changed in

Fig. 7 Summary results of optimization results in termof function value

Fig. 8 Progress of maximum value improvements for each generation
in optimization run. In point 1 and 2 detailed analysis of solution com-
ponent was carried out

Fig. 9 Diversity of solution matrix in terms of injection and production
rates control, between MFO and PSO for second and third generation
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Fig. 10 Improvement of solution matrix between third and second gen-
erations of MFO and PSO algorithm

Fig. 11 Progressive of optimization runs in term of decision variable

positive direction which increase rates are betweenMFO and
PSO. Similar trend is observed for production control matrix
where 48.33% rates has positive sign change. Thus, rela-
tive improvement in objection function value is related with
increase average injection and production rates. Change of

Fig. 12 Dependencies between injection and production rate including
function fitness value

control vector between second and third for PSO andMFO is
presented in Fig. 10, revealing which part of solution matrix
u has significant impact on improving solution. Increase
of objective function (+ 6.63%—PSO, + 3.74—MFO)
between following generations is associated with injection
and production control. Generally, enhanced injection and
production rates give better results. Taking into considera-
tion bothMFO and PSO algorithms, which are preferable for
the proposed optimization problem, they present relatively
different optimization process. As was assumed, decision
variables are production and injection rates which are closely
related to cumulative production and injection. Analysis of
optimization process for MFO and PSO algorithm is pre-
sented in Fig. 11 proving differences. PSO algorithm at
initial stage, where exploration was a major aspect, fre-
quently changed possible solution. After thatmore schematic
select of variables was observed—turnaround from explo-
ration to exploitation. At the final point of optimization run,
over 200 and 300 trials of around 70,000 MMscf of total
production and 68,000 MMscf of total gas injection were
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Fig. 13 Optimal controlmatrix for production (wells 1–4) and injection
(wells 5–13) rates during simulation time step

performed to update solution. Separately from PSO, MFO
algorithm overturned different ways to propagate new solu-
tion. For MFO algorithm, balance between exploration and
exploitation is harder to be noticed. Histogram of possible
solution of cumulative production and injection is more uni-
form and unimodal. Analysis of relationship between control
data (injection and production cumulative volume) in regard
to function fitness value reveals linear dependency, especially
for total gas injection—project profitability (R2 = 0.9351
for MFO and R2 = 0.9832 for PSO), and detailed analysis
is presented in Fig. 12.

Optimal control matrix (u) for PSO and gradient algo-
rithm is presented in Fig. 13 and consists of production
and injection rates for all wells for every discrete time step.
After high-rate production period, every production well rate
decreases and injection oscillations rates are periodic.

3.3 Condensate production analysis

Gas condensate reservoir production optimization allowed
to recover from 4.54 MMstb (GOA) to 5.61 MMstb (PSO).
Additional hydrocarbon production can raise reservoir man-
agement profitability. The right managing policy in terms of
production and injection rates eliminated condensate dropout
in near well zone. Based on PSO results, condensate satura-
tion in bottom part of reservoir was reduced from (average)
21.22 to 11.20%. Condensate saturation is presented in
Fig. 14. Additionally, more uniform drainage zone can be
observed, which resulted in increment of reservoir recovery
factor.

Fig. 14 Comparison of condensate dropout (oil saturation) in the last
layer of simulation model after 15 years of reservoir development. a
The worst solution in initial population, PSO algorithm, b optimal gas
condensate reservoir management, PSO algorithm

3.4 Algorithms efficiency

Going through analysis of algorithm efficiency (Fig. 15),
GWO offers higher convergence ratio at initial stage and
exceeds other algorithms. GOA gives monotonic conver-
gence increase. Search ability of solution space can be
expressed as population diversity (Ψ ). The best exploration
ability appears for MFO algorithm. For GOA algorithm,
some premature convergence is observed, where population
diversity decreases to zero at final optimization stage and this
fact is referred as algorithm stuck in local minimum. Other
algorithms are in the right balance between exploration and
exploitation ability. The algorithms created the unique solu-
tions (far to each other in search space) during optimization
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Fig. 15 Progress convergence during optimization run and diversity of
solution in each generation

runs; therefore, the new part of the solution domain could be
explored.

3.5 Routine and advanced statistical analyses

Based on carried iterations, for every fifth generation mini-
mum, maximum, average, and standard deviations of objec-
tive function are listed in Table 1. In order to provide better
analysis of the results, the following hypothesis are investi-
gated to test which algorithm (alg. 1) statistically outperform
other algorithm (alg. 2) in terms of convergence and spacing
metric according to the single tail t test with α = 0.05:

H0 : μalg1 − μalg2 = 0

H1 : μalg1 − μalg2 < 0
(16)

If the p value of the statistical test satisfies condition p > α,
then it indicates that the hypothesis H0 is right and there is no

significant difference; otherwise, e.g., algorithm 1 is better
than other algorithms. Results of test are listed in Table 2. The
Wilcoxon signed ranks testwas used to determine similarities
between two population (Derrac et al. 2011). Nonparamet-
ric procedure was employed to examine hypothesis, which
involved designing two samples. This research is analogous
to the paired t test in nonparametric statistical procedure;
therefore, it is a pairwise test that aims to detect significant
differences between two samples, i.e., the behavior difference
between twoalgorithms.Evaluationof statistical significance
difference between every population was carried out by tests
following hypothesis with α = 0.05:

H0 : θ
alg1
gen:i − θ

alg2
gen:i = 0,

H1 : θ
alg1
gen:i − θ

alg2
gen:i �= 0,

(17)

If statistical test was less than or equal to the value of
the distribution of the Wilcoxon for n degrees of freedom,
the null hypothesis of equality of medians was rejected. That
fact is means that some algorithm outperforms the other one,
with the p value associated. The Wilcoxon test was used to
evaluate all investigated algorithmswith full range of genera-
tions (gen:i , where i = 1, . . . , N ). Test results are presented
in Fig. 16, where similar populations are marked. Based on
statistical test, GA and GWO have comparable population in
over 37% of generation (omitting initial population) and it
can be stated algorithms have not any exploration abilities.
Detailed results are listed in Table 3.

4 Conclusions and future work

Imitation of nature for years has been the inspiration to solve
immensity optimization problems. In recent times, nature-
inspired algorithms become the standard in researching
complex engineering and non-trivial problems. Notwith-
standing, individual characteristic of algorithms leads to
disparate solutions, which can be hard for the prediction.
Management of gas condensate reservoirs is complicated due
to their phase and flow behavior; furthermore, geological and
technological aspects affect possible solutions. Assumption
of mentioned conditions can be aggregated in the form of
optimization problem. In this research, the effort was put to
combine GA, GOA, GWO, MFO and PSO algorithms with
full-scale simulation model to determine optimal reservoir
policy. The results of the conducted numerical experiment
indicate that the investigated nature-inspired algorithms have
various degrees of the robustness. PSO and MFO algorithm
engender better results in case of solution quality and con-
vergence speed. Application of nature-inspired optimization
method (PSO algorithm) can improve condensate production
up to 42.36% in conjunction with reduction of liquid genera-
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Table 1 Analysis of
profitability of gas condensate
reservoir development during
optimization run

Objective function (MM$)

Generation

0 5 10 15 20 25 30

GA

Min 142.70 152.95 164.45 169.65 175.04 176.17 178.63

Max 155.57 169.99 173.79 176.03 178.28 179.26 179.71

Ave 149.58 161.29 170.03 173.85 176.68 178.36 179.29

SD 3.63 4.52 3.26 1.79 1.00 0.85 0.32

GOA

Min 142.70 163.29 171.82 175.32 176.80 177.45 177.56

Max 155.57 167.05 173.62 175.95 177.15 177.52 177.56

Ave 149.58 165.22 172.70 175.60 176.95 177.48 177.56

SD 3.63 0.71 0.38 0.18 0.10 0.02 0.00

GWO

Min 142.70 162.44 163.45 169.82 176.41 180.52 183.97

Max 155.57 174.54 174.21 178.37 179.97 183.74 184.93

Ave 149.58 167.25 170.24 173.92 178.33 181.81 184.51

SD 3.63 3.36 2.46 2.06 1.03 0.82 0.25

MFO

Min 142.70 157.58 173.27 174.77 184.93 196.34 201.08

Max 155.57 179.31 197.23 199.42 202.42 206.46 213.70

Ave 149.58 166.16 181.44 192.01 198.08 202.83 209.06

SD 3.63 6.08 4.98 5.93 4.13 2.22 2.72

PSO

Min 142.70 183.30 196.52 207.20 212.80 215.91 218.45

Max 155.57 189.47 200.72 209.56 214.50 216.83 218.76

Ave 149.58 186.84 198.42 208.58 213.80 216.37 218.60

SD 3.63 1.76 1.21 0.64 0.45 0.24 0.09

Table 2 Results of single tail t test with α = 0.05 where (+) noticed
better and (−) worse algorithm in pair of algorithm 1–algorithm 2

Algorithm 2

GA GOA GWO MFO PSO

Algorithm 1

GA + + + +

GOA − + + +

GWO − − + +

MFO − − − +

PSO − − − −

tion from 21.22% to 11.20%. Project profitability increased
about 52.78% based on production and injection well rates
and change is connected with low operational cost.

Further work will investigate other features of utilized
algorithms in different real oil and gas field case stud-

Fig. 16 Matrix populations which similarities are statistically not sig-
nificant among investigated algorithms
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Table 3 Statistical significance of population diversity based on the
Wilcoxon signed rank test with α = 0.05

Statistical significance difference

By counts %

GA versus GOA 26 87

GA versus GWO 19 63

GA versus MFO 25 83

GA versus PSO 29 97

GOA versus GWO 22 73

GOA versus MFO 24 80

GOA versus PSO 30 100

GWO versus MFO 25 83

GWO versus PSO 28 93

MFO versus PSO 29 97

ies. Moreover, improved convergence ratio and optimization
results will be analyzed. In this study reservoir temperature
was assumed to be constant during gas injection process;
therefore, in the future work, thermal effects will be taken
into consideration.
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