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Abstract
Key message This research focused on the interplay between tree structural complexity and drought tolerance, 
unraveling the crucial role of Db as an indicator of hydraulic efficiency and vulnerability in several tree species.
Abstract The potential of trees to adapt to drier and hotter climates will determine the future state of forests in the wake of 
a changing climate. Attributes connected to the hydraulic network are likely to determine a tree’s ability to endure drought. 
However, how a tree’s architectural attributes related to drought tolerance remains understudied. To fill this gap, we com-
pared the structural complexity of 71 trees of 18 species obtained from terrestrial laser scanning (TLS) with key hydraulic 
thresholds. We used three measures of xylem safety, i.e., the water potential at 12%, 50%, and 88% loss of hydraulic con-
ductance (P12, P50, P88) and specific hydraulic conductivity (Ks) to assess the trees’ drought tolerance. TLS data were used 
to generate 3D attributes of each tree and to construct quantitative structure models (QSMs) to characterize the branching 
patterns. Fractal analysis (box-dimension approach) was used to evaluate the overall structural complexity of the trees (Db) 
by integrating horizontal and vertical extent as well as internal branching patterns. Our findings revealed a significant rela-
tionship between the structural complexity (Db) and the three measures of xylem safety along with Ks. Tree species with low 
structural complexity developed embolism-resistant xylem at the cost of hydraulic efficiency. Our findings also revealed that 
the Db had a stronger and more significant relationship with branch hydraulic safety and efficiency compared to other struc-
tural attributes examined. We conclude that Db seems to be a robust descriptor of tree architecture that relates to important 
branch hydraulic properties of a tree.

Keywords Drought tolerance · Fractal analysis · Hydraulic conductivity · Plant hydraulics · Tree architecture · Terrestrial 
laser scanning · Xylem safety
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Introduction

As a consequence of climate change, the occurrence of 
severe droughts is increasing in several parts of the world 
(Trenberth et al. 2014; Settele et al. 2015). While forest 
systems are susceptible to a variety of severe climatic con-
ditions, drought and its concomitant disruptions have the 
largest impact worldwide (Reichstein et al. 2013). It is the 
most common stressor impacting the forest carbon balance, 
potentially generating a sharp decline in net primary pro-
ductivity at regional and global levels (Ciais et al. 2005; 
Lewis et al. 2011). There has been increasing concern that 
warmer temperatures may cause more extended and intense 
droughts, highlighting the need for accurate projections of 
drought impacts on forest ecosystems (Rousi et al. 2022). 
In addition, studies revealed that drought-related mass 
tree death is not limited to drier locations (Anderegg et al. 
2012; Hammond et al. 2022). It has been reported for a 
range of forest biomes, including cold temperate (Nardini 
et al. 2013; Schuldt et al. 2020) and tropical forests (Row-
land et al. 2015). Evidence from studies by Nepstad et al. 
(2007) and Phillips et al. (2010) confirmed the significant 
impact of drought on the structural integrity and func-
tional processes of trees. Drought-induced stress can lead 
to reduced growth rates, altered leaf physiology, compro-
mised water transport efficiency, and increased susceptibil-
ity to secondary biotic factors. These combined negative 
impacts disrupt the overall structure and functioning of 
trees, potentially compromising their ability to thrive in 
arid environments.

Bittencourt et al. (2020) emphasized the critical role of 
the adaptability of trees in determining the trajectory of 
forest ecosystems in the face of climate change. With the 
increasing prevalence of dry climates, the ability of trees 
to adjust and withstand prolonged water scarcity will play a 
crucial role in how forests are structured and how resilient 
they are in the future (Seidel and Ammer 2023). Under-
standing and predicting the adaptive responses of trees to 
extended drought events is, therefore, crucial for effective 
forest management strategies and conservation efforts in the 
context of ongoing climate change. Therefore, it is of para-
mount importance to understand the relationship between 
tree architecture, forest structure, and drought tolerance.

The structure and function of a forest ecosystem are 
ultimately tied to the species composition and the struc-
tures of the individual trees (West et al. 2009; Seidel et al. 
2019a). Various ecological functions and services offered 
by a forest, such as wood value (Ishii et al. 2004), recrea-
tional value (Ribe 2009), or ecosystem resilience (Neill 
and Puettmann 2013), depend on the structural character-
istics and the species composition in the stand.

Tree structure and form are not the results of stochastic 
growth (Valladares and Niinemets 2007). They are, in fact, 
the result of the interaction between the genetic growth 
plan and the biotic and abiotic environment (Scorza et al. 
2002; Busov et  al. 2008). Environmental factors like 
wind (Watt et  al. 2005), latitude (Kuuluvainen 1992), 
seed dispersal strategy (Dorji et al. 2021), water avail-
ability (Niinemets and Kull 1995), and competition (Dorji 
et al. 2019) determine the shape of a tree. The plasticity 
of tree geometry in response to environmental agents was 
considered to be the outcome of an individual’s drive to 
maximize strength in a certain area (Borchert and Slade 
1981), such as reproductive potential or sunlight absorp-
tion (Hollender and Dardick 2015).

There is a limited body of research pertaining to the 
correlation between tree structure and hydraulic proper-
ties. This underscores the significance of comprehending 
how structural traits influence a tree’s ability to manage 
water stress, thereby contributing to a deeper under-
standing of plant adaptation mechanisms in challenging 
environmental conditions. For example, Huber values, 
representing sapwood-to-leaf area ratios, influence water 
transport efficiency (Apgaua et al. 2015; van der Sande 
et al. 2019). Leaf distribution across multiple branches 
optimizes water availability for photosynthesis (Niinemets 
2007). Trees also exhibit traits like optimized branching 
angles, tapering, and wood density to balance safety and 
resource efficiency. (MacFarlane 2020). These relation-
ships between tree structure and drought tolerance are 
complex. However, the insights mentioned above high-
light the importance of structural traits in understanding 
drought tolerance and predicting forest responses to cli-
mate change. Further, numerous studies observed a higher 
drought sensitivity for ‘larger’ (higher crown surface area 
and crown volume, higher branch numbers and volume) 
trees in different biomes (e.g., Benett et al. 2015O’Brien 
et al. 2017; Stovall et al. 2019). It has been argued that 
their physiological susceptibility to drought in terms of 
water conductivity is the primary cause (Tyree and Zim-
mermann 2002; Fajardo and Piper 2021), leaving larger 
trees more susceptible to drought stress (McDowell and 
Allen 2015).

The study of 3D tree structure and form was shown to 
be of importance for a variety of disciplines, such as tree 
phylogenetics, remote sensing of forest landscapes, ecosys-
tem modelling, and carbon stock computation (Chave et al. 
2005; Arseniou and MacFarlane 2021; Arseniou et al. 2021). 
Despite this great importance, the three-dimensional quan-
tification of tree architecture was a challenging task in the 
past (destructive, laborious, and time-consuming). So far, 
the assessment has been limited to only small trees (Moore 
and Maguire 2008; Bentley et al. 2013). Therefore, a lack of 
sufficient data has hampered the development and testing of 
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theory, specifically linking tree structures with their physi-
ological role and mechanism (Malhi et al. 2018).

The arrival of laser scanning technology has transformed 
the way we perceive trees and quantify their structures 
(Gonzalez de Tanago et al. 2018). Besides conventional tree 
size attributes, TLS is also used to derive tree branching 
patterns (branch angles, lengths, volumes) with precision 
levels exceeding those of leading international allometric 
models (Liang et al. 2018; Demol et al. 2022). Thus, this 
has provided an avenue to analyze and understand how 
tree architecture and forest structure change in response to 
various factors, e.g., competition, drought, and forest man-
agement (e.g., Dassot et al. 2011; Heidenreich and Seidel 
2022).

Our grasp of how plants adapt to dry spells and how 
drought-induced tree mortality occurs depends on under-
standing tree hydraulic traits (Choat et al. 2018). As one of 
the most commonly reported metrics of xylem vulnerability 
or hydraulic failure (Anderegg et al. 2016), hydraulic safety 
is often quantified by the water potential at which 12%, 50% 
and 88% loss of hydraulic conductivity occur (cf. Gleason 
et al. 2016). Embolisms form when water potentials in con-
duits drop to levels that promote embolism formation (Tyree 
and Zimmermann 2002). As a result, hydraulic thresholds 
related to xylem dysfunction are of major importance to 
understand the drought response of trees (Blackman et al. 
2019; Britton et al. 2022; Hajek et al. 2022). Therefore, plant 

hydraulic characteristics play an important role in drought 
survivability and carbon fluxes (Chen et al. 2021; McDowell 
et al. 2022).

To describe tree architecture, the box-dimension can 
be used (Seidel 2018). In simple words, it is calculated by 
dividing the tree into a series of boxes of different sizes and 
counting the number of boxes that the tree branches into 
depending on the size of these boxes (Seidel 2018). The 
higher the box-dimension, the more complex a tree is. The 
fractal-like geometry of trees, according to these concepts, 
is a direct representation of both intrinsic and malleable 
morphological features that influence tree development and 
survival (Hastings and Sugihara 1993; Halley et al. 2004).

We employed the box-dimension approach of fractal 
analysis in this study to quantify the overall tree architec-
tural complexity. We assessed how this complexity relates 
to the hydraulic thresholds of xylem safety across a range 
of temperate diffuse-porous tree species. Specifically, we 
used detailed tree architectural measures related to branch-
ing patterns (up to the 3rd branching orders) to address the 
following research questions. We first tested whether (1) 
there exists a relationship between structural complexity and 
xylem safety or not? If a relationship exists,  (2) we assume 
that the branch angles and lengths of the tree species have a 
significant relationship with xylem safety since the branch-
ing pattern relates to the hydraulic network. Since the tree 
structural complexity metric, the box-dimension (Db), is a 

Fig. 1  Map and location of the research site at Stutel, Wuerzburg, Germany, and a photograph depicting a section of the Stutel-Arboretum
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holistic measure that incorporates overall tree architectural 
patterns, we finally speculate that (3) Db will show a higher 
influence on the xylem safety compared to the other selected 
single tree structural characteristics.

Materials and methods

Study site

This research study is part of the extensive Klimabäume 
Stutel project managed under the Bavarian State Institute 
for Viticulture and Horticulture (LWG). The research was 
carried out at Stutel-Arboretum, located on the eastern 
bank of the river Main, near Wuerzburg, Bavaria, Ger-
many, at an altitude of 180 m above sea level. The geo-
graphical coordinates are at 49°51′49″ N, 9°51′8″ E. The 
mean annual temperature of the area is 9.5 °C, receiving 
an average annual precipitation of 603 mm. A continental 
climate type characterizes the region, and the area, as such, 
experiences frequent drought events, especially in the hot 
summer months. Based on the data from German Meteoro-
logical Service (DWD) (2023) in Würzburg, Bavaria, Ger-
many, frequent drought events occur from June to Septem-
ber, with a minimum monthly precipitation of 20 mm and 

a maximum monthly mean temperature of 25°C. The soil 
is primarily sandy anthrosol with a pH value of 7.3. The 
arboretum is home to over 400 tree species. All trees were 
initially grown in various nurseries across Europe and Asia 
before being transplanted as seedlings (2 years of age) to the 
Stutel-Arboretum.

The plantations at the arboretum were established in 2010 
by the LWG with the aim to examine the feasibility of trees 
of various species as future urban trees that are resilient to 
droughts. The trees in the arboretum are monitored for their 
growth development while experiencing the same climate 
conditions. However, they are kept in their natural state 
without disturbing their growth form and with no fertiliza-
tion or irrigation applied.

Our research investigated 71 different tree individuals 
belonging to 18 species (see Table 1 for basic information 
on 18 species pooled together, and the data repository for 
detailed 71 individual tree information).

Terrestrial LiDAR

We used the Faro Focus M70 Terrestrial Laser Scanner (Faro 
Technologies Inc., Lake Mary, FL, USA) to obtain detailed 
three-dimensional point cloud data of all study trees. The 
instrument uses laser light with 905 nm wavelength for 

Fig. 2  Exemplary two-dimensional representation of a 3D point 
cloud of a tree in A and the corresponding Quantitative Structure 
Model in B. A close-up of QSM in C and a cylindrical demonstration 

of colour-coded branching patterns on the right end in D. Adapted 
and modified from Dorji et al. (2019) (Colour  figure online)
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scanning the environment up to a distance of 70 m and cov-
ers a field of view of 300° × 360° with an angular resolu-
tion of 0.03 degrees, yielding 10,240 points per 360°. The 
scanner was set up on a tripod at breast height (1.3 m) and 
levelled horizontally, employing a bubble level.

Scanning was carried out during a dry period with no 
wind (March 26, 2020) when the trees were in leafless condi-
tion (all study tree species were deciduous) to guarantee the 
best visibility of the entire wooden tree compartments. We 
performed a multi-scan procedure of all 71 trees, with four 

scans each, amounting to a total of 284 scans. We scanned 
each tree from four corner points with the tree always in 
the center, also referred to as ‘corner setup’ in the literature 
(Zande et al. 2008). We applied the instrument’s standard 
filters (clear contour and clear sky) during scanning. The 
scan data were then automatically registered, filtered, and 
exported as single xyz.-files using Faro Scene (Faro Technol-
ogies Inc., Lake Mary, FL, USA). The generated 3D image 
of each tree is a composite of millions of three-dimensional 

Fig. 3  Two exemplary three-dimensional tree point clouds with the highest (left) and lowest (right) box-dimension (Db) values observed in our 
research study. On the left is a Tilia cordata tree (Db = 2.04); on the right is an individual of Crataegus persimilis (Db = 1.55)
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measuring points, producing a precise and detailed replica 
of our study trees in the field.

Point cloud processing and quantitative structure 
models (QSM)

Each tree was manually segmented from the surrounding 
scenery in the scan using open-source CloudCompare soft-
ware (CloudCompare v2.10.1, https:// www. danie lgm. net/ 
cc/). CompuTree software (Vers. 5.0, CompuTree Group; 
http:// compu tree. onf. fr/? page_ id= 42) was then used to gen-
erate QSMs (Quantitative Structure Models) for all 71 trees. 
A QSM model is a depiction of the tree point cloud con-
structed out of cylinders of diverse diameters and lengths. 
We applied the same QSM-parameter configurations for all 
trees to ensure the reproducibility of our observations. Clus-
tering tolerance was set at 1 cm, with a maximum of 600-
point clusters containing at least 400 points each. If less than 
400 points were found per cluster, the software automati-
cally adjusted the clustering size. Details can be found in 

the documentation of CompuTree. For all 71 trees, we used 
QSM models to acquire detailed information on the branch-
ing architecture of the trees. We obtained the (1) total branch 
length, (2) mean branch angle up to 3rd order of branches, 
(3) mean branch length up to 3rd order of branches. An 
exemplary tree QSM with a cylindrical demonstration of 
branching patterns is depicted in Fig. 2.

The crown surface area of each tree was determined using 
the convex hull polygon approach introduced in Seidel et al. 
2015. Using an algorithm written in Mathematica (Wolfram 
Research, Champaign, USA), we determined the surface of 
the convex hull polygons from the triangle points building 
the convex hull by applying Heron’s formula (ref. Metz et al. 
(2013) for detail).

Similarly, for crown volume, we used a voxel-based 
method. In this approach, convex hulls are created around a 
horizontal slice through the tree crown that represents 10-cm 
thick layers, and the area of each “slice” is multiplied by 10 
to calculate the volume of each slice. The total volume of all 
slices is then considered the tree crown volume.

Fig. 4  Scatter plots showing the correlation between the mean struc-
tural complexity of the tree species represented by the box-dimension 
(Db) and A = P12 (MPa), B P50 (MPa), and C P88 (MPa). The data 
were available and analyzed for n = 18 tree species (with a mean of 

3–4 individuals per species). Regression lines are shown as solid 
black lines indicating significant relationships for all at p < 0.05, with 
Spearman’s rank correlation ranging from r = 0.51–0.53

Fig. 5  Results of simple species-level linear regressions of 
box-dimension (Db) in relation to A specific conductivity (Ks, 
kg  m−1  MPa−1  s−1) and B hydraulically weighted vessel diameter (Dh, 

µm). The C shows a significant correlation between P50 (MPa) and 
the specific conductivity (Ks, kg  m−1  MPa−1 s.−1)

https://www.danielgm.net/cc/
https://www.danielgm.net/cc/
http://computree.onf.fr/?page_id=42
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Box‑dimension (Db)

The box-dimension (Db) is a metric of structural complex-
ity (Mandelbrot 1977). For a tree, it integrates all struc-
tural attributes, including crown dimensions and branch-
ing patterns (Seidel et al. 2019b). Box-dimension here was 
derived from single tree point clouds using the methods 
outlined by Seidel (Seidel 2018) and described in detail 
(including code) in Arseniou et al. (2021) (supplementary 
material: https:// www. mdpi. com/ artic le/https:// doi. org/ 
10. 3390/ rs131 42773/ s1). This technique is based on the 
concepts of Sarkar and Chaudhuri (Sarkar and Chaudhuri 
1994) and Mandelbrot’s breakthrough contribution (Man-
delbrot 1977). In a nutshell, box-dimension was calcu-
lated by counting the number of boxes of a particular size 
required to encapsulate all aboveground tree structures in 
the 3D point cloud. The box-dimension is then determined 
as the slope of the regression line derived from a scatter-
plot of the number of boxes denoted by log (N) over the 
inverse of the logarithm of the respective box size, with 
the box size expressed in relation to the initial box size. 
The theoretical range of Db of a single tree spans between 
1 and 3 (Mandelbrot 1977). Figure 3 shows an exemplary 
point cloud of our study trees with the highest and lowest 
structural complexity, respectively.

Xylem embolism resistance

Leveraging the Cavitron instrument, vulnerability curves 
were measured using the flow-centrifuge technique (Cochard 
2002; Cochard et al. 2005, 2013), constructed from a Sorval 
RC 5 series centrifuge with manual rotation speed control, 
and using Cavisoft software (Cavisoft v.5.2.1, University 
of Bordeaux, Bordeaux, France). Flow centrifuges increase 
water tension in xylem segments and measure the loss of 
hydraulic conductance simultaneously using a centrifugal 
force. The sample’s susceptibility to cavitation is shown by 
the relationship between the percentage loss of xylem con-
ductance (PLC) and xylem water tension. A subset of the 
vulnerability curve measurements discussed in this paper 
was used for addressing controversies in safety-vessel diam-
eter relationships and for a methodological comparison with 
the pneumatic method (Paligi et al. 2021).

In total, 71 branches of at least 60 cm in length (for data 
on vessel length distribution, refer to Paligi et al. 2023) from 
the Stutel arboretum (mean diameter at basipetal end ± SE: 
8.87 ± 0.10 mm; n = 71) were sampled from the middle of 
the canopy at the height of c. 4–5 m from June to September 
in 2019 and 2020, wrapped in wet paper towels, bagged in 
the dark, humidified plastic bags, transported to the labo-
ratory and processed on the same day. In the laboratory, 

Fig. 6  Scatter plot for the three measures of xylem safety (P12, P50, 
P88; MPa) over mean of mean branch angle (MeanBRangle [°]) of 
1st order branches (A–C); MeanBRangle [°] of 2nd order branches 
(D–F) and 3rd order branches (G–I) of all species (shown as mean 

values). Black solid lines indicate significant relationships and dashed 
grey lines indicate non-significant relationships (A–C). Spearman’s 
rank correlations ranged from r = 0.34–0.55; n = 18 species

https://www.mdpi.com/article/
https://doi.org/10.3390/rs13142773/s1
https://doi.org/10.3390/rs13142773/s1
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samples were submerged in water and recut several times 
using pruning shears to a final length of 27.5 cm to release 
the tension in the xylem (Torres-Ruiz et al. 2015). Lateral 
leaves and twigs were removed, and lateral branches were 
evened with a razor blade to fit the sample into the Cavitron.

Before measurement in the Cavitron, the bark of the 
branch samples was removed at both sample ends for 4 cm. 
Both basipetal and acropetal end diameters were measured 
two times before insertion into the rotor with cuvettes on 
both sample ends. Vulnerability curves were measured in 
the Cavitron without prior flushing at high pressure and 
using ultrapure deionized and degassed water containing 
10 mM KCl and 1 mM  CaCl2 (Delzon et al. 2010; Schuldt 
et al. 2016). Conductance measurement started at a water 

potential of − 0.834 MPa (equivalent to 3000 rotations per 
minute, rpm). Then, by raising the rotating speed and the 
conductivity (K) gauged at each pressure level, the xylem 
pressure was gradually lowered.

Measurements were ended after the samples lost at 
least 90% of their initial conductance, which was recorded 
with Cavisoft software (Table 1). A 2-min waiting time 
was maintained before measuring at each pressure step to 
ensure stable conductance values.

Vulnerability curves were then fitted in R (v. 4.1.0, R 
Core Team 2023) with nonlinear least squares using the 
logistic model by Pammenter and Van der Willigen (1998) 
in a modified version based on raw conductivity measure-
ments (Ogle et al. 2009):

Fig. 7  Scatter plots of the three measures of xylem safety (A P12, B 
P50, C P88; MPa) against the crown surface area (CSA, [m.2]) of all 
the studied trees (mean per species). Similarly, the scatterplots D–F 
show a correlation between different mean xylem safety, P12, P50, 

and P88, with the Crown Volume (CV), respectively. Regression lines 
are shown as dashed lines, indicating non-significant. The data were 
available and analyzed for n = 18 species. Spearman’s rank correla-
tions ranged from r = 0.27 to 0.44
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where for each observation i, the conductivity ki is assumed 
to be normally distributed around a logistic function of the 
water potential Pi with the parameters P50 (water potential 
at 50% loss of conductivity), S50 (corresponding slope of 
the vulnerability curve on the percent loss of conductiv-
ity scale), ksat (initial conductivity at full saturation) and 
residual standard deviation σ. The calculation was repeated 
for P12 and P88.

(1)k
i
∼ Normal

⎛
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Wood anatomy and hydraulic efficiency

Semi-thin transverse sections for wood anatomical analyses 
were cut from the same branch samples used for hydraulic 
measurements with a sliding microtome (G.S.L.1, Schen-
kung Dapples, Zürich, Switzerland), stained with safranin-
alcian blue, rinsed with distilled water and ethanol (95%), 
and permanently mounted on glass slides using Euparal (Carl 
Roth, Karlsruhe, Germany). A light microscope equipped 
with an automated table and a digital camera (Observer.
Z1, Carl Zeiss MicroImaging GmbH, Jena, Germany; Soft-
ware: AxioVision c4.8.2, Carl Zeiss MicroImaging GmbH) 
was used for digitizing the complete cross-section at 100-
times magnification. Image processing was done with GIMP 

Fig. 8  Scatter plots of the three measures of xylem safety (A P12, B 
P50, C P88; MPa) against total branch length (TotalBRlength [m]). 
Similarly, the scatterplots D–F show the relationship between xylem 
safety measures (P12, P50, P88) over the mean number of branches of 

all tree species, respectively. All the above data were available and 
analyzed for n = 18 species of 71 tree individuals. Regression lines 
are shown as dashed grey lines to indicate non-significant relation-
ships
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v2.10.6 (GIMP Development Team 2018, https:// www. gimp. 
org/) and the particle analysis function from ImageJ v1.52p 
(Schneider et al. 2012). We calculated vessel diameters (D, 
µm) from minor (a) and major vessel radii (b) as

according to White (1991) and used D to calculate the 
hydraulically weighted average vessel diameter (Dh, µm) 
according to Sperry et al. (1994) as

For measuring branch sapwood area-specific hydraulic con-
ductivity (Ks, kg m  s−1  MPa−1) with degassed, demineralized 
water containing 10 mM KCl and 1 mM  CaCl2 using a Xylem 
Plus embolism meter (Bronkhorst, Montigny-Les-Cormeilles, 
France), fresh samples were rehydrated in water for 20 min 
and recut to 35 cm length underwater. To prevent leakage, 
lateral twigs were removed and the cuts were immediately 
sealed with a quick-drying adhesive (Loctite 431 with activator 
7452; Henkel, Düsseldorf, Germany). After measuring initial 
hydraulic conductivity at a low-pressure head of 6 kPa for 5 
min, samples were repeatedly flushed at high pressure of 120 
kPa for 10 min to remove potential emboli to measure maxi-
mum hydraulic conductivity (Kh, kg  m−1  MPa−1  s–1) once the 
conductivity values were stable. Ks was calculated by dividing 
Kh by the basipetal cross-sectional area excluding the bark.

Statistical analysis

All statistical analyses were performed in software R (v. 4.1.0, 
R Core Team 2023). We used linear regression to analyze the 
correlation between the xylem safety (represented by pres-
sures inducing 12%, 50%, and 88% losses of stem hydraulic 
conductance) and different tree architectural attributes. To 
begin, we looked at the relationship between the overall tree 
structural complexity (Db) and the xylem safety at P12, P50, 
P88. We also performed species-level linear regression of the 
box-dimension (Db) in relation to the specific conductivity 
(Ks) and the hydraulically weighted vessel diameter (Dh) of 
the corresponding tree species. Furthermore, we tested the 
relationship between all the tree architectural attributes like 
CSA (Crown Surface Area), CV (Crown Volume), branch 
angles, branch lengths, branch numbers, and branch volume 
with the xylem safety measures (P12, P50, P88) using correla-
tion analysis (Spearman’s rank). To test whether the assump-
tion of independence of linear regression was violated by 
possible phylogenetic signal in the residuals, we calculated 
Pagel’s λ (Pagel 1999), a measure of phylogenetic signal, of 
the residuals of each model, and used the likelihood ratio tests 
to assess whether λ was significantly different from 0 (mean-
ing no phylogenetic signal), with the phylosig() function from 
the phytools R package (v. 2.0.3, Revell 2012). In the case of 

(2)D = ((32 × (a × b)3)∕(a2 + b
2))1∕4,

(3)Dh = ΣD5∕ΣD4.

significant phylogenetic signal in the residuals, we calculated 
additional Phylogenetic Least Squares (PGLS) regressions 
using the ape (v. 5.7.1, Paradis and Schliep 2019) and nlme (v. 
3.1.162, Pinheiro et al. 2023) packages (Revell 2010; Symonds 
and Blomberg 2014). More details on the method are provided 
in the “Appendix”.

The significance level was kept at p < 0.05 for all the 
above tests, and data were averaged per species. This was 
done to identify whether the relationships between the struc-
tural variables and hydraulic risk are detectable despite dif-
ferences in wood anatomy between species.

Results

Overall, we observed a large range in structural complex-
ity for the investigated trees, given that all individuals were 
growing under identical conditions. The values ranged from 
1.55 to 2.04 units of Db (see Fig. 3 for visualization), with 
a mean value of 1.85 and a standard deviation of 0.11 units 
of Db. Within single species, box-dimension showed some 
natural variation, as one would expect, ranging from only 

Table 2  Results from the likelihood ratio tests that assess whether 
Pagel’s λ of the residual errors is different from 0

Cases where a significant difference was found are highlighted in 
bold font
Apart from the abbreviation used in the main text: BrA1-3: Mean of 
BRangle 1st–3rd order; CSA: MeanCSA, CV: MeanCV

Response Predictor λ Log-likelihood 
(λ)

Likelihood 
ratio (λ = 0)

p value

P12 Db  > 0.01 − 23.98 − 8.29 1.000
P50 Db 0.71 − 27.39 0.51 0.473
P88 Db 0.75 − 30.98 0.84 0.359
Ks Db 0.33 − 6.41 0.66 0.418
Dh Db 0.26 − 53.88 0.85 0.357
P50 Ks 0.71 − 23.38 3.97 0.046
P12 BrA1 0.76 − 23.93 1.72 0.189
P50 BrA1 0.89 − 26.41 5.49 0.019
P88 BrA1 0.92 − 29.51 7.57 0.006
P12 BrA2 0.81 − 22.69 2.03 0.154
P50 BrA2 0.93 − 24.55 6.25 0.012
P88 BrA2 0.96 − 27.42 8.48 0.004
P12 BrA3 0.86 − 22.82 2.48 0.115
P50 BrA3 0.98 − 24.50 6.67 0.010
P88 BrA3 1.01 − 27.20 8.92 0.003
P12 CSA 0.59 − 24.41 1.92 0.166
P50 CSA 0.66 − 28.02 2.72 0.099
P88 CSA 0.66 − 31.80 2.89 0.089
P12 CV 0.50 − 24.51 1.25 0.263
P50 CV 0.58 − 28.20 1.90 0.168
P88 CV 0.59 − 31.99 2.12 0.146

https://www.gimp.org/
https://www.gimp.org/


232 Trees (2024) 38:221–239

0.05 units of Db within Platanus Acerifolia and up to 0.25 
units for Crataegus persimilis.

The box-dimension for all trees, pooled by species, 
showed a significant positive correlation with the three 
measures of xylem safety, i.e., the water potentials at 12%, 
50% and 88% loss of hydraulic conductance (P12, P50, P88) 
(Fig. 4). The strongest correlation was found with the P12 
value and the lowest with P88, although all three correlation 
coefficients were very close (r = 0.51 to r = 0.53; Fig. 4).

We further observed a close relationship between spe-
cific hydraulic conductivity (Ks, kg  m−1  MPa−1  s−1) of the 
branches and Db (Fig. 5A), while the hydraulically weighted 
vessel diameter was only related to Db at marginal signifi-
cance (Fig. 5B).

Furthermore, the relationships between mean branch 
angles and xylem safety (P12, P50, P88) showed a positive 
trend for all branch orders. Despite quite some scatter, the 
relationship was statistically significant for 2nd and 3rd order 
branches but not for the first order branches (see Fig. 6).

The xylem safety showed no significant relationship with 
the CSA (crown surface area) nor the CV (crown volume) 
(Fig. 7).

The same pattern was observed for xylem safety (P12, 
P50 and P88) over the mean total branch length (Fig. 8D, E, 
F) and mean total number of branches (Fig. 8D, E, F), with 
positive trends but no significant relationships.

For 7 of the 21 tested relationships, significant phyloge-
netic signal was found in the residuals of the linear regres-
sion, namely the relationship between Ks and P50, and 
all relationships of P50 and P88 with branch angles of the 
1st–3rd order. While a PGLS of P50 in dependency of Ks 
still yielded a significant positive slope, the relationships 
between xylem safety measures and branch angles were not 
significant in PGLS regressions (see “Appendix”). For the 
box-dimension-xylem safety relationship, no phylogentic 
signal was found.

Discussion

Trees comprise a complex branching network that needs 
to be able to support the foliar tissue with water, even in 
the most distal twigs. The water conducting xylem plays a 
crucial role in maintaining efficient hydraulic conductivity 
within this system. The breakdown of this water transport 
system due to acute water deficit has been identified as a pri-
mary factor causing drought-induced tree mortality (Arend 
et al. 2021; Nolan et al. 2021; Hajek et al. 2022).

We set out to further our understanding of the relation-
ship between tree architecture and the drought tolerance of 
trees. To begin with, we tested whether the trees’ overall 
structural complexity would be related to xylem safety. 
Our findings reveal that the tree’s structural complexity, 

represented by box-dimension (Db), is related to its xylem 
safety. The results showed that the increase in Db increases 
the hydraulic vulnerability to embolism formation when 
exposed to water stress. We found that the box-dimension 
(Db) as a holistic measure of tree architectural complexity 
showed a significant correlation with the three measures of 
xylem safety of the respective tree species, i.e., the water 
potentials at 12%, 50% and 88% loss of hydraulic conductiv-
ity. In fact, the strongest observed relationship in our entire 
data was between Db and xylem safety (compare r values of 
Fig. 4 to all subsequent figures). It was stronger than that of 
other laser-based measures related to the sheer tree crown 
dimension (Fig. 7). The laser-based measures describing 
the branching geometry (branching angles) also showed 
significant relationships with xylem safety, with correla-
tion values up to 0.55 (Fig. 6, although the results were not 
stable after correcting for phylogenetic non-independence, 
see “Appendix”), thus partly supporting our second research 
claim, where we hypothesized the significant relationship 
between the branching geometry and the xylem safety. How-
ever, no significant relationship was observed for branch 
length. Finally, the third hypothesis and research claim were 
confirmed, as the xylem safety measures were more closely 
related to the holistic measure of tree structural complexity 
(Db) than to the other single selected measures of tree archi-
tecture (comp. Fig. 5 to subsequent figures).

Our data indicate that the higher the branch angles and 
the more complex the architectural complexity of a tree spe-
cies (i.e., higher Db values), the lower is the xylem safety 
(ability to resist embolism formation).

The impact of tree complexity on drought stress becomes 
evident when comparing trees with different Db values. A 
tree with higher Db would experience elevated drought stress 
compared to a tree with lower Db. This is because a tree 
with higher Db possesses a more intricate crown, which 
accommodates a larger crown network area. As a result, 
the tree’s greater photosynthetic area in the more complex 
crown leads to increased drought vulnerability during times 
of drought stress (due to a higher hydraulic resistance within 
the system).

While species-specific functional traits certainly result 
in different responses to drought stress because of varying 
vessel systems and branch sizes across the species (Olson 
and Rosell 2013; Hajek et al. 2014; Arseniou and MacFar-
lane 2021), our findings indicate that across various species, 
the complexity of the hydraulic architecture and the greater 
photosynthetic area associated with a greater Db (e.g., Seidel 
et al. 2019b) relates to an increased risk of vulnerability to 
embolism. A higher total leaf area consequently results in a 
greater demand for water (Arseniou and MacFarlane 2021), 
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which is also mirrored by the observed relationship between 
branch hydraulic efficiency and the complexity of the crown. 
Across the similar-aged temperate trees of our sample, spe-
cies with a more complex crown had branches with a higher 
specific hydraulic conductivity (Ks) to support a greater total 
leaf area (cf. Seidel et al. 2019b) at the cost of xylem safety. 
The Db integrates all architectural patterns, like the branch 
angles, branch numbers, branch length, crown surface area, 
crown volume, DBH, height, and many other tree architec-
tural attributes, and translates them into a single physiologi-
cally meaningful number (Seidel et al. 2019b). Conventional 
measures of tree size quantify this insufficiently. Our data 
indicate that future studies should focus on the complexity 
of the hydraulic system. The conductive path length and the 
complexity of the hydraulic system, described not only by 
the box-dimension but also by the branching angles, were 
shown to be related to xylem safety. We argue that a reduced 
gravitational resistance exists when branches are more hori-
zontal (flatter and lower angles). This helps explain why 
branching geometry plays a significant role not only in light 
interception but also in carbon and water fluxes between 
trees and the atmosphere (Iwasa et al. 1985; Enquist et al. 
2009; Forrester et al. 2018; Dorji et al. 2021). Hence and as 
indicated earlier, these complex tree architectural attributes, 
in particular Db, in regular times contribute to higher vigour 
and strength of the trees (e.g., Seidel et al. 2019b). How-
ever, in times of severe droughts, they become a liability, as 
they result in greater water demand to sustain the ecophysi-
ological processes. Overall, tree species with high structural 
complexity (high Db values) developed in our sample an effi-
cient but vulnerable xylem compared to species with lower 
structural complexity (low Db values), which developed 
embolism-resistant xylem at the cost of hydraulic efficiency. 
In this sense, future research could investigate whether spe-
cies occurring in more water-stressed environments are then 
selected to evolve simpler architectural attributes.

It is important to stress that our data were obtained 
from trees growing in isolation without competition for 
light or space. In closed forests, microclimate and shading 
might alter the effects observed here. However, some of 
the observed patterns might equally apply to forest trees, 
for example, the observed relationship between the branch 
angles and hydraulic vulnerability.

Finally, tree species (or provenances of the same species) 
of lower Db might be favored for plantation in drought-prone 
regions (or provenances) rather than species with higher Db 
because the latter might be vulnerable to more stress and 
disturbance when exposed to drought.

Conclusion

Our findings shed new light on the relationship between tree 
architecture and hydraulic vulnerability. The combined use 
of TLS and fractal analysis provided a holistic measure of 
architectural complexity (Db). The Db was shown to relate 
most strongly to the hydraulic vulnerability of our study 
trees. The branch xylem of tree species with a more complex 
crown, which most likely supports a higher total leaf area, 
appeared to be most vulnerable to drought-induced hydrau-
lic failure. More difficult-to-access laser-based measures of 
detailed branching angles are also related significantly to the 
hydraulic failure risk of the trees. However, these measures 
were also outperformed by the holistic measure, the Db.

From our data, we can conclude that structurally com-
plex trees are more vulnerable to drought-induced hydraulic 
failure than trees of simpler structures when growing in the 
open. It is important to note that our study trees were all 
growing without competition, in full exposure to the sun. In 
closed forest stands, microclimatic effects, soil moisture, and 
other stand-level parameters might be decisive and poten-
tially result in a different picture. Our study is one of the first 
to clearly and empirically highlight the relationship between 
the architectural complexity of the hydraulic system and the 
hydraulic vulnerability of trees.

Appendix

Testing for phylogenetic signal in residual 
errors of linear regressions

One of the main assumptions of linear regression is the 
independence of errors (Gelman et al. 2021, p. 154). This 
assumption is commonly hurt in multi-species analyses 
by the phenomenon that more closely related species tend 
to have more similar traits (Symonds & Blomberg 2014, 
p. 105). To test whether phylogenetic non-independence 
of errors is an issue in our regressions, we tested whether 
there is a significant phylogenetic signal in the residuals of 
all regression analyses conducted in this study. In the case 
of significant phylogenetic signal, a Phylogenetic General-
ized Least Square (PGLS) regression would be necessary, 
whereas otherwise, a standard linear regression is appropri-
ate (Revell 2010).

We used the R package V.PhyloMaker (v. 0.1.0, Jin and 
Qian 2019) to prune an underlying megatree (‘BGOTB.
extended.tre’) to the species in this study to obtain their phy-
logeny. As a measure of phylogenetic signal, we calculated 
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Fig. 9  Two examples illustrat-
ing the distribution of residual 
errors throughout the phylog-
eny. The relationship of P50 in 
dependency of box-dimension 
is the main relationship of 
interest in this study and had no 
significant evidence for a phy-
logenetic signal different from 0 
in the residuals. The relation-
ship of P88 in dependency of 
Mean branch angle of the 3rd 
order was among the regres-
sion analyses in this study the 
one with the highest estimate 
for Pagel’s λ in the residuals  
(Colour  figure online)

Pagel’s λ (Pagel 1999) with the phylosig () function from 
the phytools R package (v. 2.0.3, Revell 2012). Simultane-
ously, the function also performs a likelihood ratio test for 
the null hypothesis of λ = 0, meaning no phylogenetic signal. 
Therefore, in case of non-significant test results, there is no 
evidence for a phylogenetic signal different from 0 (Table 2; 
Fig. 9).

The results show that phylogenetic non-independence 
was not an issue in most tested relationships. Especially 
the relationships with box-dimension, the main predictor 
of interest in this study, were not affected. For the cases 

where significant phylogenetic signal was found, we con-
ducted additional PGLS analyses and present the results 
here. We first used the function corPagel () from the R 
package ape (v. 5.7.1, Paradis & Schliep 2019) to create 
a phylogenetic variance–covariance matrix based on the 
species’ phylogeny, and then fitted a PGLS model with the 
nlme package (v. 3.1.162, Pinheiro et al. 2023), using the 
phylogenetic variance–covariance matrix as correlation 
structure (Fig. 10).
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Fig. 10  Regression lines from PGLS analyses (red) compared with linear regressions (black) for all pairwise relationships with significant phy-
logenetic signals in their residuals. Solid lines indicate slope parameters significantly different from 0 (p < 0.05), and dashed lines indicate non-
significant slope parameters  (Colour  figure online)
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tary material available at https:// doi. org/ 10. 1007/ s00468- 023- 02479-1.
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