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Abstract
Dyskalemias are often seen in children with chronic kidney disease (CKD). While hyperkalemia is common, with an increasing
prevalence as glomerular filtration rate declines, hypokalemia may also occur, particularly in children with renal tubular disorders
and those on intensive dialysis regimens. Dietary assessment and adjustment of potassium intake is critically important in
children with CKD as hyperkalemia can be life-threatening. Manipulation of dietary potassium can be challenging as it may
affect the intake of other nutrients and reduce palatability. The Pediatric Renal Nutrition Taskforce (PRNT), an international team
of pediatric renal dietitians and pediatric nephrologists, has developed clinical practice recommendations (CPRs) for the dietary
management of potassium in children with CKD stages 2–5 and on dialysis (CKD2–5D). We describe the assessment of dietary
potassium intake, requirements for potassium in healthy children, and the dietary management of hypo- and hyperkalemia in
children with CKD2–5D. Common potassium containing foods are described and approaches to adjusting potassium intake that
can be incorporated into everyday practice discussed. Given the poor quality of evidence available, a Delphi survey was
conducted to seek consensus from international experts. Statements with a low grade or those that are opinion-based must be
carefully considered and adapted to individual patient needs, based on the clinical judgment of the treating physician and
dietitian. These CPRs will be regularly audited and updated by the PRNT.
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Introduction

Abnormal serum potassium (K+) levels are common in pa-
tients with kidney diseases as the kidneys regulate K+ excre-
tion in response to dietary intake; over 90% of K+ excretion
takes place through the kidneys, and the balance between
intracellular and extracellular K+ levels that affect serum con-
centrations is also largely controlled by the kidneys. In those
with chronic kidney disease (CKD), dyskalemias usually
manifest as hyperkalemia and, rarely, as hypokalemia.
Hyperkalemia is defined as a serum K+ > 5 mmol/L (= 5
mEq/L) in children and adolescents (> 5.5 mmol/L, 5.5
mEq/L in neonates) and hypokalemia as K+ < 3.5 mmol/L
(= 3.5 mEq/L). Most patients with dyskalemia are asymptom-
atic, but patients with severe hyperkalemia can have fatal car-
diac arrhythmias. Hence, hyperkalemia that is refractory to
medical management is a common reason for initiating dialy-
sis. A recent conference proceeding from Kidney Disease
Improving Global Outcomes (KDIGO) states that targeting a
serum K+ level of 4–5 mmol/L is safe in adults [1]. There is a
U-shaped relationship between serum K+ levels and cardio-
vascular and kidney outcomes, with increased risk of poor
outcomes apparent at relatively mild levels of dyskalemia.
The optimal K+ serum level in children with CKD is not
known.

In CKD patients, the dietary management of K+ can be
particularly challenging as plant-based diets that are widely
considered to be healthy are often high in K+. Children with
CKD pose unique challenges as the provision of adequate
energy, protein, and micronutrients for growth cannot be com-
promised, and specialized low K+ formula, in some children,
may not be palatable. In addition, a small group of children
with CKD or on dialysis can have persistent hypokalemia,
usually as a result of inherited or acquired renal tubular disor-
ders, but sometimes also as a consequence of intensified he-
modialysis regimens. Although several studies describe the
prevalence of abnormal K+ levels as well as associated clinical
complications and their medical management, little is known
about the dietary requirements and management of K+ in chil-
dren with CKD and on dialysis. There are no high-quality
studies on the dietary management of dyskalemias in children
with CKD to guide evidence-based practice.

The Pediatric Renal Nutrition Taskforce (PRNT), an inter-
national team of specialist renal dietitians and pediatric ne-
phrologists, has developed clinical practice recommendations
(CPRs) for the dietary management of K+ in children with
CKD stages 2–5 and on dialysis (CKD2–5D).These CPRs
are designed to provide information and assist in decision-
making in order to improve patient outcome. Given the low
quality of available evidence, the CPRs are not intended to
define a standard of care and may need to be adapted to indi-
vidual patient needs based on the clinical judgment of the
treating physician and dietitian.

Methods

The composition of the PRNT and the detailed development
process for the CPRs, literature search criteria, grading of
evidence, and plans for audit and revision of the CPRs have
been described [2, 3]. The PICO (Patient, Intervention,
Comparator and Outcome) format [4] has been used to devel-
op recommendations that provide specific actionable advice,
including choosing between alternative approaches in partic-
ular clinical situations.

PICO terms

Population: Children from birth to 18 years of age with
CKD2–5D.

Intervention: Nutritional requirements for K+ in children at
different stages of CKD and on dialysis.

Comparator: Nutritional requirements for K+ in age-
matched healthy children or no comparator.

Outcomes: Dietary K+ intake that maintains normal serum
K+ levels in children with CKD2–5D.

Literature search Details on the literature search are described
in Supplementary Table 1. Original publications on the K+

requirements in healthy children were reviewed and used to
help develop CPRs for children with CKD stages 2–5D. There
are no randomized controlled trials (RCTs) on K+ manage-
ment in healthy children or those with CKD. All studies are
observational, and most are retrospective. Due to the lack of
high-quality studies, we have included all studies with find-
ings relevant to outcomes, irrespective of patient numbers or
duration of follow-up. In the absence of applicable studies,
guidance is based on the opinion of experienced dietitians
and nephrologists from the PRNT.

Developing CPRs After critically reviewing the literature for
each PICO question, evidence tables were prepared
(Supplementary Table 2) and CPRs developed, with a detailed
“evidence and rationale” section to support each statement.
CPRs were graded as suggested by the American Academy
of Pediatrics (Supplementary Table 3) [5]. ADelphi survey (e-
questionnaire) was conducted as previously described [2, 3]. It
was agreed a priori that at least a 70% level of consensus was
required for each statement, failing which the CPR would be
discussed in the PRNT group, adapted if required, and
reviewed again by the Delphi panel until a consensus level
of at least 70% was achieved.

Practical application and guidelinemanagementA flow sheet
to guide the management of hyperkalemia in children with
CKD has been developed and is shown in Fig. 1. These
CPRs will be audited and revised periodically by the PRNT.
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Fig. 1 Flowchart summarizing dietary management of hyperkalemia
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Clinical practice recommendations

1. What are the main dietary sources of potassium for an
infant, child and adolescent?

1.1 The main dietary sources of potassium for infants
are breastmilk or infant formula (not graded).

1.2 The main natural dietary sources of potassium for
children and adolescents are milk, potatoes, vegeta-
bles, cereals, fruits, and meat (not graded).

1.3 Food additives that contain potassium salts contrib-
ute to potassium intake (D weak).

Evidence and rationale

Main dietary sources of potassium

K+ is naturally present in all types of foods. Food preparation
techniques, such as shredding, boiling, and microwave
cooking, may lead to significant losses in K+ content [6].
The contribution of K+-rich foods to the diet is geographically
varied [7], as illustrated by the surveys in Supplementary
Tables 4a, 4b, and 4c which show the contribution of foods
to the daily intake of K+ for different ages from various coun-
tries [6, 8–10]. As the sole source of nutrition for young in-
fants, breastmilk and infant formula are the major sources of
dietary K+. The percentage contribution of K+ intake from
milk decreases when solid foods are introduced to the infant’s
diet. According to the surveys above, the main sources of K+

from 18 months to 18 years are milk and milk products,
starchy roots and tubers such as potatoes, vegetables, cereals
(grains) and cereal products, fruit and fruit products, and meat.
The typical K+ content per portion of foods and per 100 g is
shown in Tables 1, 2, and 3 (UK data).

Food additives

Regulations for the use of K+-containing food additives differs
between countries. In Europe, it is mandatory for K+-contain-
ing additives to be listed on food packaging by E-number or
by name [13] (Supplementary Table 5), however only their
presence can be verified from food labels as no quantitative
data is provided. The USA will have such mandatory food
labelling from July 2021 [14], and Canada is undergoing a
transition period due for completion in 2022 [15]. Without
such regulations, the addition of K+ salts to a food may be
unknown. A food described as “enhanced”may have K+-con-
taining additives [16].

The use of K+-containing additives is increasing [16, 17],
in particular to reduce the salt content of food products where
sodium chloride is replaced with K+ chloride [18]. These ad-
ditives can more than double the K+ content of a food, e.g.

from 325 to 900 mg/100 g in meat, poultry and fish products
[19]. If the majority of preferred foods in a child’s diet are
processed “ready-to-eat,” then the K+ intake will be higher
than if fresh foods were consumed. Of note, foods with added
K+ salts may also contain phosphate-based additives, e.g.,
processed meats and cheeses, and baked goods made with
flour. If K+ chloride, as a substitute for table salt, is used by
other members of the household, the family must be cautioned
against its use in the child with CKD.

Bioavailability

A few small studies in adults have examined the bioavailabil-
ity of K+, with urinary K+ used to quantify absorption since
almost all absorbed K+ is excreted in the urine [17, 20–22]. In
a small cross-over feeding trial [20], bioavailability of K+

from unprocessed fruits and vegetables was lower than from
animal food and fruit juices, with bioavailability from unpro-
cessed plant foods being no more than 60%. The K+ in plant
foods is mostly intracellular, and since plant cells are not eas-
ily digested, the K+ is excreted in feces. A similar bioavail-
ability of 50–60% was found in two small studies of the
DASH (Dietary Approach to Stop Hypertension) diet in adults
with CKD [21, 22]. Considering the bioavailability of K+ from
fruits and vegetables, they should not be routinely omitted
from the diet based simply on their K+ content.

In contrast, the bioavailability of K+ from processed foods
with K+-containing additives was much greater at 90–100%
[23, 24]. Hence, in children with hyperkalemia, foods contain-
ing K+ additives must be avoided in the first instance before
restricting fresh foods. As the intake of processed foods can be
a hidden source of extra K+, there should be careful education
for patients and caregivers about the reading of packaging
labels [16].

The “Mediterranean” diet for patients with CKD, as de-
scribed by Chauveau et al. [25], favors natural foods over
processed foods along with a high intake of fruits, vegetables
and wholegrain cereals; the diet has the advantage of being
both low in food additives and rich in high fiber plant-based
foods.

2. How is potassium intake assessed in children with CKD
2–5D?

2.1. A diet history may not give an accurate assessment
of potassium intake (not graded).

2.2. Assess dietary potassium intake in those with
dyskalemia (D weak).

2.3. A diet history of a typical 24-h period, or food fre-
quency questionnaire, focusing on potassium-rich
foods, can identify the main dietary sources of po-
tassium (D weak).
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Evidence and rationale

The dietary K+ intake does not need to be modified unless the
child exhibits dyskalemia, whether acute or chronic.
Quantifying the exact K+ intake is not possible unless the child

is exclusively fed with formula, either orally or by enteral tube
feed. A lack of data on the bioavailability of K+ from foods,
missing data on labels of processed “ready-to-eat” foods con-
taining K+ salts as food additives, and unknown losses in food
preparation make it impossible to calculate the exact amount

Table 1 A guide to the potassium
content of fruits* Food Portion size Potassium

(mg per portion)
Potassium
(mg per 100 g)

Fruits (edible weight, medium-sized, and fresh unless stated otherwise)

High potassium (> 117 mg (3 mmol) per portion)

Apricot, ready-to-eat, semi-dried 20 g (3) 208 1039

Apricot 80 g (2) 216 270

Avocado 75 g (½) 380 507

Banana 80 g (1 small) 264 330

Dates, raw 30 g (2) 123 410

Fig, ready-to-eat, semi-dried 40 g (2) 314 784

Grapes 60 g (12) 129 215

Kiwi fruit 60 g (1) 173 289

Melon, cantaloupe 150 g (1 slice) 315 210

Nectarine 90 g (1) 231 257

Orange 120 g (1 small) 146 122

Orange juice, chilled 100 ml 158 158

Peach 110 g (1) 176 160

Prunes, ready-to-eat, semi-dried 30 g (4) 220 734

Raisins, dried 30 g (1 Tbsp) 267 889

Strawberries 80 g (7) 136 170

Watermelon 120 g (10 balls) 120 100

Moderate potassium (39–117 mg (1–3 mmol) per portion)

Apple 100 g (1) 100 100

Blackberries 40 g (8) 62 154

Cherries 40 g (10) 95 238

Clementine, mandarin, satsuma, tangerine 50 g (1 small) 64 128

Grapefruit 80 g (½) 103 129

Mango 75 g (½) 113 150

Passion fruit 30 g (2) 60 200

Pear 100 g (1) 105 105

Pineapple 80 g (1 large slice) 97 121

Plum 55 g (1) 105 190

Raspberries 60 g (15) 98 164

Lower potassium (< 39 mg (1 mmol) per portion)

Blueberries 45 g (2 Tbsp) 30 66

Olives, no stones 30 g (10) 27 91

The routine omission of fruits from the diet based simply on their K content should be discouraged, considering
that the bioavailability of K in unprocessed plant foods is no more than 60% and they offer other nutritional
benefits (vitamins, minerals, fiber). It may be beneficial to choose foods with a lowK-fiber ratio to enable a higher
fiber intake to be maintained while lowering dietary K [11] (Supplementary Table 12)

*Refer to country specific composition tables where possible.

Data sourced and adapted from McCance and Widdowson's Composition of Foods Integrated Dataset (CoFID),
Public Health England, 2019 [12]

Tbsp rounded tablespoon, tsp rounded teaspoon
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Table 2 A guide to the potassium
content of vegetables and pulses* Food Portion size Potassium (mg per

portion)
Potassium (mg per
100 g)

Vegetables and pulses (legumes) (edible portion)

High potassium (> 117 mg (3 mmol) per portion)

Asparagus, steamed 75 g (3 spears) 213 283

Baked beans, canned in tomato sauce 80 g (2 Tbsp) 218 272

Beetroot, boiled 35 g (1 small) 106 302

Broad beans, boiled 60 g (1 Tbsp) 248 413

Brussels sprouts, boiled 40 g (1 Tbsp) 161 404

Mushrooms, fried in oil 40 g (4 medium) 217 542

Parsnip, boiled 40 g (1 Tbsp) 128 319

Plantain, boiled 50 g (¼ medium) 200 400

Sweet potato, boiled 40 g (1 Tbsp) 150 375

Tomato, raw 65 g (1 small) 145 223

Tomato, canned 100 g (¼ can) 212 212

Yam, boiled 60 g (1 small
egg-sized)

162 271

Moderate potassium (39–117 mg (1–3 mmol) per portion)

Aubergine (eggplant), fried in oil,
including skin

65 g (¼ medium) 111 170

Broccoli, boiled 40 g (1 Tbsp) 85 212

Butternut squash, baked 40 g (1 Tbsp) 97 242

Cabbage, green, boiled 40 g (1 Tbsp) 75 187

Carrot, boiled 40 g (1 Tbsp) 66 166

Cauliflower, boiled 40 g (1 Tbsp) 86 215

Chickpeas, dried, boiled 40 g (1 Tbsp) 112 281

Courgette (zucchini), boiled 40 g (1 Tbsp) 95 238

Cucumber, raw 40 g (6 slices) 62 156

Hummus 30 g (1 Tbsp) 57 190

Leek, boiled 40 g (1 Tbsp) 68 169

Lentils, red, split, dried, boiled 40 g (1 Tbsp) 88 220

Okra, boiled 30 g (6 medium) 64 213

Onion, fried in oil 30 g (1 Tbsp) 57 189

Peas, boiled 30 g (1 Tbsp) 69 230

Peppers, red, yellow, raw, sliced 30 g (3 rings) 61 203

Spinach, boiled 40 g (1 Tbsp) 64 230

Swede, boiled 40 g (1 Tbsp) 70 175

Sweetcorn, kernels canned in water,
drained

30 g (1 Tbsp) 47 158

Turnip, boiled 40 g (1 Tbsp) 80 200

Lower potassium (< 39 mg (1 mmol) per portion)

Bean sprouts, raw 20 g (1 Tbsp) 15 74

Peppers, green, raw, sliced 30 g (3 rings) 36 120

Pumpkin, boiled 40 g (1 Tbsp) 34 84

Tofu, steamed 40 g (1 Tbsp) 25 63

The routine omission of vegetable and legumes from the diet based simply on their K content should be discour-
aged, considering the bioavailability of K in unprocessed plant foods is no more than 60% and they offer other
nutritional benefits (vitamins, minerals, fiber). It may be beneficial to choose foods with a low K-fiber ratio to
enable a higher fiber intake to be maintained while lowering dietary K [11] (Supplementary Table 12)

*Refer to country specific composition tables where possible.

Data sourced and adapted from McCance and Widdowson's Composition of Foods Integrated Dataset (CoFID),
Public Health England, 2019 [12]

Tbsp rounded tablespoon, tsp rounded teaspoon
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Table 3 A guide to the potassium content of other food groups*

Food Portion size Potassium
(mg per portion)

Potassium
(mg per 100 g)

Milk and dairy products

Human breastmilk, mature^ 100 ml 58 58

Standard whey dominant infant formula (average) 100 ml 70 70

Cow’s milk, whole 100 ml 157 157

Custard, canned** 100 g (3 Tbsp) 129 129

Fromage frais, fruit flavor 60 g (1 small pot) 86 143

Ice cream, vanilla, soft scoop** 60 g (1 scoop) 98 163

Yogurt, whole milk, fruit 125 g (1 small pot) 213 170

Potatoes

Potatoes, new, boiled, with skin 60 g (1 small egg-sized) 226 377

Potatoes, old, baked in jacket, flesh only, no skin 100 g (1 small) 360 360

Potatoes, chips, cut fine, fast food** 75 g (small portion) 408 544

Potatoes, old, mashed with butter 45 g (1 Tbsp) 151 337

Potatoes, old, roast 60 g (1 small egg-sized) 358 597

Cereal (grain) and cereal products

Bread: white, brown, whole meal 40 g (1 thick slice) 54, 86, 101 134, 216, 253

Breakfast cereal, cornflakes, fortified 20 g (3 Tbsp) 18 88

Breakfast cereal, muesli, Swiss style, unfortified 30 g (2 Tbsp) 87 290

Breakfast cereal, porridge made with whole milk, fortified 135 g (3 Tbsp) 268 199

Breakfast cereal, puffed wheat, honey coated, fortified 20 g (3 Tbsp) 38 188

Breakfast cereal, wheat biscuits, fortified 20 g (1 biscuit) 79 397

Cake: sponge with jam and butter cream, chocolate fudge, plain fruit** 60 g (1 slice) 79, 214, 231 132, 357, 385

Cookie (biscuit), digestive, half coated with chocolate** 17 g (1) 44 258

Cookie (biscuit), semi-sweet** 14 g (2) 24 168

Cookie (biscuit), short, sweet** 20 g (2) 31 155

Pasta, white, dried, boiled 90 g (3 Tbsp) 103 114

Rice: white, brown, boiled 80 g (2 Tbsp) 10, 50 12, 62

Nuts and seeds

Almonds 13 g (6 whole) 95 733

Brazil nuts 10 g (3 whole) 66 660

Cashews, hazel nuts 10 g (10 whole) 72 720

Peanuts, unsalted 13 g (10 whole) 87 670

Peanut butter, smooth 12 g (thinly spread on
1 slice of bread)

84 700

Walnuts 20 g (6 halves) 90 450

Pumpkin seeds 20 g (1 Tbsp) 164 820

Sunflower seeds 16 g (1 Tbsp) 114 710

Tahini paste 19 g (1 tsp) 110 580

Meat, chicken, fish

Burger, beef, commercial, grilled, average** 35 g (1 patty) 133 380

Chicken, lamb, beef, pork, roasted, meat only 50 g (1 thick slice) 165, 180, 185, 200 330, 360, 370, 400

Chicken nuggets** 70 g (4) 195 278

Cod, steamed/microwaved, flesh only 60 g (one-half medium fillet) 254 424

Cod in batter, baked 60 g (one-half small fillet) 138 230

Salmon, baked/grilled, flesh only 50 g (one-half medium fillet) 206 412

Miscellaneous

Potato crisps** 25 g (1 small bag) 332 1328

Tortilla chips, corn snacks** 25 g (1 small bag) 71, 82 285, 329
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of K+ in the diet. Although there may be country-specific food
labelling regulations for the presence of K+-containing addi-
tives in processed foods, there is no requirement for quantita-
tive data. Identifying the main dietary sources of K+, as well as
taking into account variable amounts from potential “hidden”
sources from additives, is suggested.

A retrospective diet recall of a typical 24-h period can be
used to rapidly identify the main dietary sources of K+, includ-
ing K+-containing additives. Food frequency questionnaires
may also be helpful to gather information on eating patterns
and can be targeted to the consumption of high K+ foods. A 3-
day prospective diet diary/food intake record may be used
when more detailed information is required. An estimate of
the total K+ sources should consider contributions from diet,
infant and enteral formulas, nutritional supplements, and med-
ications (Supplementary Table 6).

3. What are the potassium requirements for infants, children
and adolescents with CKD2–5D?

3.1. Potassium requirements are based on the level of
kidney function, weight, growth, renal potassium
losses, extra-renal potassium losses, clearance by
dialysis, and medications that may increase or de-
crease serum potassium levels (D weak).

3.2. Adjust the dietary potassium intake based on serum
potassium levels, aiming to maintain potassium
levels within the normal range (D weak).

Evidence and rationale

Healthy children

A normal serum K+ level is necessary for multiple cellular
functions. In healthy children, a normal serum K+ is

maintained despite wide variations in K+ intake due to homeo-
static mechanisms that function largely by adjusting urinary
excretion of K+. Moreover, the presence of K+ in most foods
ensures an adequate intake to maintain a normal serum K
level except if there is severe energy (caloric) deprivation
or an extremely restricted diet. There is evidence in adults
that a low K+ intake is associated with a variety of adverse
clinical consequences, including hypertension, stroke, and
cardiovascular disease [26–28]. Similar evidence is limited
in children.

The recommended K+ intakes for healthy populations of
children of different ages are presented in Supplementary
Table 7. A variety of approaches have been used by national
and international organizations to estimate K+ requirements in
healthy children (e.g. based on normal dietary intake, median
breastmilk intake, dietary surveys, extrapolation from adult
data). However, there is very little evidence to support any
of these published recommendations.

Children with CKD 2–5D

K+ requirements in children with CKD are likely to vary tre-
mendously based on level of kidney function, weight, growth,
renal K+ losses, presence of acidosis, extra-renal K+ losses,
clearance by dialysis, and the use of medications that may
increase or decrease K+ levels. There is no data providing
minimum or maximum K+ requirements for children with
CKD. In adults with hyperkalemia and CKD, data suggests
that a K+ intake less than 2000 to 3000 mg/day (50 to 75
mmol/day) or 1 to 1.3 mmol/kg/day will maintain a normal
serum K+ concentration in most patients [29, 30].
Extrapolating from this limited adult data, KDOQI recom-
mends an initial target intake of 1 to 3 mmol/kg/day for infants
and young children [31].

Since the publication of the KDOQI guidelines, there are
no new studies on the appropriate K+ intake of children with

Table 3 (continued)

Food Portion size Potassium
(mg per portion)

Potassium
(mg per 100 g)

Twiglets** 25 g (1 small bag) 115 460

Chocolate: plain, milk** 50 g (1 small bar) 150, 226 300, 451

Coffee, instant, powder** 2 g (1 tsp) 76 3780

Drinking chocolate, cocoa, powder** 6 g (1 tsp) 30, 90 495, 1500

Yeast extract 1 g (thin scraping on I slice of bread) 21 2100

Data sourced and adapted from McCance and Widdowson’s Composition of Foods Integrated Dataset (CoFID), Public Health England, 2019 [12]

Tbsp rounded tablespoon, tsp rounded teaspoon

*Refer to country specific composition tables where possible

**When there is a need to reduce potassium intake, foods of low nutritional quality should be targeted first

^Department of Health and Social Security. The composition of mature human milk. Report on Health and Social Subjects No 12, HMSO, London,
1977. More recent analyses of breastmilk may show a different potassium content. For processed foods, check manufacturers’ data
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CKD. There are, however, some studies describing K+ intake
of children with CKD and their dietary sources or correlation
with diet quality, but not with the effect on serum K+ levels
[32, 33]. A cross-sectional study in North American children
with CKD2–3b (estimated glomerular filtration rate (eGFR)
of 30–90 ml/min/1.73 m2) demonstrated that the K+ intake
increased with age, with mean intakes of 2084, 2377, 2334,
and 2991 mg/day respectively for ages 1–3 years, 4–8 years,
9–13 years, and 14–18 years [32]. In a cross-sectional study in
the USA and Canada, the daily K+ intake decreased as CKD
advanced due to reduced appetite and more dietetic counsel-
ling [33]. The mean K+ intake was 66 mg/kg/day (1.7
mmol/kg/day), which is within the KDOQI range (1–3
mmol/kg) and similar to trends in the general population.
The major dietary sources of K+ were milk, fruit, fast foods,
fruit juice, and potatoes. However, more than one-third of
children did not receive dietetic counselling and 7% had
hyperkalemia. In another study in children on dialysis, intake
of potassium was 44 mg/kg/day (1.1 mmol/kg/day) in anuric
patients and 61 mg/kg/day (1.5 mmol/kg/day) in patients with
residual urine output [34].

There are no recommendations for the K+ requirement of
infants and children with CKD due to a lack of data. In gen-
eral, for infants and young children, 1–3 mmol/kg/day may be
a reasonable place to start [31].

When determining K+ intake in children with CKD, it is
important to consider trends in serum K+ levels rather than
single values before any dietary adjustments are made.
Difficulties with blood sampling can cause cell hemolysis
and release of intracellular K+, giving rise to spuriously ele-
vated serum K+ levels or pseudohyperkalemia; this is espe-
cially common in infants.

4. Management of dyskalemia due to non-dietary causes

4.1. Correct the non-dietary causes of dyskalemia, and
adjust the dialysis prescription where appropriate,
before adjusting the dietary potassium intake (C
moderate).

Evidence and rationale

Hyperkalemia can result from non-dietary causes [35, 36]
(Supplementary Table 8). Pseudohyperkalemia, due to hemo-
lysis, fist clenching or trauma during venipuncture, is espe-
cially common in infants. Hence, a repeat serum K+ level is
commonly performed if there is evidence of hemolysis in the
sample or the serum K+ level is severely elevated or seems
inconsistent with the clinical situation. Although K+ excretion
by the kidneys is not significantly affected until the GFR is
less than 15 to 20mL/min/1.73 m2 [26], and decreased GFR is

the main risk factor for hyperkalemia in children with CKD,
other potential etiologies must be considered.

While oral K+ supplements should clearly be reduced or
stopped in patients with hyperkalemia, other medications may
also cause hyperkalemia. Medications that commonly cause
hyperkalemia in children with CKD by decreasing renal K+

excretion are renin-angiotensin-aldosterone system inhibitors
(including angiotensin converting enzyme inhibitors and an-
giotensin receptor blockers), calcineurin inhibitors, and K+-
sparing diuretics. Beta-blockers cause hyperkalemia by de-
creasing cellular entry of K+. In some patients, medications
may be stopped or the dose reduced, with a subsequent de-
crease in the serum K+ concentration. In children on dialysis,
adjust the dialysis prescription to increase K+ clearance if
appropriate.

Chronic metabolic acidosis can cause K+ shifts from the
intracellular to the extracellular space and may also decrease
urinary K+ excretion and contribute to hyperkalemia. This
may be corrected by administration of base supplements.
Renal tubular disorders may impair renal K+ excretion.
Some patients who have decreased aldosterone levels may
respond to an oral mineralocorticoid. Constipation may de-
crease gastrointestinal losses of K+, especially in advanced
CKD [37].

There are multiple potential non-dietary causes of hypoka-
lemia in children with CKD (Supplementary Table 9).
Dialysis, particularly frequent daily or nocturnal hemodialy-
sis, may lead to excessive K+ losses and lead to hypokalemia.
This may be corrected by adjusting the dialysis prescription,
and although this allows many patients to enjoy an unrestrict-
ed dietary K+ intake, some may require K+ supplements.
Medications, such as loop or thiazide diuretics, may increase
renal losses of K+. K+-binding resins (e.g. sodium polystyrene
sulfonate), prescribed to treat hyperkalemia, may precipitate
hypokalemia. Stopping or decreasing the doses of these med-
ications may correct the hypokalemia, although reducing di-
uretics may not be tolerated in some patients. Such patients
may benefit from a K+-sparing diuretic to decrease urinary
losses or K+ supplements. Gastric fluid losses (emesis or via
gastrostomy tube) and diarrhea may cause hypokalemia. It is
optimal to correct the underlying disorder, but patients may
require additional K+ intake until the gastric losses decrease.
Renal tubular disorders (e.g. cystinosis and Bartter syndrome)
may lead to excessive urinary losses of K+, even in the setting
of advanced CKD. These patients commonly require K+ sup-
plements, but they may cause gastric irritation.

5. Management of hyperkalemia in children with CKD2–5D

5.1. Severe, life-threatening hyperkalemia requires rapid
medical intervention and discontinuation of all
sources of potassium from medications, parenteral
fluids, formulas, and diet (X strong).
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5.2. In a child with persistent or recurrent episodes of
hyperkalemia, decrease the intake of potassium
without compromising nutrition to maintain the se-
rum potassium within the normal range (C weak).

5.2.1. For infants receiving breastmilk, reduce potas-
sium intake by substituting some of the
breastmilk with a renal-specific low potassium
infant formula (D weak).

5.2.2. For children receiving formula or enteral tube
feed, reduce potassium intake by combining
standard formula stepwise with a renal-specific
low potassium formula (D weak).

5.2.3. If a renal-specific low potassium formula is not
available, use of a potassium-binding resin and
decanting of the formula may be considered.
Monitor electrolytes and micronutrients that
may be altered by the potassium binder (C weak).

5.2.4. For children who are eating, avoid foods con-
taining potassium additives in the first instance
(D weak).

5.2.5. If hyperkalemia persists, decrease potassium in-
take by reducing high potassium foods, particu-
larly those with a low nutritional value (D weak).

5.2.6. Advise parents and caregivers on food prepara-
tion techniques that reduce the potassium con-
tent (C weak).

5.2.7. The daily use of an oral potassium binder to
control serum potassium level may be consid-
ered when hyperkalemia cannot be corrected
without compromising diet quality or when di-
etary compliance is poor (D weak).

Evidence and rationale

Severe hyperkalemia can cause fatal cardiac arrhythmias and
requires rapid medical intervention [37] and is beyond the
scope of this guideline.

In children with persistent mild to moderate hyperkalemia,
a diet history to identify sources of K+ (see statement 2 above),
as well as identifying any non-dietary causes of hyperkalemia,
is required. Before manipulating the dietary K+ content, it is
important to ensure sufficient energy intake; deficient energy
intake may manifest as hyperkalemia due to catabolism as K+

is released due to tissue breakdown [31, 36]. An unexpectedly
low urea level for the severity of CKD may indicate deficient
nutritional intake and should alert the clinician to undertake a
detailed dietary assessment and anthropometry. If increasing
energy intake with normal foods is not possible, addition of
energy modules to the infant or child’s usual formula or diet
can be advised. Most have a low K+ content as they contain
only glucose polymers, fats, or a combination of the two.

Once these factors have been considered, the dietary K+ intake
can be reduced as described below.

Managing intake of potassium in infants and children
receiving breastmilk and formulas

Breastmilk, infant formula, enteral tube formula, and low
potassium formulas

Breastfeeding is always the preferred feeding choice for an
infant. Breastmilk has a low K+ content, 73–84 mg/100 kcal
[12, 38, 39] compared with the regulated range allowed for
standard whey-dominant infant formulas in Europe, and in
Canada and the USA (80–160, 80–200 mg/100 kcal, respec-
tively). For some infants and children with CKD, normal
amounts of breastmilk, standardwhey-dominant infant formu-
la or pediatric enteral tube formula can aggravate
hyperkalemia [31]. In order to lower the K+ intake, a renal-
specific low K+ formula (available as infant formula (23 mg
K+/100 kcal) and pediatric enteral tube formula (18 mg K+/
100 kcal)) can be used in combination with the usual feed,
with due attention to the ensuing changes in nutrient profile,
usually decreased calcium and phosphate content and, for
some products, an increased sodium content due to the
renal-specific formula. While the use of renal-specific formu-
las is the preferred option to lower K+ intake, they are not
readily available in all countries. In this case, an approach to
reduceK+ intake is to dilute standard infant or pediatric enteral
formula. However, this must be undertaken with great caution
as dilution also reduces the energy, protein, vitamin, and min-
eral content of the formula. Energy and protein modules must
be added to the diluted formula, together with a suitable vita-
min and mineral preparation, to restore its full composition
and maintain nutritional adequacy. An example of how to
achieve this is given in Supplementary Table 10. It is inadvis-
able to dilute breastmilk and simply add energy modules to
restore the energy content; there will also be a dilution of
protein, vitamins and minerals, all of which must be replaced
to maintain nutritional adequacy. There is no evidence that
reducing maternal dietary K+ has any impact on the K+ con-
tent of breastmilk.

The sole use of renal-specific formulas should only be in
the short term (hours rather than days) as their low K+ content
may cause a rapid fall in serum K+. They may be used solely
in the initial treatment of moderate to severe hyperkalemia,
with careful monitoring of the serum K+ levels, with the in-
troduction of a standard formula or breastmilk as soon as
serum K+ levels allow. Some children may benefit from the
extended use of a renal-specific formula, but caution is ad-
vised as in addition to a decreased K+ intake, there will be
decreased calcium and phosphate intakes and, with some for-
mulas, an increased sodium intake. Renal-specific low K+

liquid oral supplements can be used as an additional source
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of nutrition to complement normal food intake, but they are
not nutritionally complete, are not intended to be used as a
sole source of nutrition, and are not available in every country.

Pretreatment of breastmilk and formulas to lower potassium
content

Pretreatment of expressed breastmilk, infant or enteral formu-
las and other milk products with sodium polystyrene sulfonate
(SPS) or calcium polystyrene sulfonate (CPS) may be an op-
tion. Three retrospective studies in infants have shown a re-
duction in serum K+ levels with pretreatment of formula or
breastmilk with SPS [40–42]. However, the reduction in K+ is
variable. As SPS and CPS act as exchange resins, their use
may lead to unwanted effects on other minerals. SPS has been
shown to increase serum sodium, aluminum, iron, sulfur and
pH and decrease calcium, zinc, copper, phosphorus, manga-
nese and magnesium [40, 43–48]. The use of SPS has also
resulted in hypokalemia, hypernatremia and hypocalcemia in
infants [40]. Pretreatment of formula with CPS may decrease
its K+ content, but increases the calcium content [45, 47].
Pretreatment with patiromer (a new calcium-based cation ex-
change polymer) decreases the K+ concentration of infant for-
mula. An increase in calcium, magnesium, sodium, and phos-
phorus content was seen [49]. Pretreatment of formulas
(Supplementary Table 11) should be advised by a renal dieti-
tian or an otherwise suitably trained professional.

Managing potassium in the diet from foods

Randomized studies demonstrating that serum K+ can be re-
duced by adjusting the K+ intake from foods are lacking [1].
However, a reduced K+ diet is a widely practiced treatment for
chronic hyperkalemia [31].

Complementary feeding (weaning) in infants

The introduction of solid foods to the infant’s diet varies widely
but often begins with vegetables, potatoes, and fruits. These
foods have a high K+ content, which may potentially aggravate
hyperkalemia. Given the high risk for cardiovascular disease in
CKD in later life and the development of taste preferences and
eating habits in early childhood, a diet rich in whole grains,
vegetables, and fruits is desirable [11]. Complementary foods
with a lower K+ content can be offered, if necessary, by choosing
fruits, vegetables and tuberous roots with low or moderate K+

content as described in Tables 1, 2, and 3, or by altering cooking
methods. Refined cereal products are lower in K+ than those
made with the whole grain, but the bioavailability of K+ may
be higher; they are also lower in other essential nutrients and
fiber, so they may not be the preferred choice. The use of
renal-specific low K+ formulas instead of standard infant formu-
las or later, cow’smilk, allows for inclusion and greater variety of

K+-containing fruits and vegetables.Meat is a high natural source
of K+; the amount that can be given in the diet is usually deter-
mined by the infant’s protein needs.

Childhood

For the older child with hyperkalemia, cautious limitation of
high K+ foods is warranted, recognizing the risk of
compromising adequate energy intake or specific nutrients.
Initial interventions should focus on food and drinks with
low nutritional value, including potato crisps, chips, choco-
late, coffee, custards and ice cream made from cow’s milk or
soy, and fruit juices with high K+ content (Tables 1, 2, and 3).
However, it may be necessary to limit high K+-containing
foods with high nutritional value. These may include milk
and milk products, meat, poultry, fish and high K+ fruits and
vegetables. Standard infant formula or follow-on formula (de-
signed for infants over 6 months of age) can continue to be
given to the young child rather than introducing cow’s milk,
as usual, at 1 year of age. For older children, plant-based
drinks low in K+, such as oat “milk,” may be given.
However, rice drinks should be avoided in infants and young
children due to their high arsenic content. Alternatively, juice
with a low fruit or berry content is an alternative low K+

beverage. Yogurts and desserts based on plant protein are
lower in K+ than those based on cow’s milk. If available and
affordable, renal-specific low K+ formulas can be continued
beyond the age of 1 year. If available, a renal-specific low K+

pediatric liquid oral supplement (sip feed) may be used as an
aid to manage K+ intake while also ensuring a good source of
energy and nutrients. Although not a first choice, an adult
renal-specific liquid oral supplement may be considered, even
in infants [50], although the micronutrient content may not be
appropriate for young children.

Demineralization of foods by cooking methods

Cooking potatoes and other tuberous roots and legumes in ample
water reduces their K+ content by 35–80% depending on the
food matrix and preparation method, while soaking raw food
has very little effect [46, 51–62]. Cooking shredded potatoes
reduces K+ content more than cooking diced potatoes [53], while
double-cooking (bringing thewater to the boil and then replacing
it with fresh water) reduces K+ more than cooking once [54, 55].
Soaking after boiling may further reduce K+ content [59].
Compared with boiling, sous vide cooking (low temperature
cooking under vacuum) increases the K+ content of foods [63].
Frying also increases K+ content [59]. Microwave cooking re-
duces K+ content, but to a lesser extent than boiling [61]. The
addition of SPS to soaking or boiling water does not further
increase K+ loss in solid foods [46]. While boiling reduces the
K+ content of foods, boiling also reduces the amounts of other
minerals and water-soluble vitamins in various proportions.
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Therefore, to ensure nutritional adequacy, this demineralization
of foodstuffs should be done on the advice of a renal dietitian or
an otherwise suitably trained professional.

Salt substitutes and potassium-containing additives

Salt substitutes, recommended for patients with hypertension
to reduce sodium intake, are often high in K+, content ranging
from 200 to 300 mg per 1 g of salt [11] and, therefore, they
should not be used by patients with hyperkalemia. In addition,
K+-containing additives can remarkably increase the K+ con-
tent of food [19], as described above.

Plant-based diets and potassium-fiber ratio

KDIGO suggests a diet promoting low K+ plant-based foods,
with an emphasis on an overall healthy dietary pattern [1]. In
adults, a Mediterranean diet is suggested to improve or prevent
the development of chronic diseases, such as cardiovascular dis-
ease [11, 25]. Cupisti et al. suggest that high K+ foods be clas-
sified in relation to their fiber content; choosing foods with a low
K+-fiber ratio enables a beneficial higher fiber intake to be main-
tained while lowering dietary K+ [11]. The K+ content of some
foods normalized for unit of fiber is shown in Supplementary
Table 12. There is some evidence in adults that increasing dietary
fruits and vegetables corrects metabolic acidosis without chang-
ing serumK+ levels [64, 65] because a plant-based diet also has a
high alkali content. The prevention or correction of metabolic
acidosis, as well as constipation, may counteract the
hyperkalemia-inducing effects of a high K+ intake.

We cannot recommend these dietary strategies for children
with CKD as there are no studies showing the effect of a
Mediterranean or plant-based diet on K+ serum levels, but
they may be of relevance in future management.

Potassium binders

Long-term adherence with a low K+ diet can be challenging
for many children with stage 5 CKD. Moreover, an unintend-
ed consequence of a K+-restricted diet may be a shift toward
lower dietary quality. Oral K+ binders bind K+ in the colon,
reducing its absorption and increasing fecal excretion [66].
Randomized trials in adults on dialysis have shown that
chronic hyperkalemia can be alleviated with durations of up
to 1 year for the newer agents, patiromer [67] and sodium
zirconium cyclosilicate [68], with less compelling evidence
from short-term studies (up to a week) for sodium polystyrene
sulfonate [69, 70]. Relatively common and potentially clini-
cally relevant adverse events reported for patiromer include
constipation and hypomagnesemia [71] and for sodium zirco-
nium cyclosilicate include edema (5 g of zirconium
cyclosilicate contains 400 mg of sodium [68]). These

medications have not been approved for use in children as
yet, but pediatric clinical trials are in progress.

Sodium (or calcium) polystyrene sulfonate [69, 70], al-
though highly effective at lowering serum K+, carries a high
risk of causing severe constipation, bowel necrosis, and is
poorly tolerated and rarely used for the long-term manage-
ment of hyperkalemia [72].

6. Management of hypokalemia in children with CKD2–5D

6.1. Severe, life-threatening hypokalemia requires
prompt medical intervention, usually requiring in-
travenous potassium infusion (X strong).

6.2. In a child with persistent hypokalemia, increase the
dietary potassium intake, targeting foods with high
nutritional quality, to maintain serum potassium
within the normal range (D weak).

6.3. If applicable, review and adjust potassium lowering
medications and the dialysis prescription (C
moderate).

Evidence and rationale

Severe hypokalemia may cause muscle cramping, muscle
weakness, and potentially paralysis and arrhythmias, the latter
especially in children with underlying cardiac disease.
Rhabdomyolysis may also occur, with the risk increased by
exercise. Hypokalemia may slow gastrointestinal motility,
leading to constipation, and impair bladder function, which
may cause urinary retention [30]. Severe hypokalemia, espe-
cially if symptomatic, is treated with intravenous K+, but en-
teral K+ supplements and measures to decrease K+ losses (see
below) should also be implemented if possible.

Management of chronic hypokalemia may include dietary
changes and adjustment in the medical management. If a patient
is receiving aK+ binder, it should be stopped or the dose reduced.
Additional interventions are only needed once the K+ binder is
stopped. In some cases, if medically acceptable, other medica-
tions that cause K+ wasting, most commonly loop or thiazide
diuretics, may be reduced or stopped. If possible, medical causes
of hypokalemia should be addressed (e.g. diarrhea). In some
patients, K+-sparing diuretics may be utilized to reduce urinary
losses of K+. Similarly, adjustments in dialysis may decrease K+

losses. Oral K+ supplements are utilized in patients who do not
respond to dietary changes or other medical interventions.

Dietary adjustments may be very effective at addressing
hypokalemia, especially in patients who are receiving a K+-
restricted diet. In children receiving formula or enteral supple-
ments, the K+ content may be increased. The targeted increase
in K+ delivery depends on the severity of the hypokalemia and
the clinical situation. Reasonable increases are 0.5–1 mmol/kg
per day, with a maximum of approximately 50 mmol per day.
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However, formula compositionsmay limit the possible adjust-
ments. In addition, it is important to consider the effect on the
intake of other nutrients (e.g. phosphorus). It may take 3–7
days to appreciate the full effect of any change of intake on the
serum K+. K+ supplements may be added to formula if chang-
ing the formula is not possible or effective.

Results of the Delphi survey

The Delphi survey was sent to 39 pediatric nephrologists and
27 dietitians from 22 countries. Of these, 47 returned a com-
pleted survey, a 71% overall response rate. The names of all

respondents are listed under “Acknowledgments” below. Of
the 20 clinical practice recommendation statements overall, an
89% consensus was achieved with a “strongly agree” or
“agree” response and an 8% “neutral” response. The Delphi
responses reflected the wide variations in practice that can be
expected in the absence of robust evidence, and none of the
responses was based on published studies.

Three statements received a “disagree” response, with
the highest disagree rate being 23% in response to state-
ments 2.1 and 2.2. To clearly state that is it not possible to
accurately assess dietary K+ intake, we have added in a
new statement, with further explanation under the

Table 4 Summary of recommendations

Category Recommendation Grade

1 Main dietary sources of potassium for
children with CKD2–5D

1.1 The main dietary sources of potassium for infants are breastmilk or infant formula. Not graded

1.2 The main natural dietary sources of potassium for children and adolescents are milk,
potatoes, vegetables, cereals, fruits and meat.

Not graded

1.3 Food additives that contain potassium salts contribute to potassium intake. D Weak

2 Assessment of potassium intake for
children with CKD2–5D

2.1 A diet history may not give an accurate assessment of potassium intake. Not graded

2.2 Assess dietary potassium intake in those with dyskalemia. D Weak

2.3 A diet history of a typical 24-hour period, or food frequency questionnaire, focusing on
potassium-rich foods, can identify the main dietary sources of potassium.

D Weak

3 Potassium requirements for children
with CKD2–5D

3.1 Potassium requirements are based on the level of kidney function, weight, growth, renal
potassium losses, extra-renal potassium losses, clearance by dialysis, and medications that
may increase or decrease serum potassium levels.

D Weak

3.2 Adjust the dietary potassium intake based on serum potassium levels, aiming to maintain
potassium levels within the normal range.

D Weak

4 Management of dyskalemia due to
non-dietary causes

4.1 Correct the non-dietary causes of dyskalemia, and adjust the dialysis prescription where
appropriate, before adjusting the dietary potassium intake.

C Moderate

5 Management of hyperkalemia in
children with CKD2–5D

5.1 Severe, life-threatening hyperkalemia requires rapid medical intervention and
discontinuation of all sources of potassium from medications, parenteral fluids, formulas
and diet.

X Strong

5.2 In a child with persistent or recurrent episodes of hyperkalemia, decrease the intake of
potassium without compromising nutrition to maintain the serum potassium within the
normal range.

C Weak

5.2.1 For infants receiving breastmilk, reduce potassium intake by substituting some of the
breastmilk with a renal-specific low potassium infant formula.

D Weak

5.2.2 For children receiving formula or enteral tube feed, reduce potassium intake by
combining standard formula stepwise with a renal-specific low potassium formula.

D Weak

5.2.3 If a renal-specific low potassium formula is not available, use of a potassium-binding
resin and decanting of the formula may be considered. Monitor other electrolytes that may
be altered by the potassium binder.

C Weak

5.2.4 For children who are eating, avoid foods containing potassium additives in the first
instance.

D Weak

5.2.5 If hyperkalemia persists, decrease potassium intake by reducing high potassium foods,
particularly those with a low nutritional value.

D weak

5.2.6 Advise parents and caregivers on food preparation techniques that reduce the potassium
content.

C Weak

5.2.7 The daily use of an oral potassium binder to control serum potassium level may be
considered when hyperkalemia cannot be corrected without compromising diet quality, or
when dietary compliance is poor.

D Weak

6 Management of hypokalemia in
children with CKD2–5D

6.1 Severe, life-threatening hypokalemia requires prompt medical intervention, usually
requiring intravenous potassium infusion.

X Strong

6.2 In a child with persistent hypokalemia, increase the dietary potassium intake, targeting
foods with high nutritional quality, to maintain serum potassium within normal range.

D Weak

6.3 If applicable, review and adjust potassium lowering medications and the dialysis
prescription.

C
Moderate
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“evidence and rationale” section. There was also some dis-
agreement about the management of dyskalemia in
breastfed infants, statement 5.2.1. The lack of renal-
specific low K+ formulas in some countries may lead to
adaptations in practice that cannot be accounted for in this
CPR. Further clarifications to the text have been provided
as suggested by the respondents.

Summary of recommendations

A summary of recommendations is provided in Table 4.

Research recommendations

1. To investigate the effectiveness of 24-h dietary recall
compared with a 3-day diet diary (semi-quantitative or
weighed) or a food frequency questionnaire as a tool to
assess the K+ intake in children with CKD2–5D.

2. To investigate the effectiveness of a Mediterranean or
plant-based diet on serum K+ levels in children with
CKD2–5D.

3. To study the effectiveness of different dietary counseling
strategies to lower or increase serum K+.

4. To compare the effectiveness and tolerability of dietary
interventions versus novel K+-binders (zirconium
cyclosilicate or patiromer) in controlling serum K+.

5. To study the long-term use of novel K+-binders (zirconi-
um cyclosilicate or patiromer) to allow a controlled in-
crease in the dietary intake of high nutritional quality
K+-containing foods. The side effects of these medica-
tions require careful study in children with CKD2–5D.

6. Patient and caregiver questionnaires to evaluate burden
and quality of life indicators of K+-restricted vs. higher
K+ diets and use of K+-binders.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00467-021-04923-1.
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