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A genome search for primary vesicoureteral reflux shows
further evidence for genetic heterogeneity
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Abstract Vesicoureteral reflux (VUR) is the most common
disease of the urinary tract in children. In order to identify
gene(s) involved in this complex disorder, we performed a
genome-wide search in a selected sample of 31 patients with
primary VUR from eight families originating from southern
Italy. Sixteen additional families with 41 patients were
included in a second stage. Nonparametric, affected-only
linkage analysis identified four genomic areas on chromo-
somes 1, 3, and 4 (p<0.05); the best result corresponded to
the D3S3681-D3S1569 interval on chromosome 3 (non-
parametric linkage score, NPL=2.75, p=0.008). This
region was then saturated with 26 additional markers,
tested in the complete group of 72 patients from 24 families
(NPL=2.01, p=0.01). We identified a genomic area on
3q22.2–23, where 26 patients from six multiplex families
shared overlapping haplotypes. However, we did not find

evidence for a common ancestral haplotype. The region on
chromosome 1 was delimited to 1p36.2–34.3 (D1S228-
D1S255, max. NPL=1.70, p=0.03), after additional fine
typing. Furthermore, on chromosome 22q11.22–12.3,
patients from a single family showed excess allele sharing
(NPL=3.35, p=0.015). Only the chromosome 3q region
has been previously reported in the single genome-wide
screening available for primary VUR. Our results suggest
the presence of several novel loci for primary VUR, giving
further evidence for the genetic heterogeneity of this
disorder.
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Introduction

Vesicoureteral reflux (VUR) (OMIM 193000) is the most
common disease of the urinary tract in children and
affects 1–2% of the Caucasian population [1]. VUR may
be associated with both acquired postinfectious and
congenital parenchymal damage, currently known as
reflux nephropathy (RN) [2, 3]. The most serious
consequence of RN is chronic renal insufficiency (CRI),
leading to end-stage renal failure (ESRF), dialysis, and/or
renal transplantation: 25.4% of children affected with CRI
have RN [4]. As a consequence, the impact of VUR on
public health is considerable and, despite medical and
surgical interventions for the past decades, the incidence
of VUR-related renal failure has not decreased [5].

The reflux may occur isolated or in association with
other congenital abnormalities of kidney/urinary tract
(CAKUT) or as part of syndromic entities, such as renal-
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coloboma or branchio-oto-renal syndromes [6–8]. The
exact etiology of primary VUR is not known, but it is
probably related to an abnormal morphogenesis of the
ureteral bud, leading to a defect of the ureterovesical
junction [9]. The initial evidence suggesting a genetic
origin of primary VUR came from twin studies, showing an
80–100% concordance for VUR in monozygotic twins vs. a
35–50% concordance in dizygotic twins [10, 11]. Subse-
quent evidence included familial clustering of VUR [12],
ethnic differences between affected and nonaffected
individuals [13], and an increased risk (30–50%) of
developing VUR in first-degree relatives of an index case
[14–16]. From family studies, a range of inheritance
patterns was reported, including autosomal dominant with
incomplete penetrance [17–20], autosomal recessive [21],
polygenic [22], and even X-linked [23].

Previous studies suggest a urinary tract malformation
locus on chromosome 6p [24, 25]. Studies of humans with
chromosomal abnormalities also suggest candidate loci or
genes on chromosomes 10q26 [26], 19q13 (USF2 gene)
[27], and 13q33–34 [28]. Because mutations in PAX2 on
10q24 cause renal-coloboma syndrome, a rare autosomal
dominant disease with kidney anomalies that include VUR,
this gene was also proposed as a candidate [6, 7]. However,
none of these loci or genes has been shown causally related
to primary VUR [19, 20]. Recently, Lu et al. [29] showed
that mutations in the ROBO2 gene contribute to the
pathogenesis of VUR/CAKUT in a small proportion of
families. In the only genome-wide linkage study reported to
date, Feather et al. [18] demonstrated linkage to chromo-
some 1p13 for primary VUR under a model of autosomal
dominant inheritance with reduced penetrance.

Here, we describe the results of the second genome-wide
scan for primary VUR. Differently from previous studies
and aiming to collect a homogeneous sample set, our
patients were ascertained in a single geographic region. Our
results suggest the presence of several novel loci for
primary VUR, giving further evidence for the genetic
heterogeneity of this disorder.

Methods

Patients and families

Fifty-one pedigrees with multiple patients with VUR coming
from Campania (southern Italy) were enrolled in the study
(Fig. 1). All families were ascertained through an index case,
with VUR documented by voiding cystourethrography
(VCUG) in males and direct radionuclide cystography
(RNC) in females and family members. Three pediatric
nephrologists and one radiologist assessed the patients. RN
was diagnosed by DMSA scintigraphy (dimercaptosuccinic

acid labeled with Technetium-99 m) and defined as focal
defects of radionuclide uptake and/or by one-kidney
differential uptake below 43% [30]. VUR grading was
made according to the International Grading System of
Vesicoureteral Reflux [31].

Additional family members were considered as “affected”
based on the presence of reflux documented by VCUG/RNC
and/or the diagnosis of RN, or the detection of ESRF/renal
replacement in absence of other known causes. As VUR may
spontaneously disappear during childhood and adolescence
[32], the finding of scintigraphic signs of RN in relatives of
VUR patients strongly suggests the previous occurrence of
reflux [33]. Individuals with renal symptoms indicative
of VUR, such as previous urinary tract infections and/or
hypertension and/or proteinuria, not supported by additional
findings were classified as “diagnosis unknown”. Patients
with secondary VUR, i.e., neurogenic bladder and posterior
urethral valves, or other urinary tract abnormalities, i.e.,
ureterocele and obstructive hydronephrosis, were excluded.
The study focused on primary familial VUR. Eight families
with 31 patients with VUR were selected for study phase 1
(genome scan) according to the following criteria: diagnosis
of primary VUR in absence of any other malformation, two
or more affected individuals per family, and a pattern of
inheritance compatible with an autosomal dominant model.
The second sample (follow-up) consisted of five affected
relative pairs (parent–child trios, ten patients) and 11 small
families (31 patients) fulfilling the same criteria (Fig. 1).

Informed consent from patients and family members
(parents for their children) and approval from the Ethic
Committee at Second University of Naples were obtained
previously.

Laboratory analysis

Genomic DNA was isolated from peripheral blood
leukocytes by standard techniques and was sent from
the Paediatrics Department of Second University of
Naples to the Department of Clinical Genetics, Erasmus
Medical Centre in Rotterdam. A systematic genome
scan was performed using the ABI Prism MD-10 set
(Applied Biosystems) consisting of 382 short-tandem-
repeat polymorphisms markers (STRPs), average spaced
10 cM. Additional markers for further characterization
of candidate regions were selected from the gender-
average Marshfield genetic map. Information about
marker order and distances were obtained from the
National Center for Biotechnology Information (NCBI)
physical map and Marshfield integrated genetic map.
Polymerase chain reaction (PCR) products were resolved on
an ABI3100 automated sequencer, and genotypes were
analyzed using the GeneMapper software v.2.0 (Applied
Biosystems).
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Linkage analysis

One thousand simulations were performed (SLINK,
MSIM) [34] to investigate the statistical power of our
sample set. An autosomal dominant mode of inheritance
was assumed with a penetrance of 70%, a mutant allele
frequency of 1%, and a phenocopy rate of 1%. The cal-
culations were done under the assumption of genetic
heterogeneity. Assuming 35% of unlinked families, a
maximum total log of odds (LOD) score of 5.4 was
obtained with a low average LOD of 1.58 [standard
deviation (SD)=1.26], after analyzing all eight pedigrees
selected previously. Increasing the percentage of unlinked
families to 50%, a maximum LOD score of 4.94 was
observed (average 0.99, SD=1.04). Families 1, 4, and 12
had the largest contribution to the total LOD score (LOD=
0.86, 1.04, and 1.62, respectively), followed by families 5,
7, and 13 (LOD=0.57). Due to their small size, families 2
and 11 had less contribution to the final LOD (LOD=0.29).
Simulations were calculated in the replication group (11
families) after exclusion of five parent–child trios, giving a

maximum LOD of 4.57 (average 1.49, SD=1.07) and a
maximum LOD of 4.85 (average 1.14, SD=1.08), under
assumption of 35% and 50% unlinked families, respective-
ly. Family 25 with seven patients was the main contributor
to the total LOD score (LOD=1.47). Finally, simulations
were performed in all 19 families (genome scan group and
replication group) reaching a maximum LOD of 9.19
(average of 2.76, SD=1.78) and a maximum LOD of 7.36
(average of 1.71, SD=1.34), under assumption of 35% and
50% unlinked families, respectively.

Mega2 [35] was used to process the genetic data,
whereas the accuracy of allele segregation within the
families was confirmed with Pedcheck. The program
GENEHUNTER v.2.1 [36] was used to compute multipoint
parametric and nonparametric (or model-free) linkage
analysis. As VUR may often disappear with age, all
individuals in whom VUR, RN, or both were not clinically
proven were classified (and analyzed) as “diagnosis
unknown”. Thus, a conservative “affected-only” analysis
was performed based on these criteria. Due to the uncertain
pattern of inheritance, nonparametric analysis was computed.

Fig. 1 Selection and distribution of families and patients included in the study. VUR vesicoureteral reflux
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The rationale of a nonparametric analysis is that, among
affected relatives, excess sharing of haplotypes identical by
descent would be expected, irrespective of the mode of
inheritance. The nonparametric linkage statistics examining
all individuals simultaneously (NPL-all), is reported.

A parametric analysis was performed as well. An
autosomal dominant mode of inheritance with reduced
penetrance, as described above (power calculations), was
used. Marker allele frequencies were calculated using all
spouses (unrelated individuals) coming from the same
geographic area. Due to the genetic heterogeneity of the
disease, the genome scan data was analyzed, maximizing
the heterogeneity LOD score (HLOD) with respect to the
proportion of linked families (α). Nonparametric (NPL) and
parametric (LOD) scores were calculated for each of the
families, and then total NPL and HLOD scores were
obtained.

Results

Patients

Fifty-one pedigrees with multiple patients with VUR, origi-
nating from the same region of southern Italy (Campania),
were available for the study. All persons in the study were
ascertained through an index case documented by VCUG/
RNC. A total of 143 patients were detected. According to the
phenotype, three groups of families were identified: primary
VUR; VUR associated with additional abnormalities of
kidney/urinary tract such as duplicated collecting system, renal
agenesis, or hypospadia; and VUR occurring in syndromes,
such as renal-coloboma, branchio-oto-renal syndromes, and
reflux associated with congenital ichthyosis (Fig. 1).

A total of 78 primary VUR patients belonging to 25
pedigreeswere identified (33 based on a positive VCUG/RNC,

Fig. 2 A selection of pedigrees enrolled in the study is shown. Squares
indicate males and circles indicate females. Family members with
unknown phenotype are in grey, whereas those unaffected (normal
voiding cystourethrography or direct radionuclide cystography before
age of 5 years and unrelated spouses) are in white. An asterisk
highlights the individuals genotyped in the study. A number following
the asterisk indicates the patients/obligate carriers reported in Fig. 3.
Individuals with urinary tract infections by history and “obligate

carriers” are considered as unknown in all analyses. a Nine multiplex
pedigrees included in the genome-wide scan are shown. An additional
five parent–child trios are not displayed. Family 6 was excluded from
the linkage analysis due to the bilineal inheritance. b All 11 multiplex
pedigrees included in the fine-typing stage are shown. VUR
vesicoureteral reflux, RN reflux nephropathy, ESRF end-stage renal
failure, UTIs urinary tract infections
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18 based on detection of RN, 21 diagnosed as having both
reflux and RN, and six with ESRF). During the course of the
study, a new patient affected with RN was detected in family 1
and included in the second stage. Twenty-eight patients were
males and 51 were females (ratio M/F=0.57). The median age
at diagnosis was 3.5 years (range 1 month–68 years). Among
the 79 patients, 19 were treated surgically, and four out of six
who developed ESRF underwent renal transplantation.

The most informative pedigrees are shown in Fig. 2a,b.
The pedigrees showed patients in several generations, and
male-to-male transmission was observed in some families,
supporting an autosomal dominant mode of inheritance. As
reported before for primary VUR, we observed several
obligate carriers in our families, i.e., families 4, 6, 12, and
13. Family 6 is especially interesting: when assessing the
parents (asymptomatic) of the four symptomatic children,
both individuals were found to have RN. No consanguinity
was reported, but history of ESRF in both branches was
described. We are currently recruiting clinical information
of those patients (family 6, second generation, Fig. 2). Due
to this bilinear transmission, this family was excluded from
the linkage analysis.

Genome search

We performed a systematic genome-wide scan using 382
microsatellite markers. Results from both parametric and
nonparametric linkage analysis excluded most of the genome
(data not shown). Furthermore, negative scores were found on
both VUR loci, 1p13 [18] (NPL=−0.86, p=0.86) and 13q33–
34 [28] (NPL=−0.21, p=0.58) previously reported.

We used a nominal p value of < 0.05 to decide whether a
region was promising for further study. Table 1 summarizes
the genome-wide scan results, showing all regions that
yielded a total NPL corresponding to p<0.05. These
regions were located on chromosome 1 (D1S468-D1S255,
D1S213-D1S2785), chromosome 3 (D3S3681-D3S1569),
and chromosome 4 (D4S402-D4S1597). Furthermore, on
chromosome 22q11.22–12.3, patients from a single family
showed excess allele sharing (D22S539-D22S280). The
best evidence of linkage was observed on chromosome
3p12.3–3q24, which yielded the highest NPL score (2.75,
p=0.008, HLOD=1.52, α=0.76) and on chromosome
1p36.32–1p34.3 (NPL=2.22, p=0.02, HLOD=1.13, α=
0.62). Recently, mutations in ROBO2 were described in two

Fig. 2 (continued)
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VUR/CAKUT patients [29]. ROBO2, which is an ideal
functional candidate gene for VUR/CAKUT, maps on
chromosome 3p12.3 at the border of our region. Thus, we
retrospectively sequenced all gene exons in our index
patients, and no mutations were found.

The NPL score of 2.15 (p=0.02) on chromosome 4q26–
32.3 was mainly due to family 4 (NPL=3.05, p=0.062,
LOD=1.3). Yet, allele sharing among the patients of this
family was observed also on chromosome 2p23.2–2p15
(D2S165-D2S337, NPL=3.05, p=0.062, LOD=1.3). The
only region in which patients from family 12 (Fig. 2) showed
excess allele sharing was on chromosome 22q11.22–12.3
(NPL=3.65, p=0.015, LOD=1.49). We then closely
inspected the haplotypes from the positive regions in all
genotyped families. Families 1, 2, 5, 7, 11, and 13 displayed
haplotype sharing among each family’s patients on chromo-
some 3p12.3–3q24, supporting the linkage to this area. Thus,
in six out of eight informative families, we observed allele/
haplotype sharing in an overlapping area on chromosome 3q.
We noted also on chromosome 1p haplotype sharing in four
out of eight multiplex families (families 2, 5, 7, and 11)
extending from D1S2667 until D1S255. Therefore, we
decided to explore these genomic areas.

Refinement of the chromosome 3 locus

The chromosome 3q region between D3S3681 and
D3S1569 was saturated with 26 additional microsatellites
markers (average spaced approximately 2 cM). A maxi-
mum HLOD=2.69 (α=0.95) was reached with an NPL=
2.96, p=0.001. In a second stage, the fine mapping was
extended with 16 additional families with 41 patients. The
expansion of pedigrees introduced additional unlinked
families, which lowered the maximum HLOD to 1.24 (α=

Table 1 Summary of the genome-wide scan results. Total nonparametric linkage (NPL) scores with p values <0.05

Pedigrees D1S468-D1S255 D1S213-D1S2785 D3S3681-D3S1569 D4S402-D4S1597
1p36.32–1p34.3 1q41–1q43 3p12.3–3q24 4q26–4q32.3
4–65 cM 242–266 cM 109–158 cM 117–169 cM

1 −0.80 (−1.09) 0.59 (0.19) 2.48 (0.87) −0.37 (0.07)
2 1.34 (0.27) −0.42 (−0.76) 1.34 (0.28) 0.44 (0.27)
4 1.14 (0.72) 0.26 (−0.36) 1.04 (−0.31) 3.05 (1.3)
5 1.9 (0.55) 1.78 (0.55) 1.89 (0.58) 1.69 (0.57)
7 1.59 (0.54) 1.07 (0.42) 1.75 (0.58) −0.33 (−1.37)
11 1.34 (0.27) 1.34 (0.27) 1.34 (0.28) 0.44 (0.28)
12 1.47 (0.19) 1.58 (0.35) 0.65 (0.10) −0.04 (−1.66)
13 1.25 (0.54) 1.97 (0.54) 1.25 (0.57) 1.25 (0.57)
Total NPL ( p) 2.22 ( p=0.02) 2.35 ( p=0.02) 2.75 ( p=0.008) 2.15 ( p=0.02)
Total HLOD (α) 1.13 (0.62) 0.61 (0.57) 1.52 (0.76) 1.31 (0.51)

NPL and (LOD) scores per family are shown at each locus. Total NPL ( p value) and HLOD (α) obtained from the analysis of all eight pedigrees
are displayed. HLOD was obtained maximizing the “heterogeneity” LOD score with respect to the proportion of linked families (α). Negative
NPL and LOD scores indicate no linkage or inconclusive result
NPL nonparametric LOD score, HLOD heterogeneity LOD score, α proportion of “linked” families

Table 2 Summary of fine-typing results in chromosome 1 and 3 (total
NPL scores with p values <0.05)

Pedigrees D1S468-D1S255 D3S3681-D3S1569
1p36.32–1p34.3 3p12.3–3q24
4–65 cM 109–158 cM

1 −0.79 (−2.19) 1.43 (0.74)
2 1.34 (0.28) 1.34 (0.28)
4 1.59 (1.17) 0.46 (−0.43)
5 1.89 (0.56) 1.79 (0.58)
7 1.6 (0.57) 1.75 (0.57)
11 1.34 (0.28) 1.34 (0.28)
12 1.51 (0.05) 0.81(−0.73)
13 1.26 (0.57) 1.98 (0.57)
14 1.41 (0.27) 0.004 (0.001)
15 −0.24 (−0.07) 1.41 (0.28)
16 −0.07 (−0.02) 0.0004 (−0.008)
17 1.41 (0.28) 1.41 (0.28)
18 −0.37 (−0.32) −0.57 (−0.48)
19 0.9 (0.28) −0.81 (−0.9)
20 −0.37 (−0.29) 1.73 (0.48)
21 −0.48 (−0.45) −0.58(−0.48)
22 1.37 (0.27) −0.57 (−0.48)
23 2.43 (0.86) −1.41 (−0.96)
25 0.22 (0.28) 4.63 (1.45)
Total NPL ( p) 1.70 ( p=0.03) 2.01 ( p=0.01)
Total HLOD (α) 1.65 (0.55) 1.24 (0.36)

NPL and (LOD) scores per family are shown at each locus. Total NPL
( p value) and HLOD (α) obtained from the analysis of all eight
pedigrees are displayed. HLOD was obtained maximizing the
“heterogeneity” LOD score with respect to the proportion of linked
families (α). Negative NPL and LOD scores indicate no linkage or
inconclusive result
NPL nonparametric LOD score, HLOD heterogeneity LOD score, α
proportion of “linked” families
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0.36), giving a total NPL=2.01 (p=0.01) (Table 2). Pedigree
25 was the main contributor to the total score, with an
NPL=4.63, p=0.03, (LOD=1.45). We then performed a
detailed haplotype analysis in all 24 families. Patients from
families 2, 5, 7, 13, 20, and 25 shared a common region
delimited by markers D3S3641 and D3S1764, containing
36 genes according with the NCBI map, built 36.2. Instead,
families 1 and 11 were sharing a more centromeric area not
overlapping with the other families (Fig. 3). We did not
observe a common “ancestral” haplotype shared across the
families.

Refinement of chromosome 1 locus

The 1p36.22-p34.3 region between D1S468 (4.2 cM) and
D1S255 (65.5 cM) was saturated with seven extra micro-

satellite markers (total 12, spaced 4–5 cM) in the complete
group of 24 families (Table 2). We observed a maximum
HLOD of 1.65 (α=0.55) and NPL of 1.7 ( p=0.03). The
haplotype analysis showed allele sharing in families 2, 5, 7,
11, 19, and 23 between D1S228 (29.8 cM) and D1S255
(65.5 cM). Patients from families 13, 14, and 22 displayed
haplotype sharing, but it was limited to the upper or lower
part of the region, thus showing no overlapping with the
rest of the families.

Candidate genes

There were several interesting genes map on the chromosome
3q region. The PPP2R3A gene encodes the protein phospha-
tase 2A, one of four major protein phosphatases identified in
eukaryotic cells, implicated in the regulation of most major

Fig. 3 Haplotype analysis in
families supporting the chromo-
some 3 region after fine typing.
A selection of microsatellite
markers is shown. The shared
genomic region is shown in
grey; recombinants are shown in
white blocks
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metabolic pathways. It has been shown to be expressed
ubiquitously in 15-day-old kidneys, regulating the mitogenic
activity in the early embryonic kidney [37]. The FNDC6 gene
encodes a type of fibronectin, expressed mainly in fetal
kidney [38], implicated in the development of renal basement
membrane [39]. RBP1 and RBP2 genes (Retinol-binding-
proteins type 1 and 2) are involved in the metabolism of
vitamin A, which in its active form of retinoic acid plays a
critical role during kidney development, even connecting
ureters to bladder [40]. The AGTR1 gene encodes the
angiotensin receptor II type 1 (AT1), shown to be related to
gross abnormalities in renal morphogenesis in mutant mice
(hydronephrosis) as well as a poor proliferation of ureteral
smooth cells [41].

Discussion

This study reports the second genome-wide search for primary
VUR. Our results suggest the existence of several loci mapping
to chromosomes 1, 3, 4, and 22, further supporting the
hypothesis that primary VUR is genetically heterogeneous.

We, as others, encountered several pitfalls when studying
VUR. We observed clinical variability among and within
families and the presence of obligate carriers (individuals
who carry and transmit the disease allele but do not manifest
any disease sign or symptom). Although the appropriate
clinical investigations were performed in several apparently
healthy individuals (carriers), no evidence of disease was
found, indicating a reduced or age-dependent penetrance. As
most of these individuals were recruited during their
adulthood, we could not exclude an earlier disease condition
that evolved to a spontaneous resolution. To overcome these
problems, we first performed a careful clinical evaluation of
patients and available relatives. All individuals older than
5 years of age with insufficient or no evidence of VUR were
classified as diagnosis unknown, despite the consequent loss
of power for the statistical analysis.

We performed the first genome search in VUR that
includes families with the same ethnic origin. In order to
strengthen the genetic homogeneity of the patients, all
families included in this study originated from the same
geographic area in the southern part of Italy. Yet, our results
strongly support that primary VUR is a (highly) genetic
heterogeneous condition. Whereas a large number of our
patients and families supported the chromosome 3q locus,
one relatively large pedigree (family 12) showed evidence of
linkage on chromosome 22. Six of our families supported a
locus on chromosome 3q22.2–23 (149.8–153.2 cM). This
region is fully overlapping with one of the loci reported by
Feather et al. [18]. In their study, the interval on chromosome
3q (from GATA128C02 to D3S1763, 112–176 cM) showed a
high α (0.98) with an NPL=3, p=0.008. This region was

supported by one of their largest pedigrees (with seven
patients) that was clearly not linked to the chromosome 1p13
locus. It is interesting that two independent studies have
found the same genomic region in distinct groups of patients.

Besides the number of patients included in our genome
scan, the results of the statistical analysis are quite modest
and do not reach the criteria suggested by Lander and
Kruglyak [42] to declare significant linkage. Therefore,
some of the identified loci may represent false positive hits
and should be interpreted with caution.

The complex disease etiology of primary VUR has shown
to be difficult to disentangle. Genetic heterogeneity and lack of
knowledge of the true genetic model for VUR are probably the
main difficulties in the identification of the genetic etiology of
VUR. Although genetic studies in VUR are still in an early
phase, we can presume that primary VUR is likely a complex
disorder, with a number of not fully penetrant genes causing
most of the familiar cases. Finally, primary VUR could be
caused by simultaneous gene-environment interactions.

In conclusion, our results show further evidence for the
genetic heterogeneity in primary VUR. We will next focus
on the refinement of the identified genomic regions and the
sequence analysis of the candidate genes according to their
tissutal expression and biological function. Replication of
the results in additional families will be essential, first to
confirm and eventually to evaluate the contribution of these
loci to the pathogenesis of primary, nonsyndromic VUR.
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