Skip to main content
Log in

Hybrid-mixed shell quadrilateral that allows for large solution steps and is low-sensitive to mesh distortion

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We compare three nearly optimal quadrilateral finite elements for geometrically exact inextensible-director shell model. Two of them are revisited and one is novel. The assumed natural strain (ANS) element of Ko et al. (Comput Struct 185:1–14, 2017) shows low sensitivity to mesh distortion and excellent convergence behavior for most types of shell problems. The Hu–Washizu element with ANS shear strains of Wagner and Gruttmann (Int J Numer Methods Eng, 64:635–666, 2005) allows for large solution steps and is computationally fast. However, both formulations have undesirable weak spots, which we clearly identify by a comprehensive set of numerical examples. We show that a straightforward combination of both formulations results in a novel element that synergizes the positive features and eliminates the weak spots of its predecessors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Bathe KJ (2014) Finite element procedures, 2 edn. K.J. Bathe, Watertown, MA

    MATH  Google Scholar 

  2. Brank B, Ibrahimbegovic A (2001) On the relation between different parametrizations of finite rotations for shells. Eng Comput 18:950–973

    Article  Google Scholar 

  3. Brank B, Perić D, Damjanić FB (1997) On large deformations of thin elasto-plastic shells: Implementation of a finite rotation model for quadrilateral shell element. Int J Numer Methods Eng 40:689–726

    Article  Google Scholar 

  4. Choi CK, Paik JG (1996) An effective four node degenerated shell element for geometrically nonlinear analysis. Thin-Walled Struct 24(3):261–283

    Article  Google Scholar 

  5. Crisfield MA (1996) Non-linear finite element analysis of solids and structures, volume 2: advanced topics. Wiley, Hoboken

    Google Scholar 

  6. Dujc J, Brank B (2012) Stress resultant plasticity for shells revisited. Comput Methods Appl Mech Eng 247:146–165

    Article  MathSciNet  Google Scholar 

  7. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  8. Goto Y, Watanabe Y, Kasugai T, Obata M (1992) Elastic buckling phenomenon applicable to deployable rings. Int J Solids Struct 29(7):893–909

    Article  Google Scholar 

  9. Gruttmann F, Wagner W (2005) A linear quadrilateral shell element with fast stiffness computation. Comput Methods Appl Mech Eng 194:4279–4300

    Article  Google Scholar 

  10. Gruttmann F, Wagner W (2006) Structural analysis of composite laminates using a mixed hybrid shell element. Comput Mech 37:479–497

    Article  Google Scholar 

  11. Ibrahimbegović A, Brank B, Courtois P (2001) Stress resultant geometrically exact form of classical shell model and vector-like parameterization of constrained finite rotations. Int J Numer Methods Eng 52(11):1235–1252

    Article  Google Scholar 

  12. Ibrahimbegović A (2009) Nonlinear solid mechanics. Springer, Dordrecht

    Book  Google Scholar 

  13. Ko Y, Lee PS, Bathe KJ (2017) A new MITC4+ shell element. Comput Struct 182:404–418

    Article  Google Scholar 

  14. Ko Y, Lee PS, Bathe KJ (2017) The MITC4+ shell element in geometric nonlinear analysis. Comput Struct 185:1–14

    Article  Google Scholar 

  15. Ko Y, Lee Y, Lee PS, Bathe KJ (2017) Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems. Comput Struct 193:187–206

    Article  Google Scholar 

  16. Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, Berlin

    Book  Google Scholar 

  17. Kulikov GM, Plotnikova SV (2010) A family of ANS four-node exact geometry shell elements in general convected curvilinear coordinates. Int J Numer Methods Eng 83(10):1376–1406

    Article  Google Scholar 

  18. Magisano D, Leonetti L, Garcea G (2017) Advantages of the mixed format in geometrically nonlinear analysis of beams and shells using solid finite elements. Int J Numer Methods Eng 109:1237–1262

    Article  MathSciNet  Google Scholar 

  19. Oesterle B, Sachse R, Ramm E, Bischoff M (2017) Hierarchic isogeometric large rotation shell elements including linearized transverse shear parametrization. Comput Methods Appl Mech Eng 321:383–405

    Article  MathSciNet  Google Scholar 

  20. Pian THH, Sumihara K (1984) Rational approach for assumed stress finite elements. Int J Numer Methods Eng 20(9):1685–1695

    Article  Google Scholar 

  21. Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33(7):1413–1449

    Article  Google Scholar 

  22. Simo JC, Fox DD (1989) On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304

    Article  Google Scholar 

  23. Simo JC, Fox DD, Rifai MS (1990) On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput Methods Appl Mech Eng 79:21–70

    Article  Google Scholar 

  24. Simo JC, Hughes TJR (1986) On the variational foundations of assumed strain methods. J Appl Mech 53(1):51–54

    Article  MathSciNet  Google Scholar 

  25. Wagner W, Gruttmann F (2005) A robust non-linear mixed hybrid quadrilateral shell element. Int J Numer Methods Eng 64:635–666

    Article  Google Scholar 

  26. Wiśniewski K (2010) Finite rotation shells, basic equations and finite elements for Reissner kinematics. Springer, Dordrecht

    MATH  Google Scholar 

  27. Wisniewski K, Turska E (2009) Improved 4-node Hu–Washizu elements based on skew coordinates. Comput Struct 87:407–424

    Article  Google Scholar 

  28. Wisniewski K, Wagner W, Turska E, Gruttmann F (2010) Four-node Hu–Washizu elements based on skew coordinates and contravariant assumed strain. Comput Struct 88:1278–1284

    Article  Google Scholar 

  29. Wriggers P (2008) Nonlinear finite element methods. Springer, New York

    MATH  Google Scholar 

  30. Yu G, Xie X, Carstensen C (2011) Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods. Comput Methods Appl Mech Eng 200:2421–2433

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boštjan Brank.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavrenčič, M., Brank, B. Hybrid-mixed shell quadrilateral that allows for large solution steps and is low-sensitive to mesh distortion. Comput Mech 65, 177–192 (2020). https://doi.org/10.1007/s00466-019-01759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01759-3

Keywords

Navigation