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Abstract
We consider the Dirichlet–Neumann iteration for partitioned simulation of thermal fluid–structure interaction, also called
conjugate heat transfer. We analyze its convergence rate for two coupled fully discretized 1D linear heat equations with jumps
in the material coefficients across the interface. The heat equations are discretized using an implicit Euler scheme in time,
whereas a finite element method on one domain and a finite volume method with variable aspect ratio on the other one are
used in space. We provide an exact formula for the spectral radius of the iteration matrix. The formula indicates that for
large time steps, the convergence rate is the aspect ratio times the quotient of heat conductivities and that decreasing the time
step will improve the convergence rate. Numerical results confirm the analysis and show that the 1D formula is a very good
estimator in 2D and even for nonlinear thermal FSI applications.

Keywords Solid–fluid interaction · Finite element · Stability · Converging · Numerical methods

1 Introduction

The Dirichlet–Neumann iteration is a basic method in
both domain decomposition and fluid–structure interaction
(FSI). In the latter case, the iteration arises in a partitioned
approach [11],where different codes for the sub-problems are
reused and the coupling is done by a master program which
calls interface functions of the segregated codes. This allows
to reuse existing software for each sub-problem, in contrast
to a monolithic approach, where a new code is tailored for
the coupled equations. To satisfy coupling conditions at the
interface, the subsolvers are iterated by providing Dirichlet
andNeumann data for the other solver in a sequentialmanner,
giving rise to its name.

In the domain decomposition context, the iteration has two
main problems, namely slow convergence and the need for
an implementation using a red-black colouring. The slow
convergence can be slightly improved using a relaxation
procedure. In fluid–structure interaction, there are typically
only two domains, coupled along an interface, making the
application straight forward. The convergence rate for the
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interaction of a flexible structure with a fluid has been ana-
lyzed in [35]. There, the added mass effect is proven to be
dependent on the step size for compressible flows and inde-
pendent for incompressible flows. However, the convergence
rate is not great for some FSI couplings, which is why a lot
of effort goes into convergence acceleration [10]. An alter-
native are optimized Schwarz methods [13,15,29] and the
CHAMP scheme (Conjugate Heat transfer Advanced Multi-
domain Partitioned) which uses a generalized Robin (mixed)
condition at the interface to accelerate the iteration [24], but
overlapping domains. Furthermore, for incompressible flu-
ids it is known that the ratio of densities of the materials
plays an important role [1,9]. Finally, theDirichlet–Neumann
iteration was reported to be a very fast solver for thermal
fluid–structure interaction between air and steel [4].

Our prime motivation here is thermal interaction between
fluids and structures, also called conjugate heat transfer. In
particular, we consider two domains with jumps in the mate-
rial coefficients across the connecting interface. Conjugate
heat transfer plays an important role inmany applications and
its simulation has proved essential [2]. Examples for thermal
fluid–structure interaction are cooling of gas-turbine blades,
thermal anti-icing systems of airplanes [8], supersonic reen-
try of vehicles from space [19,23], gas quenching, which is
an industrial heat treatment of metal workpieces [17,33] or
the cooling of rocket nozzles [20,21].
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A convergence analysis of the Dirichlet–Neumann iter-
ation for an FE–FE discretization of a steady heat transfer
problemcanbe found in [32].Asymptotically, it is found to be
the quotient of heat conductivities. In this paper, we present
a convergence analysis of the unsteady heat transfer prob-
lem. For this model, a 1D stability analysis was presented
by Giles [16]. There, an explicit time integration method
was chosen with respect to the interface unknowns. On the
other hand, Henshaw and Chand provided in [18] a method
to analyze stability and convergence speed of the Dirichlet–
Neumann iteration in 2D based on applying the continuous
Fourier transform to the semi-discretized equations. They
show that the ratios of thermal conductivities and diffusivi-
ties of the materials play an important role. This is similar to
the behavior mentioned above for classical FSI with incom-
pressible fluidswhere the performance is affected by the ratio
of densities of the materials [1,9].

However, in the fully discrete case we observe in some
cases that the iteration behaves differently, because some
aspects of the problem are not taken into account by the
semidiscrete analysis: the effect of Δt is not accurately rep-
resented and neither are possibly different mesh widths in
the two problems. This matters particularly for compressible
fluids where a high aspect ratio grid is needed to accurately
represent the boundary layer. This leads to geometric stiff-
ness that significantly influences the convergence rate, as we
will show.

For the fully discrete case, the convergence rate is in
principle analyzed in any standard book on domain decom-
position methods, e.g. [30,34]. There, the iteration matrix
is derived in terms of the stiffness and mass matrices of
finite element discretizations and the convergence rate is
the spectral radius of that. However, this does not provide
a quantitative answer, since the spectral radius is unknown.
Computing it is in general a nontrivial task. In our context,
the material properties are discontinuous across the interface
and as a consequence, computing the spectral radius of the
iteration matrix is even more difficult.

In [26,28], a convergence analysis of the Dirichlet–
Neumann iteration for the unsteady transmission problem
using finite element methods (FEM) on both subdomains is
presented. A similar analysis using finite differences (FDM)
ononedomain andFEMon the other one canbe found in [27].
In addition, the corresponding analysis when coupling finite
volumes (FVM) with FEM is described in [5,26]. All these
results assume equal mesh sizes on both subdomains, i.e, the
aspect ratio is equal to one.

Thus,we present here a complete discretization of the cou-
pledproblemusingFVMin space ononedomain andFEMon
the other one with variable aspect ratio r . We consider this to
be a relevant case, because these are the standard discretiza-
tions for the subproblems. The implicit Euler method is used
for the temporal discretization. Then, we derive the spectral

radius of the iteration matrix exactly in terms of the eigende-
composition of the resultingmatrices for the one dimensional
case. The asymptotic convergence rates when approaching
the continuous case in either time or space are also deter-
mined. In the spatial limit, the convergence rate turns out to
be proportional to the aspect ratio r , whereas in the temporal
limit, we obtain 0. Note that the temporal limit turns out to
be the ratio of the product of densities and heat capacities of
the materials for FEM–FEM couplings instead. Moreover,
we also include numerical results where it is shown that the
one dimensional formula is a very good estimator for a 2D
version of the coupled heat equations and for two nonlinear
FSI models, namely the cooling of a flat plate and the cooling
of a flanged shaft.

An outline of the paper now follows. In Sect. 2, we
describe the model and discretization, as well as the cou-
pling conditions and the Dirichlet–Neumann iteration. Two
thermal FSI test cases are introduced in Sect. 3: the cooling
of a flat plate and of a flanged shaft. For these, we present
numerical convergence rates, motivating further analysis. A
model problem, consisting of two coupled discretized heat
equations, is presented in Sect. 4 and then analyzed in 1D
in Sect. 5. In Sect. 6, an extension of the analysis to 2D and
different discretizations are discussed. In Sect. 7, the analyt-
ical results are compared to linear and nonlinear numerical
results.

2 Thermal FSI methodology

We consider the basic setting where on a domain Ω1 ⊂ R
d

where d corresponds to the spatial dimension, the physics
is described by a fluid model, whereas on a domain Ω2 ⊂
R
d , a different model describing the structure is used. The

two domains are connected via an interface. The part of the
interface where the fluid and the structure are supposed to
interact is called the coupling interface Γ ⊂ ∂Ω1 ∩ ∂Ω2.
Note thatΓ might be a true subset of the intersection, because
the structure could be insulated. At the interface Γ , coupling
conditions are prescribed that model the interaction between
fluid and structure. For the thermal coupling problem, these
conditions are that temperature and the normal component
of the heat flux are continuous across the interface.

2.1 Fluidmodel

We model the fluid using the time dependent compressible
Navier–Stokes equations, which are a second order system
of conservation laws (mass, momentum, energy) modeling
compressible flow. We consider the two dimensional case,
written in conservative variables density ρ, momentumm =
ρv and energy per unit volume ρE as:
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∂tρ + ∇ · ρv = 0,

∂tρvi +
2∑

j=1

∂x j (ρviv j + pδi j ) = 1

Re

2∑

j=1

∂x j Si j , i = 1, 2,

∂tρE + ∇ · (ρHv j ) = 1

Re

2∑

j=1

∂x j

(
Si jvi + q j

Pr

)
. (1)

Here, enthalpy is given by H = E + p/ρ with p =
(γ − 1)ρ(E − 1/2|v|2) being the pressure and γ = 1.4 the
adiabatic index for an ideal gas. Furthermore,q f = (q1, q2)T

represents the heat flux andS = (Si j )i, j=1,2 the viscous shear
stress tensor with Si j = μ((∂x j vi + ∂xi v j ) − 2

3δi j∇ · v). The
nondimensional dynamic viscosity μ is given by the Suther-
land law

μ = T
3
2

(
1 + Su

T + Su

)

with the Sutherland constant Su = 110K
273K . As the equations

are dimensionless, the Reynolds number Re and the Prandtl
number Pr appear. The system is closed by the equation
of state for the pressure p = (γ − 1)ρe, the Sutherland
law representing the correlation between temperature and
viscosity, as well as the Stokes hypothesis. Additionally, we
prescribe appropriate boundary conditions at the boundary
of Ω1 except for Γ , where we have the coupling conditions.
In the Dirichlet–Neumann coupling, a temperature value is
enforced at Γ .

2.2 Structure model

Regarding the structure model, we will consider heat con-
duction only. Thus, we have the nonlinear heat equation for
the structure temperature Θ

ρ(x)cp(Θ)
d

dt
Θ(x, t) = −∇ · q(x, t), (2)

where

qs(x, t) = −λ(Θ)∇Θ(x, t)

denotes the heat flux vector. For alloys, the specific heat
capacity cp and heat conductivity λ are temperature-dep-
endent and highly nonlinear.

As an example, we will consider the empirical model for
the steel 51CrV4 suggested in [31]. This was obtained from
measurements and a least squares fit. The coefficient func-
tions are then

λ(Θ) = 40.1 + 0.05Θ − 0.0001Θ2 + 4.9 · 10−8Θ3 (3)

and

cp(Θ) = −10 ln

(
e−cp1(Θ)/10 + e−cp2(Θ)/10

2

)
(4)

with

cp1(Θ) = 34.2e0.0026Θ + 421.15 (5)

and

cp2(Θ) = 956.5e−0.012(Θ−900) + 0.45Θ. (6)

For the mass density, one obtains ρ = 7836 kg/m3.
Finally, on the boundary, we have Neumann conditions

qs(x, t) · n(x) = qb(x, t).

2.3 Coupling conditions

As mentioned before, the coupling conditions are that tem-
perature and the normal component of the heat flux are
continuous across the interface, i.e;

T (x, t) = �(x, t), x ∈ Γ , (7)

where T is the fluid temperature and � the structure temper-
ature and

q f (x, t) · n(x) = qs(x, t) · n(x), x ∈ Γ . (8)

2.4 Discretization in space

Following the partitioned coupling approach, we discretize
the two models separately in space. For the fluid model (1),
we use a finite volumemethod, leading to the following equa-
tion for all unknowns onΩ1, collected in the vectoru ∈ R

N f :

d

dt
u + h(u,ΘΓ ) = 0, (9)

where h(u,ΘΓ ) represents the nonlinear finite element spa-
tial discretization and its dependence on the temperatures on
the discrete interface to the structure, here denoted by ΘΓ .

In structural mechanics, the use of finite element methods
is ubiquitious. Therefore, we will also follow that approach
here. Using quadratic finite element, one obtains the follow-
ing nonlinear equation for all unknowns on Ω2:

M(�)
d

dt
� + A(�)� = q f

b + qΓ
b (u). (10)

Here,M is the mass matrix, also called heat capacity matrix
for this problem and A is the heat conductivity and stiffness
matrix, respectively. The vector � ∈ R

Ns consists of all
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discrete temperature unknowns andqΓ
b (u) is the discrete heat

flux vector on the coupling interface to the fluid, whereas q f
b

corresponds to boundary heat fluxes independent of the fluid,
for example at insulated boundaries.

2.5 Time discretization

In time, we use the implicit Euler method with constant time
step Δt . For the system (9)–(10) we obtain

un+1 − un + Δth(un+1,�n+1
Γ ) = 0, (11)

M(�n+1)(�n+1 − �n) + ΔtA(�n+1)�n+1

= Δt
(
q f
b + qΓ

b (un+1)
)

. (12)

2.6 The Dirichlet–Neumannmethod

The Dirichlet–Neumann method is a basic iterative substruc-
turing method in domain decomposition and it is a common
choice for treating FSI problems. Therefore, we now employ
it to solve the system (11)–(12). This corresponds to alter-
nately solving equation (11) on Ω1 with Dirichlet data on Γ

and (12) on Ω2 with Neumann data on Γ .
Thus, one gets for the kth iteration the two decoupled

equation systems

un+1,k+1 − un + Δth(un+1,k+1,�
n+1,k
Γ ) = 0, (13)

M(�n+1,k+1)(�n+1,k+1−�n)+ΔtA(�n+1,k+1)�n+1,k+1

= Δt
(
q f
b + qΓ

b (un+1,k+1)
)

, (14)

with some initial condition�(t = 0)|Γ = �0
Γ . The iteration

is terminated according to the standard criterion

‖�k+1
Γ − �k

Γ ‖ ≤ τ (15)

where τ is a user defined tolerance.

3 Thermal FSI test cases

In this section we present two thermal FSI test cases that are
solved using the methodology explained in the previous sec-
tion. The aim of this paper is to estimate the convergence rate

of the Dirichlet–Neumann iteration used as a solver for ther-
mal FSI problems. Therefore, we first want to illustrate the
behavior for two examples before proceeding to the conver-
gence analysis in the next section. We consider the cooling
of a flat plate and the cooling of a flanged shaft. For the
first problem, structured grids are used and for the second,
unstructured grids.

For the coupling, the Dirichlet–Neumann method as pre-
sented in (13)–(14) is used. A fixed tolerance of 1e−8 is
chosen for all involved equation solvers. The coupling code
used has been developed in a series of papers [4,6,7]. It’s
main feature is time adaptivity, which is not employed here.
The coupling between the solvers is done using the Com-
ponent Template Library (CTL) [22]. In the fluid, the DLR
TAU-Code in its 2014.2 version is employed [14], which is
a cell-vertex-type finite volume method with AUSMDV as
flux function and a linear reconstruction to increase the order
of accuracy. The finite element code uses quadratic finite ele-
ments and is the inhouse codeNative of the Institute for Static
and Dynamic at the University of Kassel.

3.1 Flow over a plate

The first test case is the cooling of a flat steel plate resembling
a simple work piece [7]. It is initially at a much higher tem-
perature than the fluid and then cooled by a constant laminar
air stream, see Fig. 1.

The inlet is located on the left, where air enters the domain
with an initial velocity of Ma∞ = 0.8 in horizontal direction
and a temperature of 273K. Regarding the initial condition
in the structure, a constant temperature of 900K at t = 0
is chosen throughout. To determine the Reynolds number, a
reference length of x̂re f = 0.2m is chosen.

The grid is chosen Cartesian and equidistant in the struc-
tural part. In the fluid region the thinnest cells touch the
boundary and then get coarser in y-direction with a maxi-
mal aspect ratio of r = 1.7780e5. The points of the primary
fluid grid and the nodes of the structural grid match on the
interface Γ and there are 9660 cells in the fluid region and
nx × ny = 120× 9 = 1080 elements with 121× 10 = 1210
nodes in the region of the structure.

The left plot in Fig. 4 shows the convergence behaviour
of the Dirichlet–Neumann iteration against the time step Δt .
One observes that the convergence rates is roughly propor-

Fig. 1 Sketch of the cooling of
a flat plate
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Fig. 2 Sketch of the cooling of the flanged shaft

tional to the time step Δt . Furthermore, even for Δt = 1
a reduction of the error by a factor of ten per iteration is
achieved.

3.2 Cooling of a flanged shaft

The second test case is the cooling of a flanged steel shaft
by cold high pressured air (this process is also known as gas
quenching) [36]. Here, we have a hot flanged shaft that is
cooled by cold high pressured air coming out of small tubes,
see Fig. 2. We assume symmetry along the vertical axis in
order to consider one half of the flanged shaft and two tubes
blowing air at it.We also assume that the air leaves the tube in
a straight and uniform way at a Mach number of 1.2, as well
as a freestream in x-direction of Mach 0.005. The Reynolds
number, based on a reference length of x̂re f = 0.02m is
Re = 2500 and the Prandtl number Pr = 0.72.

The grid, see Fig. 3, consists of 279,212 cells in the fluid,
which is the dual grid of an unstructured grid of quadrilaterals
in the boundary layer and triangles in the rest of the domain,
and 1997 quadrilateral elements in the structure. Regarding
the initial conditions, we use the procedure from [4]: first
freestream values are set overall in the fluid and temperatures
from a thermographic camera in the structure. Then 10−5 s
of real time are computed using a time step of Δt = 10−6 s.

The right plot in Fig. 4 shows the convergence behaviour
of the Dirichlet–Neumann iteration against the time step Δt .
The convergence rate is again about proportional to the time
step size and the iteration is again convergent even for very
large time steps. Ifwe compare the rates for the twoproblems,
we observe that for a given Δt , the iteration is about a factor
ten faster for the plate.

Summarizing, the Dirichlet–Neumann iteration is a very
fast solver for thermal FSI cases with strong jumps in the
material coefficients, as the ones presented here. To under-
stand this better,we perform in the next section a convergence
analysis for the case of two coupled linear heat equations.

4 Amodel problem: coupled heat equations

Wepresent here a convergence analysis of the unsteady trans-
mission problemwithmixed discretizations. In particular, we
choose a finite volumemethod (FVM) on the first subdomain
and a finite elementmethod (FEM) on the second subdomain.

4.1 Model problem

The unsteady transmission problem reads as follows, where
we consider a domain Ω ⊂ R

d which is cut into two sub-
domains Ω1 ∪ Ω2 = Ω with transmission conditions at the
interface Γ = ∂Ω1 ∩ ∂Ω2:

αm
∂um(x, t)

∂t
− ∇ · (λm∇um(x, t)) = 0,

x ∈ Ωm ⊂ R
d , m = 1, 2,

um(x, t) = 0, x ∈ ∂Ωm\Γ ,

u1(x, t) = u2(x, t), x ∈ Γ ,

λ2
∂u2(x, t)

∂n2
= −λ1

∂u1(x, t)
∂n1

, x ∈ Γ ,

um(x, 0) = u0m(x), x ∈ Ωm, (16)

where t ∈ [t0, t f ] and nm is the outward normal to Ωm for
m = 1, 2.

The constants λ1 and λ2 describe the thermal conductivi-
ties of the materials on Ω1 and Ω2, respectively. D1 and D2

represent the thermal diffusivities of the materials and they
are defined by

Dm = λm

αm
, with αm = ρmcpm (17)

where ρm represents the density and cpm the specific heat
capacity of the material placed in Ωm, m = 1, 2.
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Fig. 3 Full grid (left) and zoom
into shaft region (right)
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Fig. 4 Convergence behavior of the cooling systems with respect to Δt . Left: Test case 1: flow over a plate. Right: Test case 2: cooling of a flanged
shaft

4.2 Semidiscrete analysis

Before we present in the next section an analysis for the
fully discrete equations, we want to describe previous results
about the behaviour of the Dirichlet–Neumann iteration for
the transmission problem in the semidiscrete case.

Henshaw and Chand applied in [18] the implicit Euler
method for the time discretization on both equations in (16)
but kept the space continuous. Then, they applied the Fourier
transform in space (with dual variable k) in order to trans-
form the second order derivatives into algebraic expressions.
Once they have a coupled system of algebraic equations, they
insert one into the other and obtain the Dirichlet–Neumann
convergence rate β:

β =
∣∣∣∣∣∣
−λ1

λ2

√
1/(D1Δt) + k2

1/(D2Δt) + k2

tanh
(
−√

1/(D2Δt) + k2
)

tanh
(√

1/(D1Δt) + k2
)

∣∣∣∣∣∣
.

(18)

In the one dimensional case, the transverse Fourier
mode k is zero. Then, for Δt small enough, we have
tanh

(−1/
√
D2Δt

) ≈ −1 and tanh
(
1/

√
D1Δt

) ≈ 1 and
therefore:

β ≈ λ1

λ2

√
D2

D1
. (19)
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Fig. 5 Semidiscrete estimator β in (18) against Δt in 1D

Fig. 6 Splitting of Ω between finite volumes and finite elements

On the other hand, for Δt big enough, we have
tanh

(−1/
√
D2Δt

) ≈ −1/
√
D2Δt and tanh

(
1/

√
D1Δt

) ≈
1/

√
D1Δt and therefore:

β ≈ λ1

λ2

√
D2

D1

√
D1Δt√
D2Δt

= λ1

λ2
. (20)

Figure 5 shows β as a function of Δt for k = 0. It
is almost constant, except for a short dynamic transition
between (λ1/λ2)

√
D2/D1 and λ1/λ2.

Finally, one observes in (20) that the convergence rates of
the Dirichlet–Neumann iteration are given by the quotient of
thermal conductivities forΔt large. This suggests that strong
jumps in the thermal conductivities of the materials give fast
convergence.

4.3 Space discretization

We now describe a rather general space discretization of
the model problem. The core property we need is that the
meshes of Ω1 and Ω2 share the same nodes on Γ as shown
in Fig. 6. Furthermore, we assume that there is a specific set
of unknowns associated with the interface nodes. Otherwise,
we allow at this point for arbitrary meshes on both sides.

Then, letting u(m)
I correspond to the unknowns on Ωm,

m = 1, 2, and uΓ to the unknowns at the interface Γ , we can
write a general discretization of the first equation in (16) in
a compact form as:

Mm u̇
(m)
I + M(m)

IΓ u̇Γ + Amu
(m)
I + A(m)

IΓ uΓ = 0. (21)

To close the system, we need an approximation of the nor-
mal derivatives on Γ . For the FVM on Ω1, we approximate
the normal derivative of u1 with respect to the interface using
second order one-sided finite differences:

−λ1
∂u1
∂n1

≈ λ1

2Δx

(
4u1,N (t) − u1,N−1(t) − 3uΓ

)
. (22)

Now, let φ j be a nodal FE basis function on Ω2 for a
node on Γ we observe that the normal derivative of u2 with
respect to the interface can be written as a linear functional
using Green’s formula [34, pp. 3]. Thus, the approximation
of the normal derivative is given by

λ2

∫

Γ

∂u2
∂n2

φ j dS = λ2

∫

Ω2

(Δu2φ j + ∇u2∇φ j )dx

= α2

∫

Ω2

d

dt
u2φ j + λ2

∫

Ω2

∇u2∇φ j dx. (23)

Consequently, the equation

M(2)
Γ Γ u̇Γ + M(2)

Γ I u̇
(2)
I + A(2)

Γ Γ uΓ + A(2)
Γ Iu

(2)
I

= −M(1)
Γ Γ u̇Γ − M(1)

Γ I u̇
(1)
I − A(1)

Γ Γ uΓ − A(1)
Γ Iu

(1)
I (24)

is a discrete version of the fourth equation in (16) and com-
pletes the system (21). Notice that the left hand side of (24)
comes from (23) and the right hand side from (22). We can
now write the coupled equations (21) and (24) as an ODE

for the vector of unknowns u =
(
u(1)
I ,u(2)

I ,uΓ

)T

M̃u̇ + Ãu = 0, (25)

where

M̃ =
⎛

⎜⎝
M1 0 M(1)

IΓ

0 M2 M(2)
IΓ

M(1)
Γ I M(2)

Γ I M(1)
Γ Γ + M(2)

Γ Γ

⎞

⎟⎠ ,

Ã =
⎛

⎜⎝
A1 0 A(1)

IΓ

0 A2 A(2)
IΓ

A(1)
Γ I A(2)

Γ I A(1)
Γ Γ + A(2)

Γ Γ

⎞

⎟⎠ .

4.4 Time discretization

Applying the implicit Euler method with time step Δt to
the system (24), we get for the vector of unknowns un+1 =
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(u(1),n+1
I ,u(2),n+1

I ,un+1
Γ )T

Aun+1 = M̃un, (26)

where

A = M̃ + ΔtÃ

=
⎛

⎜⎝
M1 + ΔtA1 0 M(1)

IΓ + ΔtA(1)
IΓ

0 M2 + ΔtA2 M(2)
IΓ + ΔtA(2)

IΓ
M(1)

Γ I + ΔtA(1)
Γ I M(2)

Γ I + ΔtA(2)
Γ I MΓ Γ + ΔtAΓ Γ

⎞

⎟⎠ ,

withMΓ Γ = M(1)
Γ Γ + M(2)

Γ Γ and AΓ Γ = A(1)
Γ Γ + A(2)

Γ Γ .

4.5 Dirichlet–Neumann iteration

We now employ a Dirichlet–Neumann iteration to solve the
discrete system (26). This corresponds to alternately solving
the discretized equations of the transmission problem (16)
onΩ1 with Dirichlet data on Γ and the discretization of (16)
on Ω2 with Neumann data on Γ .

Therefore, from (26) one obtains for the kth iteration the
two equation systems

(M1 + ΔtA1)u
(1),n+1,k+1
I = −(M(1)

IΓ + ΔtA(1)
IΓ )un+1,k

Γ

+ M1u
(1),n
I + M(1)

IΓ u
n
Γ , (27)

Âûk+1 = M̂un − bk, (28)

to be solved in succession. Here,

Â =
(

M2 + ΔtA2 M(2)
IΓ + ΔtA(2)

IΓ

M(2)
Γ I + ΔtA(2)

Γ I M(2)
Γ Γ + ΔtA(2)

Γ Γ

)
,

M̂ =
(

0 M2 M(2)
IΓ

M(1)
Γ I M(2)

Γ I MΓ Γ

)
,

and

bk =
(

0

(M(1)
Γ I + ΔtA(1)

Γ I )u
(1),n+1,k+1
I + (M(1)

Γ Γ + ΔtA(1)
Γ Γ )un+1,k

Γ

)
,

ûk+1 =
(
u(2),n+1,k+1
I
un+1,k+1
Γ

)
,

with some initial condition, here un+1,0
Γ = unΓ . The iteration

is terminated according to the standard criterion ‖uk+1
Γ −

ukΓ ‖ ≤ τ where τ is a user defined tolerance [3].
One way to analyze this method is to write it as a split-

ting method for (26) and try to estimate the spectral radius
of that iteration by a norm. However, the results obtained
in this way are much too inaccurate. For that reason, we
now rewrite (27)–(28) as an iteration for un+1

Γ to restrict the
size of the space to the dimension of uΓ which is much
smaller. To this end, we isolate the term u(1),n+1,k+1

I in (27)

and u(2),n+1,k+1
I in the first equation in (28) and we insert

the resulting expressions into the second equation in (28).
Consequently, the iteration un+1,k+1

Γ = Σun+1,k
Γ + ψn is

obtained with iteration matrix

Σ = −S(2)−1
S(1), (29)

where

S(m) = (M(m)
Γ Γ + ΔtA(m)

Γ Γ )

− (M(m)
Γ I + ΔtA(m)

Γ I )(Mm + ΔtAm)−1(M(m)
IΓ + ΔtA(m)

IΓ ),

(30)

for m = 1, 2 and ψn contains terms that depend only on the
solutions at the previous time step. Notice thatΣ is a discrete
version of the Steklov–Poincaré operator.

Thus, the Dirichlet–Neumann iteration is a linear iteration
and the rate of convergence is described by the spectral radius
of the iteration matrix Σ .

5 One-dimensional convergence analysis

So far, the derivation was performed for a rather general dis-
cretization. In this section, we study the iteration matrix Σ

for a specific FVM–FEM discretization in 1D. We will give
an exact formula for the convergence rates. The behaviour of
the rates when approaching both the continuous case in time
and space is also given.

Specifically, we use Ω1 = [−1, 0], Ω2 = [0, 1]. For
the FVM discretization, we consider a primal grid, i.e, we
discretize Ω1 into N1 + 1 equal sized grid cells of size
Δx1 = 1/(N1 + 1), and define xi = iΔx1, so that xi is
the center of the cell i , see Fig. 7. The edges of cell i are then
xi−1/2 and xi+1/2 and they form the corresponding dual grid.
Moreover, we use the flux function

F(uL , uR) = − λ1

Δx1
(u1,i − u1,i−1), (31)

to approximate the flux, which results in a second order
scheme. For the FEM discretization, we use the standard
piecewise-linear polynomials as test functions. Here we dis-
cretize Ω2 into N2 + 1 equal sized cells of size Δx2 =
1/(N2 + 1).

For the coupling between a compressible fluid and a struc-
ture, there would typically be a boundary layer in the fluid,
meaning that themeshwould be very fine in direction normal
to the boundary, implying Δx1 � Δx2.

With em, j = (
0 . . . 0 1 0 . . . 0

)T ∈ R
Nm

where the only nonzero entry is located at the j th position,
the discretization matrices are given by
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Fig. 7 Grid cells over Ω1 and Ω2 for the finite volume discretization and the finite element discretization respectively

A1 = λ1

Δx21

⎛

⎜⎜⎜⎜⎝

−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2

⎞

⎟⎟⎟⎟⎠
,

A2 = λ2

Δx22

⎛

⎜⎜⎜⎜⎝

2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2

⎞

⎟⎟⎟⎟⎠
,

M2 = α2

6

⎛

⎜⎜⎜⎜⎝

4 1 0

1 4
. . .

. . .
. . . 1

0 1 4

⎞

⎟⎟⎟⎟⎠
,

A(1)
Γ Γ = 3λ1

2Δx21
, A(2)

Γ Γ = λ2

Δx22
, M(2)

Γ Γ = 2α2

6
,

A(1)
IΓ = λ1

Δx21
e1,N1 , A(2)

IΓ = − λ2

Δx22
e2,1, M(2)

IΓ = α2

6
e2,1,

A(1)
Γ I = λ1

2Δx21
(4eT1,N1

− eT1,N1−1),

A(2)
Γ I = − λ2

Δx22
eT2,1, M(2)

Γ I = α2

6
eT2,1.

where Am, Mm ∈ R
Nm×Nm , A(m)

IΓ , M(2)
IΓ ∈ R

Nm×1 and

A(m)
Γ I , M(2)

Γ I ∈ R
1×Nm for m = 1, 2.

In this case, M1 = α1I, M
(1)
IΓ = M(1)

Γ Γ = M(1)
Γ I = 0.

Thus,

S(1) = ΔtA(1)
Γ Γ − Δt2A(1)

Γ I (α1I − ΔtA1)
−1A(1)

IΓ , (32)

S(2) = (M(2)
Γ Γ + ΔtA(2)

Γ Γ )

− (M(2)
Γ I+ΔtA(2)

Γ I )(M2+ΔtA2)
−1(M(2)

IΓ + ΔtA(2)
IΓ ).

(33)

Note that the iteration matrix Σ is just a real number in
this case and thus its spectral radius is its modulus. One com-
putes S(1) and S(2) by inserting the corresponding matrices
specified above in (32) and (33) obtaining

S(1) = Δt
3λ1
2Δx21

− Δt2
λ21

2Δx41
(4eT1,N1

−eT1,N1−1)(α1I−ΔtA1)
−1e1,N1

= Δt
3λ1
2Δx21

− Δt2
λ21

2Δx41
(4α1

N1N1
− α1

N1−1N1
), (34)

S(2) =
(

α2

3
+ Δt

λ2

Δx22

)
−

(
α2

6
−Δt

λ2

Δx22

)2

eT2,1(M2+ΔtA2)
−1e2,1

=
(

α2

3
+ Δt

λ2

Δx22

)
−

(
α2

6
− Δt

λ2

Δx22

)2

α2
11, (35)

whereα1
i j represents the entries of thematrix (α1I−ΔtA1)

−1

and α2
i j the entries of (M2 + ΔtA2)

−1 for i, j = 1, . . . , N1

and i, j = 1, . . . , N2 respectively. Observe that the matri-
ces (α1I−ΔtA1) and (M2 +ΔtA2) are tridiagonal Toeplitz
matrices but their inverses are full matrices. The computation
of the exact inverses could be performed based on the recur-
sive formula presented in [12] which runs over the entries
of the matrix and consequently, it is non trivial to compute
α1
N1N1

, α1
N1−1N1

and α2
11 this way.

Due to these difficulties, we propose to rewrite the matri-
ces (α1I − ΔtA1)

−1 and (M2 + ΔtA2)
−1 in terms of their

eigendecomposition:

(α1I − ΔtA1)
−1 =

[
tridiag

(
−λ1Δt

Δx21
,
α1Δx21 + 2λ1Δt

Δx21
, −λ1Δt

Δx21

)]−1

= VN1Λ
−1
1 VN1 , (36)

(M2 + ΔtA2)
−1

=
[
tridiag

(
α2Δx22 − 6λ2Δt

6Δx22
,
2α2Δx22 + 6λ2Δt

3Δx22
,
α2Δx22 − 6λ2Δt

6Δx22

)]−1

= VN2Λ
−1
2 VN2 , (37)

where the matrix VN has the eigenvectors of any symmetric
tridiagonal Toeplitz matrix of dimension N as columns. The
entries of VN1 and VN2 are not dependent on the entries of
α1I − ΔtA1 or M2 + ΔtA2 due to their symmetry. More-
over, thematricesΛ1 andΛ2 are diagonalmatrices having the
eigenvalues of α1I− ΔtA1 orM2 + ΔtA2 as entries respec-
tively. These are known and given e.g. in [25, pp. 514–516]:

vmi j = 1
√

∑Nm
k=1 sin

2
(

kπ
Nm+1

) sin

(
i jπ

Nm + 1

)

for i, j = 1, . . . , Nm, m = 1, 2,

μ1, j = 1

Δx21

(
α1Δx21 + 2λ1Δt − 2λ1Δt cos

(
jπ

N1 + 1

))

for j = 1, . . . , N1,

μ2, j = 1

3Δx22

(
2α2Δx22 + 6λ2Δt + (α2Δx22

−6λ2Δt) cos

(
jπ

N2 + 1

))
for j = 1, . . . , N2. (38)
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The entries α1
N1N1

, α1
N1−1N1

and α2
11 of the matrices

(α1I− ΔtA1)
−1 and (M2 + ΔtA2)

−1, respectively, are now
computed through their eigendecomposition resulting in

α1
N1−1N1

= Δx21s0∑N1
i=1 sin

2(iπΔx1)
, (39)

α1
N1N1

= Δx21s1∑N1
i=1 sin

2(iπΔx1)
, (40)

α2
11 = 3Δx22s2∑N2

i=1 sin
2(iπΔx2)

, (41)

with

s0 =
N1∑

i=1

sin(iπΔx1) sin(2iπΔx1)

α1Δx21 + 2λ1Δt(1 − cos(iπΔx1))
, (42)

s1 =
N1∑

i=1

sin2(iπΔx1)

α1Δx21 + 2λ1Δt(1 − cos(iπΔx1))
, (43)

s2 =
N2∑

i=1

sin2(iπΔx2)

2α2Δx22 + 6λ2Δt + (α2Δx22 − 6λ2Δt) cos(iπΔx2)
.

(44)

Now, inserting (39), (40) and (41) into (34) and (35) we
get for S(1) and S(2):

S(1) = 3λ1Δt

2Δx21
− λ21Δt2

2Δx21

4s1 − s0
∑N1

i=1 sin
2(iπΔx1)

, (45)

S(2) =
(

α2Δx22 + 3λ2Δt

3Δx22

)

− (α2Δx22 − 6λ2Δt)2

12Δx22

s2
∑N2

i=1 sin
2(iπΔx2)

. (46)

With this we obtain an explicit formula for the spectral
radius of the iteration matrix Σ as a function of Δx1, Δx2
and Δt :

ρ(Σ) = |Σ | = |S(2)−1
S(1)|

=
(

α2Δx22 + 3λ2Δt

3Δx22
− (α2Δx22 − 6λ2Δt)2

12Δx22

s2
∑N2

i=1 sin
2(iπΔx2)

)−1

·
(
3λ1Δt

2Δx21
− λ21Δt2

2Δx21

4s1 − s0
∑N1

i=1 sin
2(iπΔx1)

)
. (47)

To simplify this, the finite sums
∑N1

i=1 sin
2(iπΔx1) and∑N2

i=1 sin
2(iπΔx2) can be computed. We first rewrite the

sum of squared sine terms into a sum of cosine terms using
the identity sin2(x/2) = (1− cos(x))/2. Then, the resulting

sum can be converted into a geometric sum using Euler’s
formula. We thus obtain after some calculations:

N1∑

j=1

sin2( jπΔx1) = 1 − Δx1
2Δx1

− 1

2

N1∑

j=1

cos(2 jπΔx1) = 1

2Δx1
, (48)

N2∑

j=1

sin2( jπΔx2) = 1

2Δx2
. (49)

Inserting (48) and (49) into (47) we get after some manip-
ulations

|Σ | =
3Δx22

(
3λ1Δt − 2λ21Δx1Δt2(4s1 − s0)

)

Δx21

(
2(α2Δx22 + 3λ2Δt) − Δx2(α2Δx22 − 6λ2Δt)2s2

) .

(50)

We could not find a way of simplifying the finite sum
(44) because Δx2 depends on N2 (i.e., Δx2 = 1/(N2 +
1)). However, (50) is a computable expression that gives the
exact convergence rates of the Dirichlet–Neumann iteration
for given Δt, Δxm, αm and λm, m = 1, 2.

We are now interested in the asymptotics of (50) with
respect to both spatial and temporal resolutions. This corre-
sponds to the computation of two different limits: Δt → 0
for a fixed Δx1 and Δx1 → 0 for a fixed Δt . As an alter-
native, one could reformulate (50) in terms of c := Δt/Δx21
and compute the limits c → 0 and c → ∞. Both choices
give the same results because for a fixed Δx1, if Δt → 0,
then c → 0 and for a fixed Δt , if Δx1 → 0, then c →
∞.

For simplicity, we compute the asymptotics of (50) for
Δt → 0 and Δx1 → 0 with Δx2 = r · Δx1 where
r := Δx2/Δx1 is a fixed aspect ratio. This is motivated
by the assumption that we have matching nodes at the inter-
face. Thus, the resolution in the fluid in direction tangential
to the wall is the same as the resolution in the structure.
This means that the aspect ratio of the left subdomain cells
in 2D corresponds to the ratio of grid spacings between
the two subdomains in 1D. This is illustrated in Fig. 8. We
obtain:

lim
Δt→0

|Σ | = 3Δx22 · 0
Δx21

(
2α2Δx22 − α2Δx32

∑N2
i=1

3 sin2(iπΔx2)
2+cos(iπΔx2)

) = 0.

(51)
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Fig. 8 Relation between the aspect ratio of the left subdomain cells in
2D and the ratio of grid spacings between both subdomains in 1D

lim
Δx1→0

|Σ | = lim
Δx1→0

9λ1r2Δt − 6λ1r2Δx1Δt

(∑N1
i=1

sin2(iπΔx1)(2−cos(iπΔx1))
1−cos(iπΔx1)

)

6λ2Δt − 6λ2rΔtΔx1

(∑N2
i=1

sin2(iπrΔx1)
1−cos(iπrΔx1)

)

= λ1

λ2
lim

Δx1→0

3r2 − 2r2Δx1
(∑N1

i=1 2 + ∑N1
i=1 cos(iπΔx1) − ∑N1

i=1 cos
2(iπΔx1)

)

2 − 2rΔx1
(∑N2

i=1 1 + ∑N2
i=1 cos(iπrΔx1)

) .

(52)

To simplify (52), it is well known that the finite sums∑N1
i=1 cos(iπΔx1),

∑N2
i=1 cos(iπrΔx1) and

∑N1
i=1

cos2(iπΔx1) can be computed by using Euler’s formula to
convert them into geometric sums.We thus obtain after some
calculations:

N2∑

j=1

cos( jπrΔx1) = Re

⎛

⎝
N2∑

j=1

ei jπrΔx1

⎞

⎠

= Re

(
eiπrΔx1(1 − eiN2πrΔx1)

1 − eiπrΔx1

)
= 0.

(53)

In order to compute the third sum, we rewrite the sum
of squared cosine terms into a sum of sine terms using the
identity cos2(x/2) = (1 + cos(x))/2 and then apply the
same technique:

N1∑

j=1

cos2( jπΔx1) = 1 − Δx1
2Δx1

+ 1

2

N1∑

j=1

cos(2 jπΔx1)

= 1 − 2Δx1
2Δx1

. (54)

Inserting (53) and (54) into (52) we get

lim
Δx1→0

|Σ | = λ1

λ2
lim

Δx1→0

3r2 − 2r2Δx1
(
2(1−Δx1)

Δx1
− 1−2Δx1

2Δx1

)

2 − 2rΔx1
(
1−rΔx1
rΔx1

)

= λ1

λ2
lim

Δx1→0

2r2Δx1
2rΔx1

= λ1

λ2
r =: δr . (55)

From the result obtained in (51) we can conclude that the
convergence rate goes to zero when the time step decreases
and therefore, the iteration will be fast for Δt small and can
always be made to converge by decreasing Δt . This is con-
sistent with the behavior of the cooling of a flat plat and the
flanged shaft presented earlier in Fig. 4.

On the other hand, from the spatial asymptotics (55) we
can observe that strong jumps in the thermal conductivities
of the materials placed in Ω1 and Ω2 will imply fast con-
vergence. This is often the case when modelling thermal
fluid–structure interaction, since fluids typically have lower
thermal conductivities than structures.

Finally, the aspect ratio r also influences the behavior of
the fixed point iteration, i.e, the rates will become smaller
the higher the aspect ratio, e.g. the higher the Reynolds num-
ber in the fluid. This phenomenon is not unknown for PDE
discretizations and is referred to as geometric stiffness. As
is the case here, refining the mesh to reduce the aspect ratio
would lead to faster convergence of the iterative method.

Before presenting numerical results we want to show the
results obtained for different space discretization combina-
tionswith the same constantmeshwidth on both subdomains.

6 Extension of the analysis

In this section we want to extend the results presented in
the previous section by reviewing similar analysis for other
choices of space discretizations. In particular, FEM–FEM
coupling and 2D FVM–FEM with r = 1.

Firstly, when one uses a linear FEM discretization for the
fluid in 1D and the same mesh width on both subdomains
(i.e, r = 1) and applies the same analysis as in the previous
section, the corresponding limits for the spectral radius of
the iteration matrix Σ are given by [26,28]:

lim
Δt→0

ρ(Σ) = α1

α2
, (56)

lim
Δx→0

ρ(Σ) = λ1

λ2
. (57)

When we compare these with the asymptotics obtained
with FVM–FEM discretizations (51)–(55), we observe that
while the spatial limit is the same, the temporal limit does not
match. This arises from differences in the matrix S(1) in (30).
In the FEM–FEM context, the matrices S(1) and S(2) lead to
the same expression with only different material coefficients
(α1, α2, λ1, λ2). Because of this, the limits of ρ(Σ) are quo-
tients of those coefficients. However, the situation is different
in the FVM–FEM context. There, the matrix S(1) in (32) is
missing several mass matrices if we compare it with S(2) in
(33). This unsymmetry between S(1) and S(2) causes that the
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Fig. 9 Semidiscrete estimator β, exact rate Σ and numerical rates over Δt in 1D. D1 = 1, D2 = 0.5, λ1 = 0.3, λ2 = 1, Δx = 1/20 and
Δt = 5e−8, 5e−7, …, 5e10. Left: FVM–FEM. Right: FEM–FEM

limit of ρ(Σ) when Δt → 0 is not balanced between the
numerator and the denominator, resulting in 0.

This implies that, opposed to the FVM–FEM case, where
convergence can always be achieved by decreasing the time
step, for an FEM–FEM coupling, a situation can occur where
α1/α2 > λ1/λ2 and therefore, a decrease in time step can
even cause divergence. This is for example the case for an
air–water coupling [26].

Secondly, for an aspect ratio of r = 1, we were able to
extend the 1D results for both FVM–FEM and FEM–FEM
to 2D in the following sense (see [5,26]). In 2D, the iteration
matrix Σ is not easy to compute for several reasons. First
of all, the matrices M1 + ΔtA1 and M2 + ΔtA2 are sparse
block tridiagonal matrices, and consequently their inverses
are not straight forward to compute. Moreover, the diagonal
blocks of the same matrices are tridiagonal but their inverses
are full matrices.

Due to these difficulties, we approximated the strictly
diagonally dominant matricesM1 + ΔtA1 andM2 + ΔtA2

by their diagonal. Thus, we obtained an estimate of the spec-
tral radius of the iteration matrix Σ . This estimator tends to
the exact same limits as for the 1D case for both combination
of discretizations.

We did not find a way to further extend these results to
the high aspect ratio case. However, we will show now by
numerical experiments that already the 1D formula (50) is a
good estimator for convergence rates in 2D.

7 Numerical results

We now present numerical experiments designed to illustrate
the validity of the theoretical results of the previous sections.
Firstly, wewill confirm that the theoretical formula for |Σ | in
(50) predicts the convergence rates in the 1D case. Secondly,
we will show the validity of (50) as an estimator for the rates
in the 2D case, we will also show that the theoretical asymp-

totics deduced in (51) and (55) match with the numerical
experiments. Finally, we illustrate the validity of (50) as an
estimator for the nonlinear thermal FSI test cases introduced
in Sect. 3.

7.1 Results in 1D

We first compare the semidiscrete estimator β in (18) with
the discrete formula |Σ | in 1D in (50) and experimental con-
vergences rates. The latter are obtained from implementing
the Dirichlet–Neumann method (27)–(28). The results are
then compared to a reference solution ure f over the whole
domain Ω , obtained by choosing a tolerance of 1e−10 as a
termination criterion.

Figure 9 shows a comparison between β and |Σ | for
r = 1, Δx = 1/20 andΔx = 1/500 and varyingΔt . On the
left we plot β, |Σ | and the experimental convergence rates
for the FVM–FEM approach described in Sect. 5 and on
the right for the FEM–FEM approach mentioned in Sect. 6.
As can be seen, the experimental convergence rate matches
exactly with the exact formula (50). Observe that β is almost
constant and presents the same behavior as in Fig. 5. We
can conclude that the formulas for the convergence rates
in 1D presented in Sect. 5 match the semidiscrete one pro-
posed in [18] when Δt/Δx2 � 1. In the, less relevant case,
Δt/Δx2 � 1 our formula also predicts the rates accurately,
while the semidiscrete estimator deviates according to (19).
Finally, Fig. 9 also illustrates the differences in the tempo-
ral limit when employing different combinations of spatial
discretizations as explained in previous section. In the FVM–
FEM case the limit is 0 [see (51)] and in the FEM–FEM case
it is α1/α2 [see (56)].

The difference to the semidiscrete analysis in [18] stems
from different limits taking place. The semidiscrete analy-
sis implicitly assumes that first a limit Δx to zero has taken
place for Δt fixed. Thus, a limit first Δt , then Δx to zero is
not addressed by it. This can be seen in Fig. 9 in the follow-
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Table 1 Physical properties of the materials. λ is the thermal conduc-
tivity, ρ the density, cp the specific heat capacity and α = ρcp

Material λ (W/mK) ρ (kg/m3) cp (J/kgK) α (J/Km3)

Air 0.0243 1.293 1005 1299.5

Water 0.58 999.7 4192.1 4.1908e6

Steel 48.9 7836 443 3471348

Table 2 Temporal and spatial asymptotics of (50) for the thermal inter-
action of air at 273K with steel at 900K, water at 283K with steel and
air with water

Case Δt → 0 Δx → 0

Air–steel 0 4.9693e−4 · r
Water–steel 0 0.0119 · r
Air–water 0 0.0419 · r

ing way: for fixed Δx , letting Δt become very small causes
the convergence rate to move into the direction predicted by

the fully discrete analysis. However, then keeping this very
small Δt fixed and decreasing Δx moves that rate back in
the vicinity of β.

We now want to illustrate how |Σ | in (50) gives the con-
vergence rates and tends to the limits computed previously
in (51) and (55). To this end, we present two real data exam-
ples. We consider here the thermal interaction between air
at 273K with steel at 900K and water at 283K with steel
at 900K. Physical properties of the materials and resulting
asymptotics for these two cases are shown in Tables 1 and 2
respectively.

Figures 10 and 11 show the convergence rates for the inter-
actions between air and steel and between water and steel,
respectively. On the left we have always fixed Δx1 and r and
vary Δt , whereas on the right we have fixed Δt and r , and
vary Δx1. Each plot includes graphs for two different values
of r . In Fig. 10 we choose r = 1 and r = 100 to illustrate
the effect of a neutral or a high aspect ratio. In Fig. 11 we use
r = 0.01 and r = 1 to illustrate how the rates are affected
by a small or a neutral aspect ratio.

Fig. 10 Air–steel thermal interaction with respect Δt on the left
and Δx1 on the right in 1D. Left: Δt = 40/39, 2 · 40/39, . . . , 39 ·
40/39, Δx1 = 1/1100 and r = 100 (top curves) or r = 1 (bottom

curves). Right: Δx1 = 1/3, 1/4, . . . , 1/50, Δt = 10 and r = 100 (top
curves) or r = 1 (bottom curves)

Fig. 11 Water–steel thermal interaction with respect Δt on the left and
Δx1 on the right in 1D. Left:Δt = 1/39, 2·1/39, . . . , 39·1/39, Δx1 =
1/1100 and r = 1 (top curves) or r = 0.01 (bottom curves). Right:

Δx1 = 1/3, 1/4, . . . , 1/50, Δt = 10 and r = 1 (top curves) or
r = 0.01 (bottom curves)
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Fig. 12 Air–steel thermal interaction with respect to the aspect ratio r in 1D. r = 5/50, 2 · 5/50, . . . , 50 · 5/50 and Δt = 10. Left: Δx1 = 1/50.
Right: Δx1 = 1/200

Fig. 13 2D Air–steel thermal interaction. Observed and estimated con-
vergence rates over Δt (left) and Δx1 (right). Left: Δt = 40/39, 2 ·
40/39, . . . , 39 · 40/39, Δx1 = 1/1100 and r = 100 (top curves) or

r = 1 (bottom curves). Right: Δx1 = 1/3, 1/4, . . . , 1/50, Δt = 10
and r = 100 (top curves) or r = 1 (bottom curves)

Again, |Σ | gives the exact convergence rates. Moreover,
one observes that the rates on the left plots in Figs. 10 and 11
tend to 0 as predicted in (51) and on the right plots in Figs. 10
and 11 to δr as predicted in (55).

Before ending this subsection, we want to illustrate the
relation between the convergence rates and the aspect ratio r .
To this end, Fig. 12 shows the convergence rates for the inter-
action between air and steel. In the left plot we have chosen
Δx1 to be coarse and on the right one to be fine. This explains
why the convergence rates on the right plot are closer to the
spatial limit δr . Furthermore, there is a roughly proportional
relation between the convergence rate and the aspect ratio.
For coupling with compressible flows, we typically have a
high aspect ratio and therefore, the Dirichlet–Neumann iter-
ation will be slowed down. Furthermore, this shows that it is
very important to take the aspect ratio into account to make
a reasonable prediction of the convergence rate at all.

7.2 2D FVM–FEM results

We now want to demonstrate that the 1D formula (50) is a
good estimator for the convergence rates in 2D. Thus, we

now consider a 2D version of (16) consisting of two coupled
linear heat equations on two identical unit squares, e.g,Ω1 =
[−1, 0] × [0, 1] and Ω2 = [0, 1] × [0, 1]. We use a non
equidistant cartesian grid with aspect ratio r on Ω1 and an
equidistant grid on Ω2. In order to use (50) as an estimator
we decided to take the equidistant mesh width on Ω2 as Δx2
and the mesh width in x-direction on Ω1 as Δx1.

As before, we present two real data examples described in
Tables 1 and 2, namely the thermal interaction between air
at 273K with steel at 900K and air at 273K with water at
283K.

Figures 13 and 14 show the convergence rates for the inter-
actions between air and steel and between air and water in
2D respectively. On the left we always plot the rates for fixed
Δx1 and r with variable Δt , whereas on the right we have
fixedΔt and r and varyingΔx1. As before, each plot includes
two different values of r . In Fig. 13 we choose r = 1 and
r = 100 as in the 1D case (see Fig. 10) and in Fig. 14 we use
r = 1 and r = 1000 to illustrate the effect of a neutral or a
high aspect ratio. To compute β we use the transverse Fourier
mode k = iΔy, i = 0, 1, 2, . . . , Ny that maximizes it [see
(18)]. One observes that the convergence rates predicted by
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Fig. 14 2DAir–water thermal interaction.Observed and estimated con-
vergence rates over Δt (left) and Δx1 (right). Left: Δt = 40/39, 2 ·
40/39, . . . , 39 · 40/39, Δx1 = 1/1100 and r = 1000 (top curves) or

r = 1 (bottom curves). Right: Δx1 = 1/3, 1/4, . . . , 1/35, Δt = 10
and r = 1000 (top curves) or r = 1 (bottom curves)

the one-dimensional formula (50) are almost exactly the ones
observed in 2D.Thus, the 1Dcase gives a very good estimator
for the 2D model problem.

7.3 Thermal FSI test cases

Finally, we want to relate the results for the two nonlinear
applications (the two cooling systems introduced inSects. 3.1
and 3.2: the cooling of a flat plate and of a flanged shaft) to
our analysis. The left plot in Fig. 15 shows the convergence
behaviour for the flat plate and the right one for the flanged
shaft. We plot the experimental convergence rates, the one-
dimensional formula (50), the semidiscrete estimator (18)
for the maximizing Fourier mode and the spatial limit δr
specified in (55).

In order to apply the 1D formula (50) here, some assump-
tions need to be made, since we partly have unstructured
meshes and nonuniform temperatures. Thus, we assume air
at 273K on the first subdomain with steel at 900K on the
second subdomain for the cooling of a flat plate and air at
273K with steel at 1145K for the cooling of a flanged shaft.
The density, heat capacity and heat conductivity of air and
the density of steel are given in Table 1. In addition, the heat
conductivities and heat capacities of steel at 900 and 1145K
are obtained from the nonlinear coefficient functions (3) and
(4) by inserting Θ = 900K or Θ = 1145K respectively.
This gives λ = 39.82 and cp = 1.3684e3 for steel at 900K
and λ = 39.8 and cp = 572.75 for steel at 1145K.

Furthermore, for the cooling of a flat plate, we take
Δx1 = 9.3736e−5 which is the width of the fluid cells
touching the interface in the y-direction and Δx2 = 1.6667
which is the width of the structure cells in both directions.
Thus, we have an aspect ratio of r = 1.7780e4. On the other
hand, choosing Δx1 and Δx2 for the cooling of a flanged
shaft is more difficult due to the unstructured grids. In order
to get an upper bound for the aspect ratio r , we choose

Δx1 = 1.6538e−4 which is the minimum width of all the
fluid cells touching the interface in direction normal to the
wall and Δx2 = 1.1364 which is the maximum width of
all the structure cells touching the interface tangential to the
wall. This gives r = 6.8713e3.

From the left plot in Fig. 15 one observes with these
choices that (50) predicts the rates accurately for the cool-
ing of a flat plate. Note that the semidiscrete estimator β

does not show any change with Δt . Remember that β is
almost always constant, except for a short dynamic transi-
tion between (λ1/λ2)

√
D2/D1 and λ1/λ2 as shown in Fig. 5.

Here, we would have to choose a Δt larger than 1e6 to see
the transition.

Finally, on the right plot in Fig. 15 one can see that (50)
predicts the convergence rates for the cooling of a flanged
shaft to be only slightly smaller compared to the actual per-
formance. This could be due to either the unstructured grids
used or to the nonconstant temperature in the structure, which
varies from room temperature to 1145K. Again, β is almost
constant.

8 Summary and conclusions

We considered the Dirichlet–Neumann iteration for thermal
FSI and studied the convergence rates. To this end, we con-
sidered the coupling of two heat equations on two identical
domains. We assumed structured grids on both subdomains,
but allowed for high aspect ratio grids in one domain. An
exact formula for the convergence rates was derived for the
1D case. Furthermore, we determined the limits of the con-
vergence rates when approaching the continuous case either
in space (rλ1/λ2) or time (0). This was confirmed by numer-
ical results, where we also demonstrated that the 1D case
gives excellent estimates for the 2D case. In addition, numer-
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Fig. 15 Convergence behavior of the cooling systems with respect to Δt . Left: Test case 1: flow over a plate. Right: Test case 2: Cooling of a
flanged shaft

ical experiments show that the linear analysis is relevant for
nonlinear thermal FSI problems.

All in all, strong jumps in the coefficients of the coupled
PDEs imply fast convergence. On the other hand, the cou-
pling iteration will be slowwhen the material coefficients are
continuous over all the subdomains, i.e, λ1 = λ2, and there-
fore δ1 ∼ 1. For coupling of structures and compressible
flows, the aspect ratio in the fluid has to be taken into account,
since the convergence rate is proportional to it. For the non-
linear cooling problems considered here, the convergence
rate was still around 0.1 for large Δt . When encountering
divergence anyhow, this can be solved by reducing the time
step. Note that in a time adaptive setting, it is standard to
allow for a feedback loop between the nonlinear solver and
the time stepper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Badia S, Nobile F, Vergara C (2008) Fluid–structure partitioned
procedures based onRobin transmission conditions. JComput Phys
227:7027–7051

2. Banka A (2005) Practical Applications of CFD in heat processing.
Heat Treating Progress

3. Birken P (2015) Termination criteria for inexact fixed point
schemes. Numer Linear Algebra Appl 22(4):702–716

4. Birken P, Gleim T, Kuhl D, Meister A (2015) Fast solvers for
unsteady thermal fluid–structure interaction. Int J Numer Methods
Fluids 79(1):16–29

5. Birken P, Monge A (2017) A numerical methods for unsteady ther-
mal fluid–structure interaction. In: Frei S, HolmB, Richter T,Wick
T, Yang H (eds) Fluid–structure interaction. Modeling, adaptive
discretisations and solvers, contributions inmathematical and com-
putational sciences. Springer, Berlin

6. Birken P, Quint K, Hartmann S, Meister A (2010) Choosing norms
in adaptive FSI calculations. PAMM 10:555–556

7. Birken P, Quint K, Hartmann S, Meister A (2011) A time-adaptive
fluid–structure interaction method for thermal coupling. Comput
Vis Sci 13(7):331–340

8. Buchlin J (2010) Convective heat transfer and infrared thermogra-
phy. J Appl Fluid Mech 3:55–62

9. Causin P, Gerbeau J, Nobile F (2005) Added-mass effect in the
designof partitioned algorithms forfluid–structure problems.Com-
put Methods Appl Mech Eng 194:4506–4527

10. Deparis S, Fernández M, Formaggia L (2003) Acceleration of a
fixed point algorithm for fluid–structure interaction using transpi-
ration conditions. M2AN 37(4):601–616

11. FarhatC (2004)CFD-basednonlinear computational aeroelasticity,
ch. 13. In: Encyclopedia of computational mechanics, pp 459–480

12. Fonseca C, Petronilho J (2001) Explicit inverses of some tridiago-
nal matrices. Linear Algebra Appl 325(1–3):7–21

13. Gander M (2006) Optimized Schwarz methods. SIAM J Numer
Anal 44(2):699–731

14. Gerhold T, Friedrich O, Evans J, Galle M (1997) Calculation of
complex three-dimensional configurations employing the DLR-
TAU-Code. In: AIAA Paper 97-0167

15. Gigante G, Vergara C (2016) Optimized Schwarz method for the
fluid–structure interaction with cylindrical interfaces. In: Domain
decompositionmethods in science and engineeringXXII. Springer,
Berlin, pp 521–529

16. GilesM (1997) Stability analysis of numerical interface conditions
in fluid–structure thermal analysis. Int J Numer Methods Fluids
25:421–436

17. Heck U, Fritsching U, Bauckhage K (2001) Fluid flow and heat
transfer in gas jet quenching of a cylinder. Int J Numer Methods
Heat Fluid Flow 11:36–49

18. HenshawW,ChandK (2009)A composite grid solver for conjugate
heat transfer in fluid–structure systems. J Comput Phys 228:2708–
3741

19. Hinderks M, Radespiel R (2006) Investigation of hypersonic gap
flow of a reentry nosecap with consideration of fluid–structure
interaction. In AIAA Paper 6, pp 2708–3741

20. Kowollik D, Horst P, Haupt M (2013) Fluid–structure interac-
tion analysis applied to thermal barrier coated cooled rocket thrust
chambers with subsequent local investigation of delamination phe-
nomena. Prog Propuls Phys 4:617–636

21. Kowollik D, Tini V, Reese S, Haupt M (2013) 3D fluid–structure
interaction analysis of a typical liquid rocket engine cycle based
on a novel viscoplastic damage model. Int J Numer Methods Eng
94:1165–1190

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Computational Mechanics (2018) 62:525–541 541

22. Matthies HG,NiekampR, Steindorf J (2006) Algorithms for strong
coupling procedures. ComputMethods ApplMech Eng 195:2028–
2049

23. Mehta R (2005) Numerical computation of heat transfer on reentry
capsules at mach 5. In: AIAA-Paper 178

24. Meng F, Banks J, Henshaw W, Schwendeman D (2017) A stable
and accurate partitioned algorithm for conjugate heat transfer. J
Comput Phys 344:51–85

25. Meyer C (2000) Matrix analysis and applied linear algebra. SIAM,
Philadelphia

26. Monge A (2016) The Dirichlet–Neumann iteration for unsteady
thermal fluid–structure interaction, Licentiate Thesis. Lund Uni-
versity

27. Monge A, Birken P (2016) Convergence analysis of coupling
iterations for the unsteady transmission problem with mixed dis-
cretizations. In: VII European Congress on computational methods
in applied sciences and engineering, vol 1. ECCOMAS Congress

28. Monge A, Birken P (2016) Convergence analysis of the Dirichlet–
Neumann iteration for finite element discretizations. PAMM
16:733–734

29. Peet Y, Fischer P (2012) Stability analysis of interface temporal
discretization in grid overlapping methods. SIAM J Numer Anal
50(6):3375–3401

30. Quarteroni A, Valli A (1999) Domain decomposition methods for
partial differential equations. Oxford Science Publications, Oxford

31. Quint KJ, Hartmann S, Rothe S, Saba N, Steinhoff K (2011) Exper-
imental validation of high-order time integration for non-linear heat
transfer problems. Comput Mech 48:81–96

32. Roux F (2008) Domain decomposition methodology with Robin
interface matching conditions for solving strongly coupled. In:
Computational science, ICCS

33. Stratton P, Shedletsky I, LeeM (2006) Gas quenching with helium.
Solid State Phenom 118:221–226

34. Toselli A, Widlund O (2004) Domain decomposition methods.
Algorithms and theory. Springer, Berlin

35. van Brummelen E (2009) Added mass effects of compressible and
incompressible flows in fluid–structure interaction. J Appl Mech
76(2):021206

36. Weidig U, Saba N, Steinhoff K (2007) Massivumformprodukte
mit funktional gradierten Eigenschaften durch eine differenzielle
thermo-mechanische Prozessführung, WT-Online, pp 745–752

123


	On the convergence rate of the Dirichlet–Neumann iteration  for unsteady thermal fluid–structure interaction
	Abstract
	1 Introduction
	2 Thermal FSI methodology
	2.1 Fluid model
	2.2 Structure model
	2.3 Coupling conditions
	2.4 Discretization in space
	2.5 Time discretization
	2.6 The Dirichlet–Neumann method

	3 Thermal FSI test cases
	3.1 Flow over a plate
	3.2 Cooling of a flanged shaft

	4 A model problem: coupled heat equations
	4.1 Model problem
	4.2 Semidiscrete analysis
	4.3 Space discretization
	4.4 Time discretization
	4.5 Dirichlet–Neumann iteration

	5 One-dimensional convergence analysis
	6 Extension of the analysis
	7 Numerical results
	7.1 Results in 1D
	7.2 2D FVM–FEM results
	7.3 Thermal FSI test cases

	8 Summary and conclusions
	References




