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Abstract The goal of this research is to study the perfor-
mance of meshless approximations and their integration. Two
diffuse shape functions, namely the moving least-squares
and local maximum-entropy function, and a linear triangu-
lar interpolation are compared using Gaussian integration
and the stabilized conforming nodal integration scheme. The
shape functions and integration schemes are tested on two
elastic problems, an elasto-plastic problem and the inf-sup
test. The elastic computation shows a somewhat lower accu-
racy for the linear triangular interpolation than for the two
diffuse functions with the same number of nodes. However,
the computational effort for this interpolation is considerably
lower. The accuracy of the calculations in elasto-plasticity
depends to great extend on the used integration scheme. All
shape functions, and even the linear triangular interpolation,
perform very well with the nodal integration scheme and
locking-free behavior is shown in the inf-sup test.

Keywords Meshless methods · Nodal integration ·
Elasto-plasticity

1 Introduction

Nowadays, the finite element method is the first choice when-
ever a problem in solid mechanics needs to be simulated.
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Nevertheless, performing a good finite element simulation
can be difficult for certain problem types. Especially in large
deformation processes, like for instance extrusion or injec-
tion molding, finite elements can suffer from excessive mesh
distortion. Meshless methods are well suited to avoid these
problems.

Many meshless methods have been developed during the
last decades. The first development was the method of smooth
particle hydrodynamics (SPH) as introduced by Lucy [33].
Thereafter similar methods employing diffuse approxima-
tions have been introduced; for instance the diffuse element
method (DEM) by Nayroles et al. [34], the reproducing
kernel particle method (RKPM) by Liu et al. [28–32], the
point interpolation method (PIM) by [25,43] and the ele-
ment-free Galerkin method (EFG) by Belytschko et al. [6–8].
All these methods use a diffuse shape function to parame-
terize the displacement field in combination with a strong
or weak form of equilibrium. For an extensive overview
on the subject, containing most of the previously men-
tioned methods, the article of Li and Liu can be read [24].
A unifying stability analysis on these type of approxima-
tions is given in Belytschko et al. [5]. A meshless method
with a less diffuse approximation for instance, is the natu-
ral element method (NEM) as proposed by Braun and Sam-
bridge [10] or the particle finite element method (PFEM) by
Idelsohn et al. [21,22]. The latter employs a finite element
shape function in a meshless strategy. One of the latest devel-
opments in the field of meshless methods is the use of max-
imum-entropy principles to construct shape functions for
use in solid mechanics. Examples are the maximum-entropy
approximation (max-ent) by Sukumar [40,41] or the modi-
fied, local maximum-entropy approximation (local max-ent)
by Arroyo and Ortiz [2].

Since the introduction of meshless methods, numeri-
cal integration of the weak form has drawn considerable
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attention. The main reason for this attention is two-fold. First
of all, the accurate integration of non-polynomial meshless
shape functions is more involving than the integration of
polynomial finite element approximations. The patch test for
example, is not satisfied for a limited set of Gaussian inte-
gration points. Secondly, since numerical integration closely
relates to volumetric locking for incompressible media, an
integration rule has to be selected carefully for these media.
Research on both aspects was done for instance for the
element-free Galerkin method by Dolbow and Belytschko
[16,17] and by Askes et al. [3]. An integration scheme which
overcomes the two previously mentioned problems is the
stabilized conforming nodal integration scheme (SCNI) as
proposed by Chen et al. [13,14]. This scheme satisfies the
patch test without using an unfeasible amount of integra-
tion points and seems to be free of volumetric locking. The
scheme has been investigated in the case of the natural ele-
ment method by González et al. [18] and by Yoo et al. [44].
Similarly, applying this nodal integration to finite elements
gives some interesting properties. The first concern, satisfy-
ing the patch test, is not an issue for classical compatible finite
elements since this test is met by default. Volumetric locking
on the contrary, seems to be avoided by applying this type
of integration. The first development in this field is the nodal
pressure tetrahedral as proposed by Bonet and Burton
[9]. Afterwards, similar methods have been developed for
instance by Dohrmann et al. [15], Pires et al. [36], Liu et
al. [26,27], Krysl and Zhu [23], Puso and Solberg [38] and
Hung et al. [20]. The stability of nodal integration for both
meshless and finite element approximations was investigated
by Puso et al. [37].

Some of the meshless methods as discussed in the pre-
ceding paragraphs are regarded as being ‘truly’ meshless
methods. This classification indicates that the method is not
depending on a mesh at all, neither for the construction of
the shape functions, nor for evaluation of the equilibrium.
Typically, methods using a strong-form of the equilibrium
fall in this subcategory of meshless methods. Examples are
for instance the methods of SPH and RKPM (strong-form
variant). The majority of meshless methods however does
not fall into this category. Although their shape functions are
not defined upon a user-defined mesh, a mesh is used for the
integration of the weak-form. The research as presented in
this paper is restricted to the latter type of methods, since
they allow for straightforward use of arbitrary material mod-
els. For strong-form methods, spatial gradients of the stress
appear in the equations making the use of advanced material
models, such as elasto-plasticity, more complicated.

The objective of this paper is to quantitatively exam-
ine the performance of meshless approximations and their
numerical integration. To investigate this performance, four
numerical tests are performed; two in elasticity, one in
elasto-plasticity and one inf-sup or LBB test. As explained in

preceding sections, the amount of meshless approximations
proposed in literature is extensive. Therefore, for this study,
a subset of three shape functions are chosen such that a rep-
resentative view on meshless approximations is presented.
The first shape function is the moving least-squares function.
This function is one of the most commonly used approxi-
mations in the meshless field. Secondly, a recent develop-
ment, namely the local maximum-entropy approximation, is
included in the analysis. This approximation possesses sim-
ilar properties to the moving least-squares approximation,
although it can simplify the handling of boundary conditions.
Finally a linear interpolation based on a Delaunay triangula-
tion is included. This type of approximation is well known
in the finite element method. The first two shape functions,
the moving least-squares function and the local maximum-
entropy function are typical diffuse approximations. Their
shape function is based on a domain of influence instead of
a mesh. The latter shape function, the triangle interpolation,
is a compact shape function. The number of neighbors for
a node with this interpolation is usually smaller than is the
case for diffuse approximations. Concerning the evaluation
of the weak form, two numerical integration schemes will
be tested. These are the stabilized conforming nodal integra-
tion scheme and a Gaussian integration scheme based on a
Delaunay triangulation. Several combinations can be made
by combining a shape function and an integration scheme.
Using the triangular interpolation with a Gaussian integration
scheme results in a linear triangular finite element [45]. Inte-
grating the same shape function nodally will give a scheme
as proposed by Dohrmann et al. [15]. The scheme as pro-
posed by Chen et al. [13] is obtained by integrating a diffuse
approximation nodally. All these combinations will be com-
pared in this study.

The paper is organized as follows. Firstly, an introduction
into the used shape functions and the integration schemes is
given in Sect. 2. A short outline on the computer program as
used for the analysis is presented. Section 3 gives the results
of the numerical study on the performance of all combina-
tions of shape functions and integration schemes. Afterwards
the computational efficiency of the methods is compared. The
conclusion is given in the last section.

2 Governing equations

2.1 General formulations

The starting point for the derivation of nodal equilibrium is
the equation of equilibrium in the strong form:

∇ · σ + f = 0 in � (1)

where σ is the Cauchy stress tensor, f is a vector represent-
ing the body forces and� is the domain under consideration.
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The boundary conditions for the equilibrium equations are:

u = ū on �u (2)

σ · n = t̄ on �t (3)

where ū is a prescribed displacement on boundary �u, t̄ is a
prescribed traction on the boundary �t and n is the outward
normal on the boundary. Applying a weighed residual formu-
lation and using Galerkin’s method, the strong equilibrium
of Eq. (1) is weakened to obtain the nodal equilibrium:∫

�

BTσ d� =
∫

�t

NT t̄ d� +
∫

�

NTf d� (4)

Fint = Fext (5)

where Fint is the internal force vector and Fext is the external
force vector. Matrices N and B relate the field displacements
and strains to the nodal displacement vector d:

u = Nd (6)

ε = Bd (7)

Matrix B contains the terms of the small strain tensor:

ε = 1

2

(
∇u + (∇u)T

)
(8)

The matrices N and B are constructed by using shape func-
tions φ. The formulations of the shape functions to con-
struct the two matrices are given in Sect. 2.2. The integrator∫
�
. . . d� of Eq. (4) is worked out with two different numer-

ical integration schemes as will be explained in Sect. 2.3.
For the constitutive equations a linear elastic model and

an elasto-plastic model are used. If the latter model is used,
the nodal equilibrium represented by Eq. 5 is found by a
Newton–Rhapson iterative procedure. Within this procedure
a prediction of the displacements is made by linearizing the
internal force vector:

K = ∂Fint

∂d
(9)

=
∫

�

BTCB d� (10)

where K is the stiffness matrix and C is the (algorithmic)
material tangent matrix. In this research, a J2 radial return
elasto-plastic material model is used. The formulation as well
as the implementation of this model, including the algorith-
mic tangent and stress update, can be found for instance in
Simo and Hughes [39]. The following set of equations is
solved:

K�dk = Fk
ext − Fk

int (11)

where�dk is a vector containing the iterative nodal displace-
ment degrees of freedom and index k denotes the current iter-
ation step. The total nodal displacement degrees of freedom
are found by summation of �dk over all iterations k.

2.2 Shape functions

Approximating the displacement field in case of meshless
methods or the finite element method is done by a set of
shape functions φ(x). The parameterized displacement field
can be represented as:

uh(x) =
Nnod∑
i=1

φi (x)di (12)

where Nnod is the number of nodes in the model, and uh is
the approximated displacement field. The vector di contains
the nodal displacement degrees of freedom of node i and is
defined for 2D as follows:

{di } = {
di

x di
y

}T
(13)

Although there is a lot of freedom in defining φ, for the suc-
cessful application of a shape function in solid mechanics
two properties are essential. The first requirement for φ, is
the partition of unity:

Nnod∑
i=1

φi (x) = 1 (14)

If the partition of unity is satisfied, rigid body translations
can be represented exactly. The second property is known as
first order reproducibility:

Nnod∑
i=1

φi (x)xi = x (15)

Shape functions which satisfy this condition will reproduce
a constant strain field exactly. In this study, three different
types of shape functions are included that satisfy both con-
ditions. Below, a short summary of their main formulations
is presented. A full formulation can be found in the cited
literature.

2.2.1 Moving least-squares

Moving least-squares approximations were firstly introduced
in the field of computational solid mechanics by means of the
diffuse element method by Nayroles et al. [34]. The starting
point of the method is the assumption that the displacement
field can be described locally by a polynomial:

uh(x) = p(x)Ta(x) (16)

where p(x) is a vector containing the components of a poly-
nomial basis at the point x, and a(x) is the corresponding
set of coefficients at point x. The parameters a(x) belong-
ing to the polynomial basis p(x) are found by minimizing a
potential expressing the residual between the approximated
displacement field and the nodal displacements di , similarly
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to a ‘normal’ least squares fit. This potential is defined as:

�mls(x) =
Nnod∑
i=1

ω(x − xi )
(

p(xi )
Ta(x)− di

x

)2
(17)

In this paper the following polynomial is used:

p(x) = {
1 x y

}T
(18)

The weight function in 2D is constructed by multiplying two
1D functions ω1:

ω(x − xi ) = ω1

(
x − xi

h̄

)
ω1

(
y − yi

h̄

)
(19)

For this weight function ω1, a cubic spline is chosen:

ω1(s) =

⎧⎪⎨
⎪⎩

2
3 − 4 s2 + 4s3 for s � 1

2
4
3 − 4 s + 4 s2 − 4

3 s3 for 1
2 < s � 1

0 for s > 1

(20)

where s is a local coordinate. Parameter h̄ is found by consid-
ering h̄ = h ·d, where h is an average measure of the spacing
of nodes and d controls the relative size of the domain of
influence of the shape function. For the current analysis, h̄ is
chosen to be equal for all nodes. In a regularly spaced grid, h
is equal to the minimum distance between two neighboring
nodes. If the value of parameter d is increased, the shape
functions become more diffuse.

For a certain location x, the potential�mls(x) is minimized
with respect to parameters a(x):

a(x) =
(

Nnod∑
i=1

ω(x − xi )p(xi )p(xi )
T

)−1

·
Nnod∑
i=1

ω(x − xi )p(xi )d
i
x (21)

Substitution of a(x) into Eq. (16) gives an expression for
φ(x). The minimization of Eq. (21) must be performed for
location x at which the shape functions values or gradients
are required. The MLS approximation has a continuity of
degree 2.

2.2.2 Local maximum-entropy

Local maximum-entropy shape functions were recently
introduced by Arroyo and Ortiz [2] and use information-
theoretic principles to approximate the displacement field.
The approximation is constructed by considering the proba-
bility φ that a nodal value holds at an arbitrary point in space.
A potential containing both an entropy term related to this
probability, as well as a potential expressing the locality of
this probability distribution is constructed. This potential is
formulated as:

�lme = βU (x,φ)− H(φ) (22)

with the Shannon entropy H defined as:

H(φ) =
Nnod∑
i=1

φi ln (φi ) (23)

and the locality function:

U (x,φ) =
Nnod∑
i=1

φi‖x − xi‖2 (24)

In the potential �lme, the parameter β is used to control the
compactness of the approximation. This parameter is related
to the average spacing of nodes h and a parameter γ as fol-
lows:

β = γ

h2 (25)

By setting γ either compact or diffuse shape functions can
be obtained. Shape functions φ are found by minimizing
Eq. (22). This minimization is constrained by Eqs. (14)
and (15). For a detailed description of this minimization the
reader is referred to Arroyo and Ortiz [2].

An interesting aspect of local maximum-entropy shape
functions is its behavior at the boundary. Shape functions of
nodes on the convex hull possess the Kronecker delta prop-
erty, and shape functions of internal nodes have a value of
zero at the convex hull. Nonetheless, this characteristic does
not prevent the shape functions from being diffuse internally.
Here, the LME approximation possesses C∞ continuity.

2.2.3 Linear triangle interpolation

LME approximations with a high γ value result in a lin-
ear interpolation on Delaunay triangles (excluding degener-
ate cases). For this reason also an explicit linear triangular
shape function is considered. This type of approximation is
well known in finite element analysis and expressions can
be found in most books on finite element technology; for
instance in Zienkiewicz and Taylor [45]:

⎧⎨
⎩
φ1(x)
φ2(x)
φ3(x)

⎫⎬
⎭ =

⎡
⎣ x1 x2 x3

y1 y2 y3

1 1 1

⎤
⎦

−1 ⎧⎨
⎩

x
y
1

⎫⎬
⎭ (26)

where xi and yi are the coordinates of node i . The most pro-
found argument to choose this type of shape function is its
low computational cost and its simple formulation. Another
advantage is the straightforward imposition of boundary con-
ditions since it possesses the Kronecker-delta property for
all nodes in the domain. The order of continuity is C0, hence
smooth strain fields are not obtained for limited sets of nodes.
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2.3 Integration schemes

In this research, two integration schemes are used to evaluate
Eqs. (4) and (10) numerically. The first scheme is the well
known ‘Gauss’ integration scheme as is commonly used in
finite elements. The second scheme is the stabilized conform-
ing nodal integration scheme, also known by the abbreviation
of SCNI. Both schemes are shortly explained below.

2.3.1 ‘Gauss’ integration

‘Gauss’ integration of the internal force vector is formulated
as follows:

Fint =
∫

�

BTσ d� (27)

≈
Nint∑
k=1

BT(xk)σ (xk)��k (28)

Nint is the total number of integration points in the body
and xk is the location of an integration point. Usually the
summation

∑Nint
k=1 is split into a sum over elements or inte-

gration cells and over integration points for such an element
or cell. In this research an integration rule within a triangle
is used. The starting point is a cloud of nodes which is trian-
gulated by means of a Delaunay triangulation. Within each
triangle an integration rule is defined.

If, for finite elements, the integration rule is chosen in
accordance with the interpolation functions, the patch test
is satisfied. Details on this test can be found for instance
in Zienkiewicz and Taylor [45]. Note that non-polynomial
meshless approximations in general do not pass the patch
test, even if these approximations possess first order repro-
ducibility. Inexact integration precludes in this case an exact
evaluation of the linear displacement field.

2.3.2 Nodal integration

Nodal integration of the internal force vector can be expressed
as:

Fint =
∫

�

BTσ d� (29)

≈
Nnod∑
i=1

BT(xi )σ (xi )��i (30)

where Nnod is the number of nodes, xi is the location of a node
and ��i is the volume accompanying that particular node.
Matrix B is the strain-displacement matrix which is consis-
tent with the displacement field. Several problems arise when
using an integration scheme according to Eq. (30). The two
main problems are the lack of stability and the loss of first

(a) (b)

Fig. 1 Cell integration for SCNI

order reproducibility in case of non-polynomial approxima-
tions. An improved nodal integration scheme was proposed
by Chen et al. [13]. This stabilized conforming nodal inte-
gration scheme (SCNI) modifies the definition of B in order
to avoid these problems. The essence of the method is that
an assumed displacement gradient at a node is constructed
by averaging the displacement gradient over a cell accompa-
nying that node:

∇̃u(xi ) = 1

�i

∫

�i

∇u d� (31)

The volume integral can be rewritten by means of the Gauss
divergence theorem to a surface integral:

∇̃u(xi ) = 1

�i

∫

�i

n u d� (32)

where n is the outward normal on boundary�i of the cell�i .
The assumed strain field used for the integration becomes:

ε̃(xi ) = 1

2

(
∇̃u(xi )+ (∇̃u(xi ))

T
)

(33)

Figure 1 gives an illustration on the nodal integration
scheme. Section 2.5 gives a description on the construction
of the cells as displayed in Fig. 1. The modified B-matrix at
node xi in 2D becomes:
[
B̃(xi )

]
= [

B̃1(xi ) B̃2(xi ) ... B̃Nnod(xi )
]

(34)

where the contribution of shape function j is defined as:

[
B̃ j (xi )

]
= 1

��i

∫

�i

⎡
⎣φ j n1 0

0 φ j n2

φ j n2 φ j n1

⎤
⎦ d� (35)

The resulting internal force vector becomes:

Fint =
Nnod∑
i=1

B̃T(xi )σ̃ (xi )��i (36)
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where σ̃ (xi ) is the stress tensor computed with the assumed
strain ε̃(xi ). The stiffness matrix becomes:

K =
Nnod∑
i=1

B̃T(xi )CB̃(xi )��i (37)

An interesting aspect of integrating the weak equations
nodally is that a material point is at the location of the node.
Especially if more sophisticated, history dependent material
models are used, all data concerning the material model can
be stored at the location of the node. This can simplify for
instance re-meshing or convecting algorithms, such that the
spatial distribution of the state variables of the material model
is optimally preserved. Note that due to the nodal integration,
the connectivity increases. All shape functions holding a non-
zero value in�i contribute to B̃(xi ). Matrix K will therefore
become less sparse.

2.4 Applying boundary conditions

Applying the boundary conditions in case of meshless shape
functions requires a different approach than usually used for
finite elements. For finite elements the Kronecker Delta prop-
erty holds, which implies that the field displacement at the
position of the node is equal to that nodal displacement:

uh(xi ) = di (38)

where xi is the nodal location. Most meshless approxima-
tions do not satisfy this property. Displacements cannot be
enforced by simply prescribing entries in the nodal displace-
ment vector d. In this paper, the method of Lagrangian
multipliers is applied to enforce prescribed boundary dis-
placements similarly as was done by Belytschko et al. [8].
The set of nodal degrees of freedom is expanded by a set
of Lagrangian multipliers. The system of equations with the
added degrees of freedom becomes:
[

K GT

G 0

]{
�di

�λi

}
=
{

Fi
ext − Fi

int
g

}
(39)

where�λi is a vector containing the Lagrangian multipliers
and matrix K is the stiffness matrix as defined in Eq. (10) or
Eq. (37) depending on the integration scheme. Vector g and
matrix G, are defined as:

g = −
∫

�

NT
λ ū d� (40)

G = −
∫

�

NT
λN d� (41)

Eqs. (40) and (41) are evaluated with a nodal integration rule
as used by Pannachet and Askes [35]. Furthermore, the shape
functions related to the Lagrangian multipliers are chosen

to have the Kronecker delta property. As a result only dis-
placement related shape functions need to be evaluated since
Ni
λ(x j )=δi j .
The boundary conditions for the INT function are enforced

by using a simple row reduction technique as is standard in
finite element analysis. Prescribed displacements are mul-
tiplied with corresponding columns in K and added to the
right-hand side of Eq. (11).

2.5 Triangulations and tesselations

Both integration schemes as well as the linear interpolation
function require geometrical objects. The SCNI integration
scheme uses a tessellation to construct the modified strain
matrix B̃ and the Gaussian integration scheme is defined upon
a triangle. Moreover, this triangulation is beneficial for the
MLS and LME shape functions as well, since this data struc-
ture can be used for efficient neighbor searching. Note that
the terminology ‘meshless method’ only refers to the shape
function and not to the integration cells for instance.

The strategy to obtain the geometrical objects is as fol-
lows. First of all, a cloud of nodes is triangulated with a
Delaunay triangulation. In two-dimensions, the corners of
a Delaunay triangle are those three nodes that share a cir-
cumscribed circle not containing any other node of the cloud
of nodes. Afterwards, the concept of α-shapes ensures that
concave boundaries can be represented without defining that
concave boundary explicitly. A description of the method
for solid mechanics can be found in Alfaro et al. [1]. For
the SCNI integration, a set of cells is made with a technique
as used by Chen et al. [14]. It takes the midpoints of the
sides of a Delaunay triangle and the centroid of that trian-
gle. The cell of a node is made by connecting straight lines
through these points for all triangles connected to that par-
ticular node. The main benefit of constructing cells in this
fashion in comparison with the well known Voronoi tessela-
tion is that boundaries can be tesselated more easily. More-
over, if the Delaunay triangulation is known, this tesselation
can be constructed with little extra effort. Figure 2 gives a
visualization of the geometrical objects as described above.

2.6 Overview of the implementation

To switch easily between shape function, integration scheme,
or method to apply boundary conditions, a code was written
of which the architecture will be shortly outlined here.

Figure 3 displays a flowchart of the computer program.
The components named MLS, LME and INT are abbre-
viations of moving least-squares, local maximum-entropy
and linear triangular interpolation, respectively. The Galerkin
weak form is integrated with the two integration schemes.
These are the standard ‘Gaussian’ integration scheme and the
stabilized conforming nodal integration scheme abbreviated
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(a) (b)

(c)

Fig. 2 Geometrical objects used for the analysis

with STD and SCNI, respectively. From a programming point
of view, the main difference between these two integration
rules is that the STD integration consists of a loop over trian-
gles for the stiffness matrix and internal force vector and the
SCNI integration loops over nodes for the assembly proce-
dure. Furthermore, the STD integration requires the gradients
of the shape functions whereas for the SCNI integration, just
the shape function values are required. The averaged deriva-
tives follow from the divergence theorem.

The method to apply the boundary conditions is selected
depending on which shape function is chosen. Lagrangian
multipliers will be used for the LME and MLS functions. For
the INT function the row reduction technique is employed,
resulting in the reduced stiffness matrix Kred.

3 Numerical performance

3.1 Introduction

In this section the numerical performance of the shape func-
tions and integration schemes will be examined. First of all, a

Fig. 4 Shape functions as used in the analysis

test in linear elasticity is performed to examine the accuracy
and convergence properties of the shape functions and inte-
gration schemes. An infinite plate with a hole is used as test
problem. Secondly, an analysis is done to examine the perfor-
mance of various combinations in elasto-plasticity. The effect
of the type of integration, the order of the Gaussian integra-
tion and the compactness of the diffuse approximations will
be investigated. Finally the computational efficiency of the
implementation will be assessed.

For the MLS and LME approximations, parameters d
and γ have to be set. To make a fair comparison between
these approximations in the following tests, the parameters
are set such that the shape functions have a similar domain of
influence. For the MLS approximation d = 2.6, and for the
LME approximation γ = 1, unless stated otherwise. Figure 4
gives a visualization of the shape functions with these param-
eters. These settings for the domain of influence were found
to give a stable response in most cases. Making the shape
functions too compact for instance, can result in failure of
the shape function algorithm.

3.2 Plate with a hole problem

In this test the accuracy and convergence of all combina-
tions of shape functions and integration schemes is tested
on the problem of an infinite plate with a hole. Figure 5
shows the geometry of the infinite plate at the left-hand side,
and the modeled part of the plate at the right-hand side. The
infinite plate is loaded in horizontal direction with a uniform
traction. The geometry is simplified by using symmetry con-
ditions and only evaluating a small part of the plate close to
the location of the hole. At the symmetry lines the appro-
priate displacement boundary conditions are imposed, and

Fig. 3 Schematic
representation of the program as
implemented in Matlab
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Fig. 5 Geometry of the infinite plate with a hole problem

at the free boundary the known exact stress field is applied.
The exact solution of the problem can be found for instance
in Timoshenko and Goodier [42]. The exact stress field is:

σxx (r, θ) = 1 − 1

r2

(
3

2
cos 2θ + cos 4θ

)
+ 3

2 r4 cos 4θ

(42)

σyy(r, θ) = − 1

r2

(
1

2
cos 2θ − cos 4θ

)
− 3

2 r4 cos 4θ (43)

σxy(r, θ) = − 1

r2

(
1

2
sin 2θ + sin 4θ

)
+ 3

2 r4 sin 4θ (44)

and the corresponding displacement field is:

ux (r, θ) = 1

8μ

(
r (κ + 1) cos θ

+2

r
((1 + κ) cos θ + cos 3θ)− 2

r3 cos 3θ

)

(45)

uy(r, θ) = 1

8μ
(r (κ − 3) sin θ

+ 2

r
+ ((1 − κ) sin θ + sin 3θ)− 2

r3 sin 3θ

)

(46)

Parameter κ and μ are defined for plane strain as:

κ = 3 − 4ν (47)

μ = E

2 (1 + ν)
(48)

The Young’s modulus and the Poisson’s ratio are E = 10
and ν = 0.3, respectively. For the STD integration scheme a
3 point integration rule within a triangle is used. The SCNI
integration scheme employs a 2 point Gauss rule on each of
the facets of a cell. To compare the accuracy of a combination
of shape function and integration scheme, an error norm on
the displacement is used. The error norm is a discrete ver-
sion of the ‖ · ‖L2-norm and samples the displacement error
only at the nodes. This norm is used to avoid the problem of
introducing errors in the computation of the integrand of the
‖ · ‖L2 error norm as was pointed out by González et al. [18].

(a) (b) (c)

Fig. 6 Nodal grids for the plate with hole problem

The error is given by:

‖eu‖2 = 1

Nnod

√√√√Nnod∑
i=1

‖uh (xi )− uexact (xi ) ‖2 (49)

The location of a node is given by xk , the approximated solu-
tion is uh, and Nnod is the total number of nodes.

Figure 6 shows three nodal grids from coarse to fine as
used for this test. The amount of nodes for the grids in the
order of coarse to fine are 63, 248 and 993, respectively.

Figure 7 shows the ‖eu‖2 error for the integration schemes
and the three shape functions. First of all, when comparing the
shape functions it can be seen that regardless of the integra-
tion scheme used, the two diffuse approximations are more
accurate than the linear interpolation. The error norms for
the MLS and LME shape functions are two to three times
smaller than the the INT function. The error for the MLS and
LME approximation is found to be nearly identical due to the
selection of parameters γ and d. Secondly, the two integra-
tion schemes give approximately the same accuracy and rate
of convergence for a specific shape function. Compared to
the Gaussian integration, integrating the INT function with
the SCNI scheme increases the accuracy.

3.3 Distortion analysis

In the following test, the approximations are tested on their
behavior on distorted grids. The problem used to analyze this
behavior is the pure bending of a square piece. The details
are given in Fig. 8. At the right-hand side of the square, a
traction in x-direction is prescribed varying linearly between
7.5 and −7.5. The problem is discretized by five different
nodal grids as shown in Fig. 9. Both small irregularities as
well as substantial distortions are applied to a regular grid
with increasing severity. The energy error norm is monitored
over the five grids. This norm is defined as:

‖eu‖2
E =

∫

�

(ε − εh)
T C (ε − εh) d� (50)

where εh and ε are the approximated strain field and the exact
strain field respectively. The exact stress field of the problem
can be found by simply considering the prescribed traction
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(a)

(b)

Fig. 7 ‖eu‖2 error norm for the plate with hole problem

on the right-hand side of the square piece of material:

σxx (x) = 3

2
· y (51)

σyy(x) = 0 (52)

σxy(x) = 0 (53)

By using the constitutive behavior, the exact strain field of
the problem can be found:

εxx (x) = 3E(1 − ν)

2(1 + ν)(1 − 2ν)
· y (54)

εyy(x) = 3Eν

2(1 + ν)(1 − 2ν)
· y (55)

εxy(x) = 0 (56)

The integral in Eq. (50) will be evaluated by the two integra-
tion schemes given in Sect. 2.3.1 and Sect. 2.3.2 depending
on which integration scheme is used for the approximation.

Fig. 8 Model to examine distortional effects

Fig. 9 Grids used to examine the influence of distortion

Figure 10 shows the results for the two integration
schemes and the three shape functions. Several conclusions
can be drawn from the figures. First of all, for low amounts
of distortion (grid 1 and 2), the most accurate results are
obtained by employing a MLS or LME shape function with
a Gaussian integration scheme. Increasing the amount of
distortion for the Gaussian integration scheme increases the
error in the energy norm. For the last grids, problems were
encountered in the construction of the MLS and LME shape
functions. For the MLS functions for instance, parameters
a(x) cannot be determined uniquely for certain locations x.
The domain of influence of these shape functions has to be
increased, such that sufficient neighbors are present to define
these shape functions properly. The Gaussian integrated tri-
angular interpolation is inaccurate both at the regular grid as
well as on the irregular grids.

The SCNI integrated solutions seem to be less affected
by the distortion in general. Although the MLS function
on grid 4 is found to be inaccurate, overall a smaller influ-
ence of the distortion is found. Similar to the Gaussian inte-
grated solutions, problems were encountered with the MLS
and LME functions on grid 4 and 5. It can be seen that the
performance of the INT function improves considerably by
employing the SCNI integration.

3.4 Tapered bar analysis

In this section the performance of the shape functions and
integration schemes is investigated in an elasto-plastic analy-
sis. Two potential problems can be envisaged for a numerical
method in plasticity. Firstly, there is the problem of volumet-
ric locking. If a numerical scheme suffers from volumetric
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(a)

(b)

Fig. 10 Energy error norm with increasing distortion

locking, the response will become spuriously stiff in plastic
deformation and the pressure associated with this deforma-
tion is nonphysical. Secondly, the transition from elastic to
plastic will lead to a locally high gradient in the strain field.
This interface should be distinct and not nonphysically dif-
fuse as one might expect with diffuse meshless approxima-
tions.

Figure 11a shows the model used for the analysis. The
tapered bar is loaded at the right-hand side with a prescribed
traction. The problem is simplified by assuming a plane strain
state, and symmetry along the center line of the bar. A Von-
Mises yield criterion is used in combination with linear hard-
ening:

σf = σ0 + Cεeq (57)

Variables σf and εeq are the flow stress and equivalent plastic
strain, respectively. The constants for the hardening law are

C = 100 and σ0 = 100. The Young’s modulus and Pois-
son’s ratio of the elastic part are E = 210 000 and ν = 0.3,
respectively. After applying the total load of 120 on the bar,
the right-hand side of the bar will have deformed plastically,
whereas the left-hand side is still in the elastic domain. Hence
it should be possible to observe an elastic-plastic transition
region within the bar. Due to the non-linear material response,
Eq. (5) is solved with an iterative-incremental strategy. The
stress update is performed with a fully implicit return map-
ping algorithm.

For the STD integration a three point and a one point inte-
gration rule is used. For the SCNI integration a two point
Gauss rule is used on each of the facets of the cell. The nodal
grid for the meshless approximations is shown in Fig. 11b.
The grid has 4 nodes over the height and 11 along the length.
The results of the meshless analysis are compared to a refer-
ence finite element solution. A dense mesh of linear quadri-
lateral selective reduced integrated (SRI) finite elements are
used to get an accurate prediction of the stress and strain
fields. This mesh has 14 elements over the height and 40
along the length and is shown in Fig. 11c.

3.4.1 Influence of integration

The first test is the simulation of the tapered bar problem with
all shape functions and the two integration schemes. For the
STD integration scheme a three point and a one point inte-
gration rule are used. The strain component εxx is monitored
along the symmetry line (y = 0). Figure 12 shows the results
for the three cases where the horizontal axis displays the x
coordinate along the line of symmetry.

Figure 12a shows the results with the 3 point STD inte-
gration rule. It can be seen that the plastic deformation at
the right-hand side of the bar is underestimated by the linear
interpolation shape function. Due to the incompressibility of
this plastic deformation, the numerical artefact of volumetric
locking is deteriorating the results. Since a linear triangular
shape function in combination with Gaussian integration rule
makes a linear triangular finite element, this poor behavior in
incompressibility is expected. The MLS and LME approx-
imations are underestimating the strain εxx slightly but are

(a) (b) (c)

Fig. 11 The tapered bar problem and the models for the meshless and reference finite element computations
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(a) (b) (c)

Fig. 12 Strain in x direction along the symmetry axis

(a) (b) (c)

Fig. 13 Strain in x direction along the symmetry axis for various settings of γ

approaching the reference finite element solution quite well
for the small number of nodes.

If the number of volumetric constraints is reduced by
selecting a lower order integration rule, results as shown in
Fig. 12b are obtained. For linear interpolation (INT), select-
ing either a three point integration rule, or a one point inte-
gration rule does not affect the results. For the LME and MLS
approximations the scheme is responding spuriously due to
the reduced integration. With the chosen parameters to con-
trol the domain of influence of these functions, a one point
integration rule is insufficient.

Figure 12c shows the results for the nodally integrated
approximations. It can be seen that independent of the shape
function used, an accurate prediction of the strain is obtained.
Even the linear interpolation, known for its poor behavior in
incompressibility in the finite element method, is giving good
results. At the point x = 8 there is a minor overestimation
of the strain but in general a good agreement is obtained.
Furthermore, despite the use of diffuse shape functions, a
distinct transition from the elastic region to the plastic region
is predicted.

3.4.2 Influence of compactness

As shown in Fig. 12a, the MLS and LME functions give lock-
ing free results whereas the INT function shows locking when
integrated with a standard integration rule. By setting the γ
parameter to a high or a low value, both the INT and MLS
functions can be approximated respectively. Hence it is pos-
sible to move from the locking behavior of the INT function
to the non-locking result of the MLS function by setting γ .
To examine this effect the tapered bar problem is analyzed for
three different settings of γ . These settings are γ = 1, γ = 2
and γ = 3. Figure 13a shows the shape functions of the node
lying on the symmetry axis at the location (x, y) = (5, 0).
It can be seen that the local maximum-entropy shape func-
tion changes shape from the moving least-squares function
to the interpolation by increasing γ . Figure 13 shows the
result of the analysis for the two integration schemes. Indeed,
Fig. 13b shows that the functions can be moved out of the
locking domain by decreasing the compactness. A very sim-
ilar effect was observed in case of the element-free Galerkin
method by Dolbow and Belytschko [17] and by Askes et al.
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Fig. 14 Contour plot of the
equivalent plastic strain

(a) (b)

Fig. 15 Contour plot of the
pressure

(a) (b)

[3]. In Fig. 13c the results of the same test are given but now
for the nodal integration scheme. No effect of the compact-
ness on the results is found. There is no locking, nor is there
influence of the compactness of the approximation on the
distribution of the strain. The nodal integration scheme gives
very robust results for all shape functions.

3.4.3 Full field results

As shown in the previous analysis, the nodal integration
scheme gives an accurate prediction for the strain on the
symmetry line. In the following analysis the strain is exam-
ined outside this symmetry line by presenting contour plots
of the equivalent plastic strain. Furthermore, the distribution
of the pressure in the domain is investigated as well. For an
accurate prediction of the elastic part of the deformation, this
pressure should be physical and without numerical artifacts.

For the meshless computations, the INT function in com-
bination with the SCNI integration scheme is used. A finite
element computation is done for reference purposes. Both
simulations use the same nodal grid, which has 10 nodes
over the height and 31 nodes along the length, as shown in
Fig. 14.

The finite element result and the meshless result are plotted
in Fig. 14a and b, respectively. The equivalent plastic strain of
the nodal integration scheme is plotted directly on the nodes.
The integration point values of the finite element solution are
presented in a contour plot without using nodal averaging. In
general it can be seen that the two distributions correspond to
good extend. An accurate prediction of the equivalent plastic
strain is obtained with the nodal integration scheme and the
linear triangular interpolation.

Secondly, the distribution of the pressure is investigated.
The results for the two simulations are shown in Fig. 15.
Again the patterns are found to be similar for the two simu-
lations. Although the quadrilateral elements with selective
reduced integration can suffer from pressure oscillations,
these are not observed for this problem. The nodal integra-
tion scheme is showing very small oscillations in the plastic
regime at the right-hand side of the bar. In the following sec-
tion the inf-sup test will be performed in order to examine
these oscillations and the locking-free behavior.

3.5 The inf-sup test

For the successful application of an approximation in incom-
pressibility, the inf-sup test [or Ladyzhenskaya-Babuška-
Brezzi (LBB) test] should be satisfied. The main formulation
of this test can be found for instance in Chapelle and Bathe
[11] Bathe [4].

For Gaussian integrated solutions, inf-sup tests can be
found in the literature. For instance a Gaussian integrated
triangle interpolation, is known to fail the inf-sup test, as
is shown in [11]. For moving-least squares approximations
Dolbow and Belytschko [17] reported on monitoring the inf-
sup value. The approximation appeared to be locking. In the
paper of Huerta et al. [19] a modification of the MLS function
is proposed in order to satisfy the inf-sup test. This method
is called the pseudo-divergence-free EFG method. Since the
LME approximation is performing similar to the MLS func-
tion, no differences for the inf-sup test are expected.

For nodal integrated solutions locking free responses have
been reported, though they have not been confirmed by
a numerical inf-sup test. In this section, the locking free
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response as observed in the tapered bar problem, will be
examined.

3.5.1 General formulations

First, two matrices Sp and Su are defined, which correspond
to the norm on the pressure field and the displacement field,
respectively:

‖u‖2 =
∫

�

(∇̃u)2 d� = dTSud (58)

‖p‖2 =
∫

�

p2 d� = PTSpP (59)

Vectors d and P contain the displacement and pressure
degrees of freedom, respectively. The pressure norm
expressed in displacement degrees of freedom is expressed
as:

G = KupSpKT
up (60)

where matrix Kup is defined as:

Kup =
∫

�

B̃TNp d� (61)

Vector Np contains the shape functions for the pressure space.
For the SCNI a constant pressure is defined within a cell. Np

is therefore simply 1.
The numerical inf-sup condition as proposed by Chapelle

and Bathe is given by [11]:

inf
W

sup
V

WGV√
WGW

√
VSuV

= ψ > 0 (62)

where ψ is a parameter that should be bounded away from
zero in order to satisfy the condition and W and V are nodal
displacement vectors. This ψ can be found by solving the
following eigen problem:

GV = λSuV (63)

and taking the square root of the smallest non-zero eigen-
value in vector λ:

ψ = √
λk (64)

The index k of this smallest non-zero eigenvalue in vector λ
can be used to determine the number of spurious pressure
oscillations. If nu and np are the numbers of degrees of free-
dom in the displacement and pressure vectors respectively,
then the number of oscillations kpm is found by evaluat-
ing:

kpm = k − (nu − np + 1) (65)

3.5.2 Applying displacement boundary conditions

To perform the numerical inf-sup test, a set of displacement
degrees of freedom have to be prescribed. However, two
of the shape functions do not posses the Kronecker delta
property. To avoid adding degrees of freedom in case of
the Lagrangian multipliers, the nodal displacements will be
mapped on the field displacements with a strategy as pro-
posed by Chen et al. [12]. The field displacements can be pre-
scribed directly on the system by row-reduction techniques.

A mapping matrix R is constructed by sub-matrices �i j

which are defined as follows:

R =

⎡
⎢⎢⎢⎣

�11 �12 . . . �1N

�21 �22 . . . �2N
...

...
. . .

...

�N1 �N2 . . . �N N

⎤
⎥⎥⎥⎦ (66)

where:

�i j =
[
φ j (xi ) 0

0 φ j (xi )

]
(67)

The nodal displacements can be mapped to the field displace-
ments of the nodes by the following equation:

U = Rd (68)

where U are the field displacements at the locations of the
nodes and d are the nodal displacement degrees of freedom.
Matrix Kup is converted to the field degrees of freedom as
follows:

K̂up = R–TKup (69)

Boundary displacements can be directly prescribed by row-
reduction techniques on matrix K̂up. For matrix Su a similar
approach is taken:

Ŝu = R–TSuR–1 (70)

3.5.3 Numerical results

Figure 16 shows the problem as proposed by Chapelle and
Bathe [11]. Figure 17 shows the node grids as used for the
test. Both regular grids and irregular grids of various densities
will be used.

The results of the inf-sup test on the regular grid are given
in Fig. 18a. Similarly, the results of the irregular grid are
given in Fig. 18b. It can be seen that for the regular grid
as well as the irregular grid the inf-sup test is passed. The
ψ-parameter is bounded away from zero and does not
decrease on nodal grids with increasing density. Based on this
test it can be concluded that matrix Kup does not over-con-
strain the system of equations. Volumetric locking is likely to
be absent based on the results of this test. Although locking
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Fig. 16 Model for the inf-sup test

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 17 Nodes sets for the inf-sup test. Figures a–e show the regular
grids. Figures f–j show the irregular grids

appears to be not an issue for the SCNI integration, spuri-
ous oscillations are of concern. For all the regular grids, a
rank deficiency of 1 on matrix Kup is detected for the diffuse
approximations. The same holds for the triangular interpola-
tion, although here two eigenvalues are zero. Figure 19 shows
one of the detected checkerboard patterns in the pressure field
for the INT function. For the irregular grid, no rank deficiency
was detected of matrix Kup. Nevertheless, for instance the
same oscillation as shown in Fig. 19 is present though its
corresponding eigenvalue is not zero. To conclude, matrix
Kup appears not to be over-constraining the system, though
stable pressure fields cannot be guaranteed.

3.6 Computational efficiency

In the following test, the computational efficiency of the
components as shown in Fig. 3 is investigated. To examine
this efficiency, two aspects of the code will be monitored.
The first aspect is the time to build the stiffness matrix
and the second is the required memory allocation for this
matrix. The plate with a hole problem with the cloud of nodes
as shown in Fig. 6b is used for this test.

The time to build the stiffness matrix includes the com-
putations of the shape functions, setting-up of the integra-
tion rule and assembly of all local stiffness matrices in the
global stiffness matrix. These local stiffness matrices are con-

(a)

(b)

Fig. 18 ψ - parameter plots

Fig. 19 Pressure oscillation as detected on the regular grid

structed per cell or per triangle depending on whether the
nodal integration scheme or the Gaussian scheme is selected,
respectively. The time does not include the neighbor search
as it is required for the MLS and LME shape functions, nor is
the time for the construction of the Lagrangian multipliers or
performing the triangulation or tesselation included. These
components were found to be of small influence on the total
computation time for this set of nodes. The meshless code is
programmed in Matlab and the simulations are performed
on a dual-core 2.3 GHz computer. Although computational
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Table 1 Time for constructing K for the plate with hole problem in
seconds

MLS LME INT

STD 4.589 4.124 0.307

SCNI 7.268 6.099 0.909

Table 2 Number of non-zeros in K for the plate with hole problem

MLS LME INT

STD 30,028 26,476 2,802

SCNI 49,064 53,500 9,299

times of a computer code are depending on many factors,
for instance the skill of the programmer, the trends of the
analysis are expected to be representative.

Table 1 shows the results for the shape functions and inte-
gration schemes in seconds. Several trends can be observed in
the table. Firstly, it can be seen that the MLS and LME shape
function are considerably more involving than the simple INT
approximation. This could be expected since the INT func-
tion requires only a few computations in order to obtain φ and
the local stiffness matrices of this function are considerably
smaller in size. Therefore less multiplications are performed
in the assembly procedure. Secondly, the SCNI integration
scheme is computationally more demanding than the STD
integration. For both integration schemes, constructing the
tesselation and the triangulation is left out of the analysis.
Therefore it can be concluded that the assembly procedure
and the construction of the assumed gradient makes the SCNI
integration more involving. The extra computational effort is
of little importance for the diffuse approximations. For the
INT approximation however, the type of integration is of
more influence on the computation time relatively.

Table 2 shows the number of non-zero elements in the
stiffness matrix for the shape functions and the integration
schemes. The total size of the stiffness matrix K is 496 by
496. The stiffness matrix does not include the Lagrangian
multiplier matrices G and furthermore the stiffness matrix K
is defined symmetric and sparse. The table shows that the
memory allocation for the INT shape function is less than
for the diffuse shape functions. The diffuse character of the
LME and MLS approximations has a big influence on the
sparseness of the stiffness matrix. Furthermore the number
of non-zero elements in K increases by employing the stabi-
lized nodal integration. Due to the compact character of the
INT shape function this effect is relatively more pronounced
than it is for the other two shape functions. It can be expected
that this will also influence the solution time of the system
of equations, especially if the models are large.

Two remarks have to be made on the results of the tim-
ings. Solving the system of equations, the triangulations and

the neighbor search routine were found to have a negligible
influence on the total computation time. These parts of the
algorithm scale more than linear with the number of nodes
and therefore their relative contribution to the total compu-
tation time will increase compared to the building time of
the stiffness matrix. Secondly, in the case of geometrical or
material non-linearity, shape functions are required per itera-
tion to build the stiffness matrix and the internal force vector.
By storing the shape functions and ‘re-using’ them over the
increment, the relative cost of the more involving shape func-
tions can be reduced. For the MLS and LME functions this
can be a time reducing approach. The difference between the
linear interpolation and the MLS and LME approximations
as shown in Table 1 is expected to be smaller in that case.
A drawback of this implementation strategy is that memory
has to be allocated for the gradients of the shape functions.

4 Conclusions

In this paper a numerical analysis was performed on three
meshless approximations and two integration schemes. The
performance in linear elasticity and in elasto-plasticity was
investigated.

It was shown that diffuse shape functions, like the mov-
ing least-squares function and the local maximum-entropy
function offer a better accuracy when compared to the linear
triangle interpolation in elasticity. The error reduced approx-
imately with a factor of two to three when using the MLS
or LME approximation instead of a linear triangle interpo-
lation. However, the computational effort for these two dif-
fuse approximations is higher. The stiffness matrix becomes
less sparse and the time for building this matrix is higher.
The local maximum-entropy approximation and the mov-
ing least-squares approximation were found to perform very
similar if used with the same domain of influence. Further-
more it was observed that the SCNI integration scheme is less
sensitive to distortion than the Gaussian integration scheme.

A test in elasto-plasticity showed that using a Gaussian
integration rule gives results that are strongly depending on
the order of the integration rule and the compactness of the
diffuse approximations. Both spurious deformation modes or
volumetric locking can be present, depending on the choices
in the integration rule or the compactness of the shape func-
tion. The SCNI integration scheme on the contrary, gives
excellent results when compared to a Gaussian integration
rule. No trace of volumetric locking is observed. The mesh-
less solutions match the reference solution accurately and the
results were found to be nearly independent of the type of
shape function used. Moreover, the compactness of the shape
function has a negligible influence on the results. To give a
more fundamental background to the observed locking-free
response of the SCNI integration, the numerical inf-sup test
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was performed. The SCNI integration appears locking free,
however spurious oscillations were detected. Stabilization of
this oscillation is the authors current effort. To conclude, it
can be stated that the SCNI integration is the most sensible
option for use in combination with incompressible material
models, leaving the choice of shape function open. Simply
using a Gaussian integration scheme is proving to be not opti-
mal for use in incompressibility. For these cases, the extra
computational effort for the SCNI integration is easily justi-
fied. For cases in which highly accurate and mesh indepen-
dent results are required, the diffuse approximations can be
an interesting option. However, for a robust and fast simula-
tion, the method of SCNI in combination with triangle inter-
polation (SFEM) shows to be a very efficient computational
scheme.
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