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Abstract. In this paper we develop the concept of a convex polygon-offset distance func-
tion. Using offset as a notion of distance, we show how to compute the corresponding
nearest- and furthest-site Voronoi diagrams of point sites in the plane. We provide near-
optimal deterministic 0(n (log n + log2 m) + m )-time algorithms, where n is the number
of points and m is the complexity of the underlying polygon, for computing compact rep-
resentations of both diagrams.

1. Introduction

The Voronoi diagram of a set S of n points (called sites) in the plane is a subdivision of the
plane into n regions, one associated with each site. Each site's region consists of all points
in the plane closer to it than to any of the other sites. It is a well-known, powerful tool
for handling a host of geometric problems dealing with distance relationships (see, e.g.,
[OBS]). Voronoi diagrams have been used extensively, for example, for solving nearest-
neighbor, furthest-neighbor, and matching problems in many contexts. The underlying
distance function used to define Voronoi diagrams is typically either the usual Euclidean
metric, or more generally a distance function based upon one of the L p metrics. There
has also been some interesting work done using convex (scaling) distance functions (also
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called Minkowski functionals [KN, p. 15]), which are extensions of the scaling notion
for circles (in the Euclidean case) to convex polygons.

Voronoi diagrams also play an important role in tolerancing problems that arise in
manufacturing processes of physical three-dimensional objects. However, defining dis-
tance in terms of an offset from a polygon' is actually more natural than scaling in this
application, as well as in many others. This is because the local error of a production
tool (a milling head, a laser beam, etc.) is independent of the location of the produced
feature relative to some artificial reference point (the origin). The production error at
any location on the object's boundary is not likely to depend on a scale factor from some
arbitrary center point, such as the scaling center. Instead, tolerances are more likely to
be given as an allowable error distance from the boundary. Thus, offset polygons and
not scaled polygons are the correct way to model manufacturing tolerances [Cr]. In a
companion paper [BBDG] we solve a few geometric problems that capture the notion
of tolerancing. The algorithms proposed there make use of the Voronoi diagram. This
motivates the computation of the Voronoi diagram of a point set in the plane, whose
underlying distance function is based on offsetting.

In this paper we investigate distance functions based on offsetting convex polygons.
While the scaling operation shifts each edge of the polygon proportionally to its distance
from the origin, the offset operation shifts all the edges by the same amount. Offset
polygons are therefore not homothetic copies of the original polygon (unless the original
polygon is regular). We are interested in the investigation of basic properties of polygon-
offset distance functions, with particular attention paid to how they may be used in the
definition and computation of Voronoi diagrams. This is not obvious, since the polygon-
offset functions are not metrics.

1.1. Related Previous Work

We are not familiar with any prior work on defining distance in terms of offset polygons,
nor in methods for defining Voronoi diagrams in terms of such functions. Minkowski (see,
e.g., [KN]) was the first to study the related notion of what are now commonly referred to
as convex distance functions. He showed, for example, that distance can be consistently
defined in terms of a scaling of a convex polygon containing the origin, and that while such
functions do not in general define metrics (since they are usually not symmetric), they
exactly characterize the distance functions satisfying the triangle inequality. Chew and
Drysdale [CD] brought this notion into the computational geometry literature, showing
that one can consistently define nearest-neighbor Voronoi diagrams using convex distance
functions. They give an O(nm log n)-time method for constructing such diagrams for a
set S of n points in the plane, with distance defined by a scaling of an m-edge convex
polygon. This is actually quite close to optimal for fully constructing the Voronoi diagram,
as they show that such a diagram can be of size O(nm). Klein, Mehlhorn, Meiser,
and others [Ku], [KMM], [KW], [MMO], [MMR] generalized this work even further,
showing how to define Voronoi diagrams in a very abstract setting. They also give

1 Intuitively speaking, offsetting a polygon is done by locally shifting all its edge. We give a precise
definition later in the paper.
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randomized incremental constructions for this abstract setting that can be applied to
nearest- and furthest-neighbor Voronoi diagrams for convex distance functions. Strictly
speaking, the running times of these constructions are expected to be 0 (nm log n), but it is
possible to use their approaches to construct "compact" Voronoi diagram representations
in 0 (n log n log m +m) expected time. For the case of nearest-neighbor diagrams this was
improved by McAllister et al. [MKS], who give a deterministic 0 (n (log n + log m) + m)-
time method for constructing a compact Voronoi diagram complete enough for answering
nearest-neighbor queries for a given convex distance function in 0 (log n + log m) time.
They do not address furthest-neighbor diagrams, however, nor do they address the case
when distance is defined by offsets of a convex polygon.

Aichholzer and Aurenhammer [AA] present an algorithm for constructing the so-
called straight skeleton of a collection of polygonal chains, which identifies with the
medial axis of a convex polygon. They mention the use of the skeleton as a distance
function and give a sketch [ibid., Fig. 4] of a Voronoi diagram of two straight segments.
They take the set of polygonal chains that define the distance function to be also the
set of sites for which the Voronoi diagram is sought. We, however, make the distinction
between the convex polygon that defines the distance function and the set of point sites
in the diagram. Aichholzer et al. [AAAG] further study the properties and applications of
the straight skeleton of a simple polygon. They remark that the skeleton of a polygon "is
no Voronoi-diagram-like structure." Unlike in the cited work, the constructions presented
in this paper are Voronoi diagrams of point sets and not of polygons; the polygon only
defines the underlying distance function. We are therefore concerned with a very different
set of problems and constructions.

1.2. Our Results

In this paper we formally develop the concept of a convex polygon-offset distance func-
tion and explore its properties. One such interesting property is the fact that polygon-
offset distance functions do not in general satisfy the triangle inequality. This, of course,
follows from the contra-positive of Minkowski's characterization theorem, but we pro-
vide a simple constructive proof. In spite of this fact, however, we show that convex
polygon-offset distance functions nevertheless satisfy all the topological properties for
abstract Voronoi diagrams [KI], [KMM], [KW], [MMO], [MMR]. Finally, given a set S
of n points in the plane, we show how to construct compact representations of nearest-
and furthest-site Voronoi diagrams deterministically for S with respect to an offset dis-
tance defined by an m-edge convex polygon in O (n (log n + log2 m) + m) time. We use
the tentative prune-and-search paradigm of Kirkpatrick and Snoeyink [KS] to design
some geometric primitives. While McAllister et al. [MKS] designed similar primitives
with respect to the Euclidean distance functions, we do that with respect to the con-
vex polygon-offset distance function. These primitives are used in generalizations of
Fortune's and Rappaport's algorithms for computing the nearest- and furthest-neighbor
Voronoi diagrams, respectively.

The paper is organized as follows. In Section 2 we give some notations and definitions.
We describe in Section 3 how to construct the nearest-site Voronoi diagram, and show in
Section 4 how to obtain its compact representation. Analogously, we describe in Section 5
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how to compute the furthest-site Voronoi diagram in full and in compact representations.
We terminate in Section 6 with some concluding remarks.

2. Preliminaries

The usual Euclidean distance between two points p, q E Il82 can be modeled as follows.
Place the unit circle centered at p and scale it until q occurs at the boundary of the scaled
circle. The radius of the latter circle is the distance between p and q. This distance
function is obviously symmetric. In this section we define the convex polygon-offset
distance function and show that in general it does not fulfill the triangle inequality.

2.1. Metrics and Convex Distance Functions

A metric on the plane (see [KW, p. 16] and [Du]) is a mapping D: 1R2 x R2 -± R>o
such that for any points p, q, r E R2 the following conditions are fulfilled:

1. D(p, q) = 0 if and only if p = q (identity),
2. D(p, q) = D(q, p) (symmetry), and
3. D(p, r) < D(p, q) + D(q, r) (triangle inequality).

For every convex polygon P (which contains the origin) we can define the convex
distance function Dp as follows. Let p and q be points in the plane as before. Translate
P by p (that is, place the origin at p) and scale it so that q occurs at the boundary of
P. The distance Dp (p, q) is the respective scaling factor of P. The function Dp is not
symmetric (thus it is not a metric) unless P is symmetric about the origin [CD]. Convex
distance functions are normalized such that:

1. Dp (p, p) = 0 for every point p and polygon P.
2. Dp(p, q) = 1 if and only if q E arp (P), where rp is the translation of the plane

that maps the origin to p.

Equivalently, we can define Dp in terms of the normal Euclidean distance function E:
Dp(p, q) = E(p, q)/E(p, q'), where q' is the intersection of the vector pq with the
(unit) polygon P. Note that by this definition, different translations of a convex polygon
P (as long as they all contain the origin) define different convex distance functions.
However, this is not the case with the polygon-offset distance function.

2.2. Convex Polygon-Offset Distance Functions

We first define the offset of a convex polygon. A convex polygon P is the intersection of
a collection of closed halfplanes (H1 ), each defined by an edge of P. The offset polygon
Op, is the intersection of (Hi (s) ), where Hi (s) is the halfplane parallel to H, with
bounding line translated by distance E. Positive (resp., negative) values of s stand for
translating the edges outward (resp., inward) from the polygon. Figure 1 shows an inner
and an outer offset of a convex polygon.
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Fig. 1. Inner and outer s-offsets of a convex polygon.

None of the halfplanes {H;) is redundant in the definition of P. This is also true for
0 p, E where s > 0. However, for negative values of s, some or all of (H, (s) } may become
redundant. The value so < 0 for which OP, e0 degenerates into a point is the radius of
the largest circle inscribed into P. We call this point the offset center of P.

There is a strong relation between the continuous change of Op, (as a function of
e) and the medial axis of P. Recall that the polygon P is convex. The medial axis of
a polygon P is the set of points inside P that have more than one closest point among
the points of a P [Or, p. 193]. As a direct consequence of this definition, we have that
changing s continuously makes the vertices of P slide along the edges of the medial axis.
Assume we start with some s > 0 and reduce it continuously, thus we slide the vertices
of P inward along its medial axis. When two neighboring vertices v, Vj E P meet at a
vertex of the medial axis, the halfplane that corresponds to the edge of P that connects
between v; and vj becomes redundant, and v1, v j are merged (on the offset polygon)
into one vertex. At some value of s > so we are left with a triangle (or with a regular
k-gon, for some k > 3), which, when e reaches so, is offset to a point, the center of P. A
degenerate case occurs when P contains two parallel edges that define the width of P.
In this case OP, ep is a line segment rather than a point. For our purposes we can choose
any arbitrary point in that segment, say, its center point, to be the center of P. Figure 2
illustrates the relation between offset of P and its medial axis.

We are now ready to define the convex polygon-offset distance function Vp. Let p
and q be two points in the plane. Consider the value of a for which a translate of Op, e
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Fig. 2. Offset of a convex polygon based on its medial axis. (a) Point center and (b) segment center.



276	 G. Barequet, M. T. Dickerson, and M. T. Goodrich

P	 ;.

.^	 ez
et

Fig. 3. Dominating edges for the convex polygon-offset distance function.

centered at p contains q on its boundary. The offset distance is defined as

Dp(p, q) = (s + IeoD)/IEoI = E/IeoI + 1.

This definition normalizes Vp (p, p) so that Dp (p, p) = 0 and Vp (p, q) = 1 for every
point p in the plane and point q on the boundary of P centered at p.

2.3. Basic Properties of Vp

As defined in the previous section, for measuring the P-offset distance from a point p to
another point q, we place P such that its offset center coincides with p. We then offset
P (inward or outward) until it hits q. We say that the edge of P that hits q dominates
it. Consider the subdivision of the plane induced by extending the edges of the medial
axis of P (that are coincident to vertices of P) to infinity. Each region in this subdivision
is dominated by an edge of P; furthermore, there is a 1-to-1 mapping between regions
of the subdivision and edges of P. When we move away from p along the ray pq we
may cross an edge of the medial axis. This event corresponds to switching from the
dominance of some polygon edge to that of another polygon edge. Figure 3 illustrates
this situation: the ray pq is first dominated by et E P (in the inner offsets of P, close
enough to p, the offset halfplane that corresponds to the edge e2 is redundant), and then
it crosses an edge of the medial axis of P and becomes dominated by e2.

We now give a more specific relationship between DP and the Euclidean distance
function. Refer to Fig. 4. Let fe be the direction in which the dominating edge e is offset
outward of P. and let 0 be the angle between f e and pq. A unit offset of e (that is,
translating e by I along fi e) corresponds to a (1 /cos 0)-move along pq. 2 Our goal is to
measure distance along pq in terms of the corresponding offset of e. When 0 = 0, we
have 1 /cos 0 = 1. As 0 increases, a unit offset of e results in an increasing Euclidean
distance along pq, and as 0 approaches ,r/2, the distance along pq that corresponds to
a unit offset of e grows to infinity. This is because an infinitesimal offset of e is then
sufficient for any arbitrarily large move along pq.

It is clear that within each region of the plane subdivision induced by the medial
axis, the quantity (I /cos 0) is constant in any direction (that is, for any 0). Thus, the

2 Note the difference between a unit offset and a unit of Dp. The latter measure is normalized, so that a
unit of DP corresponds to the distance between the center of P and any point on a P.
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Fig. 4. The relation between Vp and the Euclidean distance.

offset distance is linear in the Euclidean distance (with the multiplicative factor cos 9). It
turns out that the quantity (1 /cos B) along any direction can only decrease. This quantity
changes only when the ray pq crosses an edge of the medial axis. That is, it exits a
region that corresponds to some edge el E P and enters a region that corresponds to
another edge e2 E P. The edge of the medial axis is the bisector of e 1 and e2. Elementary
geometry shows that pq forms a smaller angle with the normal to e2 than the angle with
the normal to e1. Thus we have:

Theorem 1. If p, s, q are collinear points in this order, then Dp(p, s) +Vp(s, q) <
Dp(p, q) and equality holds if and only if the entire segment [pq] is dominated by the
same edge of P when P is centered at p.

Proof. Assume that there is a change of the dominating edge along the segment [pq]
and denote the point of transition by r. Since the quantity (1/cos 0) of pq can only
decrease at r (i.e., the offset distance with respect to Dp can only increase) by such a
change, it is imperative that the offset distance (per a unit Euclidean distance) along [ pr]
is smaller than that along [rq]. Now choose any point s E [rq]. When measuring the
distance along [sq] we are first charged according to the cheaper rate (since now P is
centered at s). Therefore Dp(p, s) + Dp(s, q) < Vp(p, q). A similar argument holds
for the case s E [pr]. Equality holds when there is no such point r, that is, there is no
change in the dominating edge along [pq]. q

Corollary 2. Convex polygon-offset distance functions defined by nonregular polygons
do not fulfill the triangle inequality.

Note that Minkowski [KN, p. 15, Theorem 2.3] proved that given a distance function
based on scaling a shape S, the triangle inequality holds if and only if S is convex.

3. Nearest-Site Voronoi Diagram

We now address the construction of a nearest-site Voronoi diagram using the polygon-
offset distance function Vp (for some convex polygon P). Given a planar point set S,
we denote its nearest- and furthest-site Voronoi diagrams with respect to Dp by VP (S)
and VP(S), respectively. When the set S is clear from the context, we omit it from this
notation. Figure 5(a) shows a convex polygon P. while the Voronoi diagram of three
points with respect to Dp is shown in Fig. 5(b).
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Fig. 5. A nearest-site Voronoi diagram. (a) Underlying polygon and (b) diagram of three points.

It is well known that for any scaled-polygon distance function, the Voronoi cell of
a point p is always a starshaped polygon whose kernel contains p. In contrast, there
exist nearest-neighbor Voronoi cells for the polygon-offset distance function which are
nonstarshaped. Figure 6 shows a quadrangle P (with dashed edges) which defines a
convex-offset distance function. Its medial axis is shown with dotted lines. The figure
also shows the respective Voronoi diagram of three points p, q, r equally spaced along
a line. The Voronoi cell that corresponds to the site q is not starshaped.

For computing the Voronoi diagram, we begin by showing that this notion of distance
fits the unifying approach of Klein for abstract Voronoi diagrams [KW], [Kl]. Klein

Fig. 6. A nonstarshaped cell of q.
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proposes to replace the distance notion by bisecting curves. Each pair of sites, regardless
of site shapes or distance function, are separated by curves which divide the plane into two
portions, each corresponding to one site. The Voronoi region of a site s is the intersection
of all the s-portions defined by bisecting curves between s and all the other sites.

3.1. More Properties of DP

In order to show that the convex polygon-offset distance function is valid for defining
Voronoi diagrams, we need to define precisely the nearest-site Voronoi diagram in this
context: the Voronoi cell that corresponds to a site p consists of all the points x in the
plane for which Dp(x, p) < Dp(x, q) for all q ,-E p. Note that this definition measures
the distance from the points x and not from the sites! If we reverse the direction of
measuring the distance, then we obtain a different Voronoi diagram: that obtained with
the former definition using a reflected copy of P.

Many works on Voronoi diagrams based on a metric make use of the following three
properties of metrics:

1. The induced topology is the same as that induced by the Euclidean metric. That
is, each small neighborhood (with respect to the metric) of a point contains an
L2-neighborhood of it, and vice versa.

2. The distance between every pair of points is invariant under translations.
3. Distances are additive along every straight line.

The convex polygon-offset distance function has properties 1 and 2 above too. However,
as shown in the previous section, it does not fulfill property 3. We thus replace additivity
by a weaker monotonicity property:

3'. Distances are monotonically increasing along every straight line.

We later use property 1 explicitly and properties 2 and 3' implicitly in the proofs of
further claims.

Theorem 3.

(a) V p has the properties 1, 2, and 3' above.
(b) The offset bisecting curve of every pair of points in the plane is a polyline with

at most O(m) line segments.
(c) Two different bisecting curves intersect in at most O(m) points.

Proof. (a) Properties 1 and 3' follow from the fact that Op,,, c_ Int(Op, e2 ) (where
Int(P) denotes the interior of a polygon P) for every eo < sl < e2. Property 2 follows
immediately from the definition of offset polygons.

(b) Assume first that the line joining the two points p, q is not parallel to any edge
of P. In this case the bisecting curve of the points is a simple polyline. To observe
this, pump up (offset) copies of P centered at p and q. Once the two copies make
contact, two contact points continue to move away from each other. (There are always
at most two such intersection points between two translated copies of the same convex
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polygon.) While moving in the plane, the contact points also slide monotonically around
the continually growing offset polygon. Occasionally there is a change of one of the
two polygon edges that make the contact. Segments of the bisector are formed between
any two such successive events. Once a polygon edge ceases to make the contact, it will
never be a contact edge again. To see this consider only the edges of that copy of P
centered at p. (A symmetric argument holds for the copy centered at q.) Now consider
two rays emanating from p and passing through the two contact points between the two
copies of P. As the copies of P grow (offset) outward, the two rays rotate monotonically
in opposite directions around p, increasing the distance between the contact points
and the midpoint of the segment [pq]. The distance between the contact points and p
increases as well. Since cells of the plane subdivision induced by the medial axis of P
are always opening away from the center of P (see Figure 2(a)), this trajectory cannot
make the contact point enter the same cell twice. Therefore the order of formation of
bisector segments resembles that of some merging of two ordered lists, each of cardinality
0(m). Hence the complexity of the bisector is also 0(m), and it is 0(m) in the worst
case.

In case there is an edge of P parallel to the line joining the two points, the bisecting
curve bifurcates and the entire region bounded by the two branches of the curve (which
can never intersect) is equidistant from the two points. This happens because for some
values of s there is a segment in the plane which is entirely of some distance S from both
points. It is easy to verify that the overall complexity of the boundary of the bisecting
curve is still 0(m).

(c) The bisecting curve between two points is a polygonal chain, which is monotone
with respect to £pq , the direction perpendicular to the line segment [pq]. Consider two
pairs of points (p, q) and (r, s). Let be the direction of the bisector of the smaller
angle formed by fpq and £r,.. It is easy to verify that all the segments of the bisecting
curve of (p, q) (resp., (r, s)) form with tpq (resp., £,^ ) angles of at most.7r/4. Therefore,
the bisecting curves of (p, q) and (r, s) are both monotone with respect to 4. Since the
complexity of the two bisecting curves is O(m) in the worst case, the two curves intersect
in at most 0(m) points. q

The proof of Theorem 3(b) handles the degenerate case in which Dp is measured
between two points which define a line parallel to some edge of P. In this special case,
the bisecting curve is not a simple polyline, as explained above. The results of [KW] can
still be applied with this weak form of a bisecting curve, but for simplicity of exposition
we assume in the rest of the paper that the points are in general position in this respect.
That is, we assume that no two input points define a line parallel to any edge of the
underlying polygon.

We next follow the approach of [KW] and show some additional properties of a
polygon-offset distance function and the respective nearest-site Voronoi diagram. By
VP I we mean the total number of vertices, edges, and faces in the diagram.

Theorem 4 [KW, p. 284, Theorem 2.5]. Assume that a distance function induces the
Euclidean topology in the plane. Furthermore, assume that each bisector between two
points consists of disjoint simple curves, and curves belonging to different bisectors can
intersect only finitely often within each bounded area. Finally, assume that all possi-
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ble Voronoi regions are connected sets. Then VP (S) has n faces and 0(n) edges and
vertices.

Corollary 5. Every cell of Vp is connected and MVP I = 0(nm).

Proof. The topology induced by V p is the same as that of the Euclidean metric (by
Theorem 3(a)). Bisectors of pairs of points are composed of simple curves and intersect
finitely often (by Theorem 3(b,c)). This is sufficient for applying Theorem 4 and obtaining
the connectivity claim and 0(n) cell-complexity for a fixed value of m. The m factor is
due to Theorem 3(c). q

A distance function is called complete if it is uniquely defined for every ordered pair
of points. The next theorem establishes an important intermediate-position property for
the convex polygon-offset distance function.

Theorem 6. V p is complete and for every pair of points p, q in the plane there exists
apointr 0 {p,q} such that Vp(p,r)+Vp(r,q)=Vp(p,q).

Proof. Center the polygon P at p. Sweeping the entire plane with Op, E by ranging e
from so to +oo we can find the unique s l for which q E a Op,.. Hence D p is complete.
For the second property we observe that if the entire segment [pq] is dominated by
some edge e, E P (where the normal to e, and pq form the angle 6, ), then all the
points r E [pq] fulfill the claimed equality (since then DP is merely the Euclidean
distance multiplied by a constant— cos(9, )). This is not the case when the segment [pq]
is dominated by more than one edge of P. Assume that [pq] is first (at the vicinity
of p) dominated by the edge e; and finally (at the vicinity of q) dominated by e3. We
have already shown in Section 2.3 that cos(6,) < cos(93 ) and that there exists a point
s E [pq] near q such that Dp(p, s) +Vp(s, q) < Vp(p, q). It is fairly easy to find
another point s' in the plane for which Dp(p, s') + Dp(s', q) > Dp(p, q): choose, for
example, a point s' whose distance from pq is twice the diameter of P. Now define a
function f (x) = V p (p, x) + Dp (x, q). Since Dp is a continuous distance function, the
function f(x) is continuous too, in particular along every path. Choose a path from s
to s' which does not pass through p or q, e.g., the line segment [ss']. According to the
mean-value theorem there exists a point r along this path for which f (r) = Dp (p, q),
and the claim follows.3 q

Note that the theorem does not require r to belong to the open segment (pq). The
next theorem establishes a crucial extension property.

3 We can also find constructively such a point r. Let d = E (p, q) /2. Define P' (resp., P") to be the offset
of P that contains all the points r' (resp., r") for which Dp (p, r') = d (resp., V p (r", q) = d). By Theorem 1,
the polygons P' and P" either touch (at the midpoint of the segment [pq]) or intersect, thus defining the
desired point r.
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Theorem 7. For every pair of points p, q in the plane there exists a point r 0 q such
that Vp(p, q) +Vp(q, r) = Vp(p, r).

Proof. We use an argument similar to that of the proof of Theorem 6. As before, if
the entire segment [pq] is dominated by some edge e; E P (with the respective angle
0, between the normal to e, and pq), then all the points r on the extension of [pq]
(beyond q), which are still dominated by e; , fulfill the claimed equality. (The case where
e, ceases to dominate pq precisely at q is also straightforward.) Again, this is not the
case when [pq] is dominated by more than one edge of P. Let [pq] be dominated by
e, at the vicinity of p and by e, at the vicinity of q. By an argument similar to that of
the proof of Theorem 1 we can extend infinitesimally [pq] (beyond q) and find a point
s on the extension for which Dp(p, q) + Vp(q, s) < Dp(p, s). This is true even if
another change of the dominating edge occurs in q since Vp is continuous. Hence we
have Vp (p, s) — Vp (q, s) > Vp (p, q). Similarly to the previous proof, we pick another
point s' in the plane for which Vp(p,  q) + V p (q , s') > Vp(p,  s') (this time choose a
points' very close topbutnotonpq).HencewehaveVp(p, s')—Dp(q, s') < Vp(p, q).
Now define a function g(x) = Vp(p, x) —Vp(q, x). Since Vp is a continuous distance
function, the function g(x) is continuous too, in particular along every path. Choose a
path from s to s' which does not pass through q, e.g., the line segment [ss']. According to
the mean-value theorem there exists a point r along this path for which g (r) = Vp (p, q).
Evidently r q, and the claim follows. 4 q

Theorem 8 [KW, p. 286, Theorem 4.1]. Assume that a distance function induces the
Euclidean topology in the plane. Furthermore, assume that the distance function fulfills
Theorems 6 and 7. Then all Voronoi regions are simply connected.

Corollary 9. Every cell of V p is simply connected.

Proof. The topology induced by Vp is the same as that of the Euclidean metric (by
Theorem 3(a)). Dp is complete, and for every pair of points p, q in the plane there exists
a point rt 0 {p, q} such that Vp(p, rj) + Dp(rt, q) = Vp(p, q) (by Theorem 6) and
a point r2 # q such that Vp(p,  q) + V p (q, r2) = Vp(p,  r2) (by Theorem 7). This is
sufficient for applying Theorem 8 and obtaining the claim. q

3.2. Computing the Diagram

For computing Voronoi diagrams based on the polygon-offset distance function we need
two primitive functions: one that computes the offset distance between two given points,
and another that computes the Voronoi vertex of three given points.

4 Similarly to the previous theorem, we can also find constructively such a point r by defining d = E(p, q)
and by intersecting the polygons {r' I Vp(p, r') = 2d) and {r" I Dp(q, r") = d}.
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Theorem 10. Allowing 0(m)-time preprocessing of P, Dp(p, q) can be computed in
0 (log m) time for every pair of points p, q in the plane.

Proof. The procedure for using a polygon P for measuring a convex (scaled) distance
function between points in the plane is rather simple. A binary search is performed (in
0 (log m) time) in the cyclic ordered list of edge-slopes of P for finding the edge e that
dominates pq at q. Then the distance is easily determined.

For a polygon-offset distance function we preprocess P in 0(m) time and build an
appropriate (tree-like) data structure that represents the medial axis of P. Each segment
of the data structure represents a vertex (or several consecutive vertices) of P and each
region is attributed by the dominating edge. The data structure answers, given a vector
pq positioned such that p coincides with the center of P, in which region of the medial
axis q falls. This region defines the edge of P that dominates q. Locating this region
requires 0(logm) time. The offset distance from p (now located at the center of P)
to the medial-axis vertex (that is the root of the located region) requires constant time.
(This information is stored at the medial-axis vertices during the preprocessing.) Finally,
the offset distance from the medial-axis vertex to q is computed in constant time using
simple algebra. Thus, the entire computation requires 0 (log m) time. 0

For the second primitive function we need the prune-and-search technique of Kirk-
patrick and Snoeyink [KS]. We provide here a brief description of this technique. The
goal is to find efficiently a fixed point of the composition of two or three monotone and
continuous functions that are defined piecewise. Such a function is defined in some range,
which is partitioned into a set of closed pairwise-disjoint (except in their endpoints) in-
tervals, whose union is the original range. In each of these intervals the function can
be evaluated in constant time. Such a function is therefore called piecewise-basic. It is
proven in [KS] that given three monotone-decreasing piecewise-basic functions, which
are defined on the same range and with m intervals each, the fixed point of their com-
position can be computed in optimal 0 (log m) time. This is a significant improvement
over the commonly used 0 (loge m)-time nested binary search. The tentative prune-and-
search technique maintains for each function three types of intervals: those in which
the fixed point cannot lie (eliminated), those in which the sought point probably does
not lie (tentatively pruned out), and those in which the point may lie (in doubt). During
the course of the algorithm intervals are tentatively discarded; these discards are later
revoked or certified. The running time of the procedure follows from the fact that at each
step a fixed fraction of the doubted intervals are eliminated or tentatively pruned out
(with the assurance that a fixed fraction of the discards are correct), or a fixed fraction
of the tentative discards are revoked or certified. The procedure terminates when each
of the three functions is restricted to only one interval. At this point a constant-time step
is invoked to find the actual fixed point.

The technique is applied in proving the following theorem:

Theorem 11 [KS, Section 3.4, Theorem 3.101. Given three convex polygons P. Q, R
of total complexity m, one can determine the point that is equidistant from P, Q, R in
0 (log m) time by tentative prune-and-search.
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The proof of the above theorem starts with restricting the attention to three convex
chains, subsets of P, Q, R, for which the Voronoi vertex problem has a unique solution.
Then the polygons are discretized, parameterized clockwise in the range [0, 1], and in-
tervals are defined according to the polygon vertices. Appropriate monotone-decreasing
functions are then defined on the polygons, such that their Voronoi vertex is nothing else
but the fixed point of the composition of the three functions. More specifically, the func-
tion fp (p') is defined to be the parameter of the point q' E Q whose normal intersects
the normal to P at p' in a point v such that I p'v I = Iq'v I. Similarly, fQ (q') and fR (r')
are defined by using R and P. respectively. At each step of the algorithm a statement
of the form fp (p') > q' is asserted, guiding discards of intervals (permanently or ten-
tatively), or the certification or revoking of previous discards. When all three functions
are restricted to a single interval (polygon edge), simple algebra is used to determine the
actual Voronoi vertex.

Theorem 12. Given three points p, q, r in the plane and a convex m-edge polygon
P, we can find the point equidistant from p, q, r (according to DP) in 0 (log2 m) time
(allowing 0(m) time for preprocessing P).

Proof. First we need to argue that the point sought exists and is unique. This point is the
intersection of the bisector of p and q and the bisector of p and r. As was shown earlier
in the paper, these bisectors are monotone with respect to the perpendicular bisectors
of the segments [p, q] and [p, r], respectively. Thus they intersect exactly once at the
desired Voronoi vertex.

We apply a prune-and-search procedure similar to that used in the proof of Theorem 11
for locating the point equidistant (with respect to the regular Euclidean distance function)
from three given convex polygons.

The main difficulty that we face is carrying the polygon discretization of the problem
in [KS] over to the computation of the point offset-wise equidistant from three given
points. While the curve discretization of [KS] is static (as required for applying prune-
and-search), it seems that in our problem the discretization should be dynamic. This
is because the front of the offset polygon undergoes topological changes: new vertices
appear when the polygon is offset outward from its center. Nevertheless, we can still use
static discretization. Instead of discretizing a curve, we discretize the circle of directions
centered at the center of the polygon P. The discrete set of directions consists of all the
rays emanating from p pointing at vertices of P and to vertices of its medial axis (2m —3
directions in total); see Fig. 7. We need not worry that at some (small) offset distances
some of the polygon edges do not "exist" yet. (That is, that halfplanes that correspond to
offset edges are. redundant.) This is taken care of by the primitive function that computes
offset distances between points.

The crucial observation is that we can apply the same decision paradigm as in The-
orem 3.10 of [KS]. As in [KS], we shoot straight rays from the points p and q in some
candidate directions p' and q', and compute their intersection point v. However, we use
the offset distance function for comparisons, that is, we compare Dp (p', v) to Dp (q', v).
Since the offset distance is monotonically increasing with respect to the Euclidean dis-
tance, we may apply the same paradigm, discarding (either permanently or tentatively)
half of the candidate directions for some of the three input points.
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Fig. 7. Discretization of the offset function for tentative prune-and-search.

The search procedure terminates when we identify the intervals ep , eq , e,. (edges
of the underlying polygon P centered at p, q, r, respectively) that contain the exact
directions p*, q*, r * from the points p, q, r, respectively, that define the Voronoi vertex.
Unfortunately, within these intervals the distance function is not basic (see Fig. 7). Hence,
unlike the problem of [KS], p*, q*, r* cannot be determined in additional constant time
by simple algebra. In the worst case each of ep , eq , e,. is dominated (at different offset
distances) by as many as O(m) polygon edges. The point offset-wise equidistant from
the three input points is found in the intersection of three slabs, ap , aq , Cr , emanating
from p, q, r, respectively.

We now apply a secondary, this time regular, prune-and-search step in order to locate
the desired point. The discretization of this subproblem is along the slabs (away from
p, q, r) according to their contained regions. Given three candidate regions pp , pq , pr

in the slabs ap , a9 , Cr , respectively, we choose from each region the offset-wise closest
point to p, q, r, respectively, as the representative points, compare the offset distances,
and apply the regular tentative prune-and-search technique. This step computes the exact
regions in the slabs in which the desired Voronoi vertex is located. When these three
regions, one in each slab, are known, simple algebra completes the calculation.

The running time of the main tentative prune-and-search step is 0 (log2 m). It is
obtained similarly to that of the problem of [KS], with the only difference that the
0(1)-time (Euclidean) distance-evaluation function of that problem is replaced by an
O (log m)-time function for computing the offset distance (Theorem 10). The secondary
prune-and-search step requires 0 (log m) time, and the completion step requires only
constant time. Overall, the entire procedure requires 0 (loge m) time. q

We now define (following [KW]) the (a, a)-support as follows. A distance function
D has an (a, a)-support (for a, a E [0, n], a a) if it fulfills the following condition
for any pair of points p, q in the plane, where pq is a line of slope a: if f is the line of
slope a that passes through q, then all points r that satisfy D(p, r) < D(p, q) lie on the
same side off as p (see Fig. 8).

Lemma 13. There exist angles a ,B and i , $ such that Dp has both (a, a)- and
(^B, S)-supports.
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4
1r

^` a

Fig. 8. (a, a)-support.

Proof. There exist three edges e, e1, ek E P that never disappear in inner offsets of P
(in the degenerate case there are only two such parallel edges). Without loss of generality
assume that the normal vectors to e, and e3 have slopes in [0, ir]. Consider the edge e,
and the normal to it £,. Set a to the slope of ei and a to the slope of e. It is trivial
to verify that Dp has an (a, a) -support. Similarly set fi to the slope of £^ and f to the
slope of e. Dp also has a ( fi, fi)-support. Obviously a 54 fi and a fi, establishing the
claim. q

This allows us to apply the algorithmic framework of [KW]:

Theorem 14 [KW, p. 288, Theorem 5.1]. Assume that a distance function induces the
Euclidean topology in the plane. Furthermore, assume that each bisector between two
points consists of disjoint simple curves, and curves belonging to different bisectors can
intersect only finitely often within each bounded area. Also assume that the distance
function fulfills Theorem 6. Finally, assume that there are angles a, $, and a ^,
such that the distance function has both (a, a)- and (,B,;)-support. Then VP (S) can be
computed within optimal 0 (n log n) steps.

Corollary 15. Let S be a set of n points in the plane. A compact representation of
VP (S) can be computed in expected 0 (n log n loge m + m) time.

Proof. The topology induced by Dp is the same as that of the Euclidean metric (by
Theorem 3(a)). Bisecting curves of pairs of points are simple and intersect finitely of-
ten (by Theorem 3(b,c)). DP is complete and for every pair of points p, q in the plane
there exists a point r 0 {p, q} such that Vp(p, r) + Dp(r, q) = Dp(p_, q) (by Theo-
rem 6). There exist angles a 0 f such that Dp has both (a, a)- and (,B, )-supports (by
Lemma 13). This is sufficient for applying Theorem 14 and obtaining the claim for a
constant value of m. The extra log e m factor is due to the primitive function that computes
a Voronoi vertex of three given points (see Theorem 12). The algorithm calls this func-
tion 0 (n log n) times (due to the randomized divide-and-conquer paradigm). Bisecting
curves (Voronoi edges connecting Voronoi vertices) are then represented implicitly by
the relative positions of the sites that define them. q

We can achieve a faster running time than this, however.
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4. Compact Nearest-Site Voronoi Diagram

We now extend the work of McAllister et al. [MKS] to polygon-offset distance functions.
They describe in detail an algorithm for constructing a compact nearest-site Voronoi
diagram, where the underlying convex distance function is defined by a convex poly-
gon. (They also consider sites as being convex polygons; we need only consider point
sites.)

The compact diagram simplifies the full Voronoi diagram by maintaining a coarse
"dual" of it: for each vertex of the full diagram, the compact diagram maintains a set
of spokes (minimum-length segments from the vertex to the polygonal sites, according
to the convex distance function), and each polygonal site is replaced by the convex hull
of vertices of the site in which spokes occur. (See Fig. 4 on p. 81 of [MKS] for an
illustration.) This allows the complexity of the compact diagram to be 0(n) instead of
0(nm), where m is the complexity of P (the underlying convex polygon that defines
the convex distance function), and n is the number of points.

The compact diagram does not allow definite point location queries, as each cell of it
is composed of portions of two cells of the full Voronoi diagram. However, with a low
cost of 0 (log n + log m) time the compact diagram provides two candidates for the point
location problem. As the authors note, this is sufficient for the post-office problem and
for retraction motion planning. The compact diagram reduces two components of the
full Voronoi diagram: the descriptions of the sites and the descriptions of the bisecting
curves between the sites. (Since the sites are not points and the distance function is not
Euclidean, a bisecting curve of two sites is a polyline instead of a line.) We deal with
point sites and so we do not benefit from the first reduction; still our distance function is
not Euclidean and hence we benefit from the second reduction.

We assume the familiarity of the reader with [MKS] and proceed to sketch how to
generalize the compact Voronoi diagram to a convex polygon-offset distance function.
In order to do that we have to make sure that the geometric properties of the compact
Voronoi diagram are preserved when we change the distance function from convex to
convex polygon-offset. For this goal we need only observe that for every e l > 82 the
convex polygon Op, E , fully contains the convex polygon OP , s2 and that two offsets of
the same polygon intersect at most twice [BBDG, Theorem 1]. (The second property
is crucial for applying the tentative prune-and-search technique of [KS].) This suffices
to prove the spoke properties (Lemmas 2.2-2.6 of [MKS]) and the correctness of the
plane-sweep algorithm [ibid., Lemmas 3.1-3.4 and Theorem 3.5].

Thus we are able to replicate the claims of [MKS] regarding the running time of
the primitive operations (Lemmas 3.13-3.15). In particular, the functions spoke (p, A)
and vertex (ABC) require 0(log2 m) time. The first function computes the spoke
that connects the point p (where the center of the m-gon is positioned) to a site A, and
the second function computes the Voronoi vertex (finite or infinite) around which three
given sites A, B, C appear in counterclockwise order. These functions are implemented
in [MKS] so that they require 0 (log n + log m) and 0 (log n log m) time, respectively,
but they run in only T„ = 0 (log m) time in the special case where all the sites are points
instead of convex polygons. The vanishing of the log n factor in this case carries over also
to convex polygon-offset distance functions. However, the log m term becomes loge m
by applying the procedure of Theorem 12. In conjunction, Theorem 3.10 on p. 94 of
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[MKS] states that the compact representation of the Voronoi diagram can be computed in
worst-case 0 (n (log n + T,)) time, resulting in a near-optimal 0 (n (log n +loge m) +m)-
time algorithm for computing a compact representation of V. (Obviously, 7 (n (log n +
log m) + m) is a lower bound on the running time of any such algorithm. Had we been
able to compute the Voronoi vertex of three points in 0 (log m) time, we would have
obtained an optimal-time algorithm.)

5. Furthest-Site Voronoi Diagram

In this section we show how to construct the furthest-site Voronoi diagram with respect
to Dp. For this purpose we show that Vp fits the framework of Mehlhorn et al. [MMR]
which follows Klein's unifying approach for Voronoi diagrams [KW], [KI]. Mehlhorn et
al. show that under some conditions the complexity of the furthest-site Voronoi diagram
is 0(n), where n is the number of sites.

First we adopt some terminology of [MMR]. Let p, q be a pair of points in the plane.
The dominant set Mp (p, q) (hereafter denoted as M(p, q)) contains all the points that
are closer to p than to q with respect to Vp. Let S = {p ;  1 <i <n} E 1R2 be a set of
n points. The family M = { M (p; , pj ) I 1 < i 0 j < n} is called a dominance system if
for all p, p1 E S we have:

1. M(pi , pj ) is open and nonempty;
2. M(pi, pi) l M(p^, p^) = 0 and aM(pi, pr) = aM(p1 , pi); and
3. 8M(p1 , p1 ) is homeomorphic to the open interval (0, 1).

Theorem 16. ,M p (the family M with respect to Dp) is a dominance system.

Proof. The dominance-system properties of .MP follow immediately from the defini-
tion of Vp:

1. M(pi, p1 ) is open because Vp is monotone and continuous. It is obviously nonempty:
assume without loss of generality that the line that connects p i and p1 is horizontal
and that p i is on the left of p1 . Then all the points on the left of p i (resp., right of
p^) belong to M(p; , pj ) (resp., M(p1 , p;)) regardless of P.

2. Although Vp is not symmetric, the bisecting curves of the pairs of points (pi, pj)
and (pj , pi ) are obviously identical. Centering P at any point r and "pumping"
P up, it either hits p, first, p3 first, or simultaneously p, and p3 . (This is because
Vp is continuous and monotonically increasing.) In the first case r E M(pi , pj ),
in the second r E M(p^, pi ), and in the third r E 8M(p,, pp) = 8M(p3 , pi ).

3. This follows from the fact that 8M(p1 , pj ) is a simple polygonal chain. 	 q

Assume that for the nearest-site Voronoi diagram every portion of the bisecting curve
8M(p,, pj ) is put in the cell of min(i, j).

A dominance system is called admissible if it satisfies in addition the conditions:

4. Bisectors intersect finitely many times.
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For all S' C S, S' # 0 and for every reordering of indices of points in S:
(a) The Voronoi cell of every point p, E S' (with respect to S') is connected and

has a nonempty interior.
(b) The union of all the Voronoi cells of all points pi E S' (with respect to S') is

the entire plane.

A dominance system which fulfills only properties 4 and 5b is called semi-admissible.

Theorem 17. .M p is admissible.

The proof of Theorem 17 is straightforward (part of the theorem is proven earlier in
this paper) and is omitted here.

We now consider M*, the "dual" of .M, in which the dominance relation as well as
the ordering of the points are reversed.

Theorem 18 [MMR, Lemma 1]. If .M is semi-admissible then so is A4*. Moreover,
the (so-called furthest-site) Voronoi diagram that corresponds to M* is identical to the
(nearest-site) Voronoi diagram that corresponds to M.

Note that admissibility is not preserved when moving to the dual of the dominance
system. This corresponds to the fact that cells in the furthest-site Voronoi diagram may
well be disconnected.

We have thus shown that the furthest-site Voronoi diagram (with respect to V p )
can be defined in terms of a dominance system (by moving to its dual). Therefore the
results of [Kl], [KW], and [KMM] apply to both nearest- and furthest-site Voronoi
diagrams. Furthermore, we can benefit from all the results of [MMR] on this diagram,
namely, that it is a tree, and that we can compute it by a randomized algorithm in
0 (n log n • K +m) time, where K is the time needed by a primitive function that considers
the diagram of five sites. Applying the same technique of Theorem 12, this primitive
requires 0 (loge m) time in our setting. Hence the overall expected time required for
computing VP is 0 (n log n log2 m + m). As with the nearest-site diagram, we can do
better than this.

We have followed the above approach of [KMM] only for proving the properties of
the furthest-site Voronoi diagram. Our real goal is to obtain a deterministic algorithm
for computing the diagram. For this purpose we adopt the three-dimensional plane-
sweep approach of Rappaport [Ra] which follows Fortune's algorithm [Fo]. In this
approach axis-parallel cones are emanating from the sites and the plane-sweep detects
their intersections and produces the corresponding Voronoi vertices. The major detail
that we need to note is that in our setting we have polyhedral cones, and that we can
compute the intersection of any three such cones in O (loge m) time. (The xy-projections
of these intersection points are the Voronoi vertices.) Thus we spend 0 (n log n + m) time
in preprocessing and 0 (n (log n +loge m)) time in the sweep (n events, for each we spend
0 (log2 m) time for computing and 0 (log n) time for queue operations), resulting in a
near-optimal 0 (n (log n + log2 m) + m)-time algorithm. We again store V F compactly,
representing bisecting curves implicitly via the relative positions of the two sites that
define them.
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6. Conclusion

We develop in this paper the notion of a convex polygon-offset distance function. This
is an extremely important notion for tolerancing in manufacturing. We describe in detail
how to compute the nearest- and furthest-site Voronoi diagrams with respect to this dis-
tance function. In a companion paper [BBDG] we use these diagrams for solving a toler-
ancing problem: given a set S of points in the plane and a convex polygon P. find the min-
imum s and the respective translation r for which the s-offset annulus of r (P) covers S.

For simplicity of exposition we have defined the offset so as to be piecewise-linear.
However, this can be extended to the usual definition of a true offset, where every point
on the outer offset is within the same distance from the original polygon. In this case the
outer offset is made up of alternating line segments and circular arcs. The latter offset
definition captures better tolerancing problems that arise in manufacturing, robot motion
planning, etc. [BBDG]. It is easy to verify that all the claims in this paper still hold in the
true-offset case, and that the algorithms require asymptotically the same amount of time.
This is mainly because (1) the complexity of an outer offset polygon is only twice the
complexity of the original polygon; (2) like segment—segment intersections, computing
arc—arc and arc—segment intersections can also be performed in constant time; and (3) the
number of bisector—bisector intersections is asymptotically the same with respect to the
two offset definitions.
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