Skip to main content
Log in

Counting Triangulations and Other Crossing-Free Structures via Onion Layers

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \(P\) be a set of \(n\) points in the plane. A crossing-free structure on \(P\) is a straight-edge plane graph with vertex set \(P\). Examples of crossing-free structures include triangulations and spanning cycles, also known as polygonalizations. In recent years, there has been a large amount of research trying to bound the number of such structures; in particular, bounding the number of (crossing-free) triangulations spanned by \(P\) has received considerable attention. It is currently known that every set of \(n\) points has at most O\((30^{n})\) and at least \(\Omega (2.43^{n})\) triangulations. However, much less is known about the algorithmic problem of counting crossing-free structures of a given set \(P\). In this paper, we develop a general technique for computing the number of crossing-free structures of an input set \(P\). We apply the technique to obtain algorithms for computing the number of triangulations, matchings, and spanning cycles of \(P\). The running time of our algorithms is upper-bounded by \(n^{\mathrm{O}(k)}\), where \(k\) is the number of onion layers of \(P\). In particular, for \(k = \hbox {O}(1)\) our algorithms run in polynomial time. Additionally, we show that our algorithm for counting triangulations in the worst case over all \(k\) takes time O\(^{*}(3.1414^{n})\). [In the notations \(\Omega ^{*}(\cdot ), \hbox {O}^{*}(\cdot )\), and \(\Theta ^{*}(\cdot )\), we neglect polynomial terms and we just present the dominating exponential term.] Given that there are several well-studied configurations of points with at least \(\Omega (3.47^{n})\) triangulations, and some even with \(\Omega (8.65^{n})\) triangulations, our algorithm asymptotically outperforms any enumeration algorithm for such instances. We also show that our techniques are general enough to solve the Restricted-Triangulation-Counting-Problem, which we prove to be \(W[2]\)-hard in the parameter \(k\). This implies that in order to be fixed-parameter tractable, our general algorithm must rely on additional properties that are specific to the considered class of crossing-free structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. \(f(\cdot )\) is log-concave iff \(f(\alpha x + (1 - \alpha )y)\ge f(x)^{\alpha } \cdot f(y)^{1 - \alpha }\) for every \(x,y\) in the domain of \(f\) and \(0\le \alpha \le 1\).

  2. When we say “with high probability” we mean probability \(1-o(1)\).

References

  1. Aichholzer, O.: The path of a triangulation. In: Proceedings of the 15th Annual Symposium on Computational Geometry, SoCG ’99, pp. 14–23. ACM Press, New York (1999)

  2. Aichholzer, O., Krasser, H.: The point set order type data base: a collection of applications and results. In: Proceedings of the 13th Canadian Conference on Computational Geometry, CCCG ’01, pp. 17–20. Waterloo (2001)

  3. Aichholzer, O., Hurtado, F., Noy, M.: A lower bound on the number of triangulations of planar point sets. Comput. Geom. 29(2), 135–145 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enumeration of plane straight-line graphs. Graphs Comb. 23(5), 467–479 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane geometric graphs. Graphs Comb. 23(1), 67–84 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs. In: Peter, G.S., Hammer, L., Rosa, A., Turgeon, J. (eds.) Theory and Practice of Combinatorics a Collection of Articles Honoring Anton Kotzig on the Occasion of His Sixtieth Birthday. North-Holland Mathematics Studies, vol. 60, pp. 9–12. North-Holland, Amsterdam (1982)

  7. Alvarez, V., Seidel, R.: A simple aggregative algorithm for counting triangulations of planar point sets and related problems. In: Proceedings of the 29th Annual Symposium on Computational Geometry, SoCG ’13, pp. 1–8. ACM Press, New York (2013)

  8. Alvarez, V., Bringmann, K., Curticapean, R., Ray, S.: Counting crossing-free structures. In: Proceedings of the 28th Annual Symposium on Computational Geometry, SoCG ’12, pp. 61–68. ACM Press, New York (2012)

  9. Alvarez, V., Bringmann, K., Curticapean, R., Ray, S.: Counting triangulations and other crossing-free structures via onion layers. Computing Research Repository (CoRR) (2013). Available at http://arxiv.org/abs/1312.4628

  10. Alvarez, V., Bringmann, K., Ray, S.: A simple sweep line algorithm for counting triangulations and pseudo-triangulations. Computing Research Repository (CoRR) (2013). Available at http://arxiv.org/abs/1312.3188

  11. Alvarez, V., Bringmann, K., Ray, S., Seidel, R.: Counting triangulations and other crossing-free structures approximately. Comput. Geom. 48(5), 386–397 (2015)

    Article  MathSciNet  Google Scholar 

  12. Anagnostou, E., Corneil, D.: Polynomial-time instances of the minimum weight triangulation problem. Comput. Geom. 3(5), 247–259 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proceedings of the 8th Canadian Conference on Computational Geometry, CCCG ’96, pp. 38–43. (1996)

  14. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bespamyatnikh, S.: An efficient algorithm for enumeration of triangulations. Comput. Geom. 23(3), 271–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dalal, K.: Counting the onion. Random Struct. Algorithms 24(2), 155–165 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Demaine, E., Mitchell, J.S.B., O’Rourke, J.: Problem 16: Simple Polygonalizations. http://cs.smith.edu/~orourke/TOPP/P16.html#Problem.16 (2014). Accessed 12 May 2014

  19. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discrete Math. 27(2), 802–826 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Flajolet, P., Noy, M.: Analytic combinatorics of non-crossing configurations. Discrete Math. 204(1–3), 203–229 (1999). Selected papers in honor of Henry W. Gould

    Article  MATH  MathSciNet  Google Scholar 

  21. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    Google Scholar 

  22. García, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free subgraphs of \({K}_n\). Comput. Geom. 16(4), 211–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hjelle, Ø., Dæhlen, M.: Triangulations and Applications (Mathematics and Visualization). Springer, Berlin (2006)

    Google Scholar 

  24. Hoffmann, M., Schulz, A., Sharir, M., Sheffer, A., Tóth, C., Welzl, E.: Counting plane graphs: flippability and its applications. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 303–325. Springer, New York (2013)

    Chapter  Google Scholar 

  25. Huemer, C., de Mier, A.: Lower bounds on the maximum number of non-crossing acyclic graphs. arXiv preprint 1310.5882, (2013). Available http://arxiv.org/abs/1310.5882

  26. Katoh, N., Tanigawa, S.: Fast enumeration algorithms for non-crossing geometric graphs. Discrete Comput. Geom. 42(3), 443–468 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ray, S., Seidel, R.: A simple and less slow method for counting triangulations and for related problems. In: Proceedings of the 20th European Workshop on Computational Geometry, EWCG ’04 (2004)

  28. Razen, A., Welzl, E.: Counting plane graphs with exponential speed-up. In: Calude, C., Rozenberg, G., Salomaa, A. (eds.) Rainbow of Computer Science, vol. 6570, pp. 36–46. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Santos, F., Seidel, R.: A better upper bound on the number of triangulations of a planar point set. J. Comb. Theory Ser. A 102(1), 186–193 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sharir, M., Welzl, E.: On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electron. J. Comb. 18(1), P70 (2011)

    MathSciNet  Google Scholar 

  32. Sharir, M., Sheffer, A., Welzl, E.: On degrees in random triangulations of point sets. J. Comb. Theory Ser. A 118(7), 1979–1999 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sharir, M., Sheffer, A., Welzl, E.: Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn’s technique. J. Comb. Theory Ser. A 120(4), 777–794 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sheffer, A.: Numbers of plane graphs. http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html (2014). Accessed May 12 2014

  35. Wettstein, M.: Counting and enumerating crossing-free geometric graphs. In: Proceedings of the 30th annual Symposium on Computational Geometry, SoCG ’14, pp. 1–10. ACM Press, New York (2014)

  36. Zhu, C., Sundaram, G., Snoeyink, J., Mitchell, J.S.: Generating random polygons with given vertices. Comput. Geom. 6(5), 277–290 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Alvarez.

Additional information

Editor in charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, V., Bringmann, K., Curticapean, R. et al. Counting Triangulations and Other Crossing-Free Structures via Onion Layers. Discrete Comput Geom 53, 675–690 (2015). https://doi.org/10.1007/s00454-015-9672-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9672-3

Keywords

Navigation