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Abstract A simple topological graph T = (V (T ), E(T )) is a drawing of a graph in
the plane where every two edges have at most one common point (an endpoint or a
crossing) and no three edges pass through a single crossing. Topological graphs G and
H are isomorphic if H can be obtained from G by a homeomorphism of the sphere,
and weakly isomorphic if G and H have the same set of pairs of crossing edges. We
generalize results of Pach and Tóth and the author’s previous results on counting dif-
ferent drawings of a graph under both notions of isomorphism. We prove that for every
graph G with n vertices, m edges and no isolated vertices the number of weak isomor-
phism classes of simple topological graphs that realize G is at most 2O(n2 log(m/n)), and
at most 2O(mn1/2 log n) if m ≤ n3/2. As a consequence we obtain a new upper bound
2O(n3/2 log n) on the number of intersection graphs of n pseudosegments. We improve
the upper bound on the number of weak isomorphism classes of simple complete
topological graphs with n vertices to 2n2·α(n)O(1)

, using an upper bound on the size of a
set of permutations with bounded VC-dimension recently proved by Cibulka and the
author. We show that the number of isomorphism classes of simple topological graphs
that realize G is at most 2m2+O(mn) and at least 2�(m2) for graphs with m > (6 + ε)n.
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1 Introduction

A topological graph T = (V (T ), E(T )) is a drawing of a graph G in the plane with
the following properties. The vertices of G are represented by a set V (T ) of distinct
points in the plane and the edges of G are represented by a set E(T ) of simple curves
connecting the corresponding pairs of points. We call the elements of V (T ) and E(T )

the vertices and the edges of T . The drawing has to satisfy the following general
position conditions: (1) the edges pass through no vertices except their endpoints, (2)
every two edges have only a finite number of intersection points, (3) every intersection
point of two edges is either a common endpoint or a proper crossing (“touching” of
the edges is not allowed), and (4) no three edges pass through the same crossing. A
topological graph is simple if every two edges have at most one common point, which
is either a common endpoint or a crossing. A topological graph is complete if it is a
drawing of a complete graph.

We use two different notions of isomorphism to enumerate topological graphs.
Topological graphs G and H are weakly isomorphic if there exists an incidence

preserving one-to-one correspondence between V (G), E(G) and V (H), E(H) such
that two edges of G cross if and only if the corresponding two edges of H do.

Note that every topological graph G drawn in the plane induces a drawing GS2 on
the sphere, which is obtained by a standard one-point compactification of the plane.
Topological graphs G and H are isomorphic if there exists a homeomorphism of the
sphere which transforms GS2 into HS2 . In Sect. 5 we give an equivalent combinatorial
definition.

Unlike isomorphism, weak isomorphism can change the faces of the topological
graphs involved, the order of crossings along the edges and also the cyclic orders of
edges around vertices.

For counting (weak) isomorphism classes, we consider all graphs labeled. That is,
each vertex is assigned a unique label from the set {1, 2, . . . , n}, and we require the
(weak) isomorphism to preserve the labels. Mostly it makes no significant difference
in the results as we operate with quantities asymptotically larger than n!.

For a graph G, let Tw(G) be the number of weak isomorphism classes of simple
topological graphs that realize G. Pach and Tóth [29] and the author [19] proved the
following lower and upper bounds on Tw(Kn).

Theorem 1 [19,29] For the number of weak isomorphism classes of simple drawings
of Kn, we have

2�(n2) ≤ Tw(Kn) ≤ ((n − 2)!)n = 2O(n2 log n).

We prove generalized upper and lower bounds on Tw(G) for all graphs G.

Theorem 2 Let G be a graph with n vertices and m edges. Then

Tw(G) ≤ 2O(n2 log(m/n)).

If m < n3/2, then

Tw(G) ≤ 2O(mn1/2 log n).
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Let ε > 0. If G is a graph with no isolated vertices and at least one of the conditions
m > (1 + ε)n or �(G) < (1 − ε)n is satisfied, then

Tw(G) ≥ 2�(max(m,n log n)).

We also improve the upper bound from Theorem 1.

Theorem 3 We have

Tw(Kn) ≤ 2n2·α(n)O(1)

.

Here α(n) is the inverse of the Ackermann function. It is an extremely slowly
growing function, which can be defined in the following way [27]. α(m) := min{k :
αk(m) ≤ 3} where αd(m) is the dth function in the inverse Ackermann hierarchy.
That is, α1(m) = �m/2�, αd(1) = 0 for d ≥ 2 and αd(m) = 1 + αd(αd−1(m)) for
m, d ≥ 2. The constant in the O(1) notation in the exponent is huge (roughly 4304

),
due to a Ramsey-type argument used in the proof.

Theorem 3 is proved in Sect. 3. In the proof of Theorem 3 we use the fact that for
simple complete topological graphs, the weak isomorphism class is determined by
the rotation system [20,29] (see Proposition 6). This is combined with a recent com-
binatorial result, an upper bound on the size of a set of permutations with bounded
VC-dimension [8] (Theorem 7). The method in the proof of Theorem 2 is more topo-
logical, gives a slightly weaker upper bound, but can be generalized to all graphs.

In Sect. 3.5, we generalize Theorem 3 by removing almost all topological aspects
of the proof. The resulting Theorem 15 is a purely combinatorial statement.

In Sect. 3.6, we consider the class of simple complete topological graphs with
maximum number of crossings and suggest an alternative method for obtaining an
upper bound on the number of weak isomorphism classes of such graphs.

An arrangement of pseudosegments (or also 1-strings) is a set of simple curves in
the plane such that any two of the curves cross at most once. An intersection graph
of pseudosegments (also called a string graph of rank 1) is a graph G such that there
exists an arrangement of pseudosegments with one pseudosegment for each vertex
of G and a pair of pseudosegments crossing if and only if the corresponding pair
of vertices forms an edge in G. Using tools from extremal graph theory, Pach and
Tóth [29] proved that the number of intersection graphs of n pseudosegments is 2o(n2).
As a special case of Theorem 2 we obtain the following upper bound.

Theorem 4 There are at most 2O(n3/2 log n) intersection graphs of n pseudosegments.

The best known lower bound for the number of (unlabeled) intersection graphs of
n pseudosegments is 2�(n log n). This follows by a simple construction or from the fact
that there are 2�(n log n) nonisomorphic permutation graphs with n vertices [4].

Let T (G) be the number of isomorphism classes of simple topological graphs that
realize G. A sequence G1, G2, . . . of graphs where Gn has n vertices and m = m(n)

edges has superlinear number of edges if m(n) > ω(n), that is, if for every constant
c, we have m(n) < cn for sufficiently large n. The following theorem generalizes the
result T (Kn) = 2�(n4) from [20].
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Theorem 5 Let G be a graph with n vertices, m edges and no isolated vertices. Then
T (G) ≤ 2m2+O(mn). More precisely,

(1) T (G) ≤ 2m2+11.51mn+O(n log n) and T (G) ≤ 223.118m2 + o(1),

(2) T (G) ≤ 2m2+2mn(log(1+ m
4n )+3.443)+O(n log n) and T (G) ≤ 211.265m2 + o(1).

Let ε > 0. For graphs G with m > (6 + ε)n we have

T (G) ≥ 2�(m2).

For a sequence of graphs Gn with superlinear number of edges we have

T (Gn) ≥ 2m2/60 − o(1).

The two upper bounds on T (G) come from two essentially different approaches.
The first one gives better asymptotic results for dense graphs, whereas the second one
is better for sparse graphs (roughly, with at most 17n edges). For such very sparse
graphs (for example, matchings), however, better upper bounds can be deduced more
directly from other known results; see the discussion in Sect. 5.5.

The proof in [20] implies the upper bound T (Kn) ≤ 2(1/12+o(1))(n4), although it is
not explicitly stated in the paper. However, the key Proposition 7 in [20] is incorrect.
We prove a correct version in Sect. 5.

In Sect. 7 we briefly discuss the special case of geometric graphs.
All the logarithms used in this paper are binary, unless indicated otherwise.

2 Preliminaries

The weak isomorphism classes of topological graphs can be represented in a combi-
natorial way by abstract topological graphs. An abstract topological graph (or briefly
an AT-graph) is a pair (G, R) where G is a graph and R ⊆ (E(G)

2

)
is a set of pairs of its

edges. For a topological graph T that is a drawing of G we define the AT-graph of T
as (G, RT ) where RT is the set of pairs of edges having at least one common crossing.
A (simple) topological graph T is called a (simple) realization of (G, R) if RT = R.

Clearly, two topological graphs are weakly isomorphic if and only if they are
realizations of the same AT-graph.

The rotation of a vertex v in a topological graph T is the clockwise cyclic order of
the edges incident with v. The rotation ρ(v) of a vertex v is represented by a cyclic
sequence of the vertices adjacent to v. The rotation system of T is the set of rotations
of all its vertices.

We use the following property of simple complete topological graphs, which
directly implies the upper bound on Tw(Kn) in Theorem 1.

Proposition 6 [20,29] The rotation system of a simple complete topological graph
G uniquely determines which pairs of edges of G cross. That is, two simple complete
topological graphs with the same rotation system are weakly isomorphic.
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Fig. 1 Every 4-cycle
vu2i−1wu2i in K2,n can be
drawn in one of two ways, while
keeping the rotation system
fixed

This property can be shown to be satisfied by a broader class of “sufficiently dense”
graphs. For example, this property is satisfied by the wheel graph W4 = K5 − 2K2 =
K1,2,2, and consequently by all graphs G such that every pair of nonadjacent edges
belongs to a subgraph of G isomorphic to W4. This includes, for example, the complete
3-partite graph K1,n,n with n ≥ 2. But already for complete bipartite graphs, many
weakly nonisomorphic drawings can share the same rotation system. For example,
there are at least 2n/2 weakly nonisomorphic simple drawings of K2,n with the same
rotation system. To see this, let n be an even positive integer and letv,w, u1, u2, . . . , un

be the vertices of K2,n with v,w forming the 2-element independent set of the bipar-
tition. Let (u1, u2, . . . , un) be the rotation of v and (un−1, un, . . . , u3, u4, u1, u2)

the rotation of w. For every i = 1, 2, . . . , n/2, there are two ways of drawing the
four edges vu2i , vu2i−1, wu2i , wu2i−1 (either vu2i−1 crosses wu2i or wu2i−1 crosses
vu2i ), and these choices can be done independently. See Fig. 1. Note that by cloning
the vertex v into n −1 copies we obtain 2n/2 weakly nonisomorphic drawings of Kn,n

with the same rotation system.
We note that the converse of Proposition 6 is also true: the rotation systems of

two weakly isomorphic simple complete topological graphs are either the same or
inverse [12,20].

3 Simple Complete Topological Graphs

In this section we prove Theorem 3.
The upper bound Tw(Kn) ≤ 2O(n2 log n) in Theorem 1 follows directly from Propo-

sition 6, since there are at most (n −2)! possible rotations for each vertex, thus at most
((n − 2)!)n = 2O(n2 log n) possible rotation systems of Kn . However, not every set of
rotations is realizable as a rotation system of a simple complete topological graph. For
example, the rotation of each vertex in a simple complete topological graph is uniquely
determined by the set of rotations of the other n − 1 vertices. This is easily seen by
investigating the drawings of K4 [19,29] (see Observation 14) and using the fact that a
cyclic permutation of n elements is determined by cyclic subpermutations of all triples.

The smallest forbidden patterns in the rotation system are the 4-tuples of cyclic
subpermutations of 3 elements that cannot be realized as rotation systems of a simple
drawing of K4. In fact, in Sect. 3.5 we show that it is possible to prove Theorem 3 by
combinatorial arguments, using only these simple forbidden patterns.

However, we first show a proof relying more on the topological structure of the
drawings, which gives a better upper bound on Tw(Kn), and also provides an intuition
for the purely combinatorial proof.
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The core idea in both versions of the proof is to reduce the problem of bounding
Tw(Kn) to counting single permutations with forbidden subpermutations.

3.1 Permutations with Bounded VC-Dimension

Let Sn be the set of all n-permutations, that is, permutations of the set {1, 2, . . . , n}.
The restriction of π ∈ Sn to the k-tuple (a1, a2, . . . , ak) of positions, where 1 ≤ a1 <

a2 < · · · < ak ≤ n, is the k-permutation π ′ satisfying ∀i, j : π ′(i) < π ′( j) ⇔
π(ai ) < π(a j ). Let P ⊆ Sn . The k-tuple of positions (a1, . . . , ak) is shattered by P
if each k-permutation appears as a restriction of some π ∈ P to (a1, . . . , ak). The
VC-dimension of P is the size of the largest set of positions shattered by P . In other
words, the VC-dimension of P is at most k if for every k + 1 positions a1, . . . , ak+1
there is some forbidden (k + 1)-permutation that does not appear as a restriction of
any π ∈ P to (a1, . . . , ak+1). Raz [31] proved that a set of n-permutations of VC-
dimension 2 has size at most 2O(n). The following result proved by Cibulka and the
author [8] is the key ingredient in the proof of Theorem 3.

Theorem 7 [8] For every t ≥ 2, the size of a set of n-permutations with VC-dimension
2t + 2 is at most

2n·((2/t !)α(n)t +O(α(n)t−1)).

The upper bound in Theorem 7 is asymptotically almost tight, since there are sets
of permutations with VC-dimension 2t + 2 of size 2n·((1/t !)α(n)t −O(α(n)t−1) [8].

If the forbidden (k + 1)-permutation is the same for all (k + 1)-tuples of positions,
we get a better, exponential upper bound on the size of P . This was conjectured
by Stanley and Wilf and proved by Marcus and Tardos [23], using Klazar’s earlier
result [17]. Later Cibulka [7] improved Klazar’s reduction and obtained the upper
bound 2O(k log k)n on the size of P .

3.2 Unavoidable Topological Subgraphs

A complete convex geometric graph (shortly a convex graph) is a topological graph
whose vertices are in convex position and the edges are drawn as straight-line segments;
see Fig. 2, left. We denote by Cm any complete convex geometric graph with m vertices,
as all such graphs belong to the same weak isomorphism class.

A simple complete topological graph with m vertices is called twisted and denoted
by Tm if there exists a canonical ordering of its vertices v1, v2, . . . , vm such that for
every i < j and k < l two edges viv j , vkvl cross if and only if i < k < l < j or
k < i < j < l; see Fig. 2, right. Figure 3 shows an equivalent drawing of Tm on the
cylindrical surface.

Let G and H be topological graphs. We say that G contains H if G has a topological
subgraph weakly isomorphic to H .

We use the following asymmetric form of the Ramsey-type result by Pach et al. [30],
which generalizes the Erdős–Szekeres theorem for planar point sets.
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Fig. 2 The convex graph C5 and the twisted graph T6

Fig. 3 A drawing of the twisted graph T6 on the cylindrical surface

Theorem 8 [30] For all positive integers n, m1, m2 satisfying

m1m2 ≤ log1/4
4 (n + 1),

every simple complete topological graph with n vertices contains Cm1 or Tm2 .

The graphs Cm and Tm are special cases of simple complete topological graphs with
m vertices and

(m
4

)
crossings, which is the maximum number of crossings possible [14].

The existence of a complete subgraph with m vertices and
(m

4

)
crossings in a sufficiently

large simple complete topological graph G follows directly from Ramsey’s theorem
and the nonplanarity of K5 [15], but the bound on the size of G obtained is much larger
than that from Theorem 8. For the special case m1 = m2 = 5, Harborth et al. [15]
showed a much better upper bound than that following from Theorem 8.

Theorem 9 [15] Every simple complete topological graph with 113 vertices contains
C5 or T5.

3.3 Forbidden Patterns in the Rotation System

Let G be a simple complete topological graph and let v be a vertex of G. Our goal
is to obtain an upper bound on the number of possible rotations of v in G when the
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Fig. 4 Four nonisomorphic simple drawings of K4

complete subgraph G − v is fixed. To this end, we need to identify some forbidden
permutations in the rotation of v.

Lemma 10 Let G be a simple complete topological graph with vertices 1, 2, 3, 4.
Suppose that the counter-clockwise order of the vertices of the topological triangle
123 is 1, 2, 3. If

(a) the vertex 4 is outside the triangle 123 and its rotation is (1, 2, 3), or
(b) the vertex 4 is inside the triangle 123 and its rotation is (1, 3, 2),

then G has no crossings. Otherwise G has one crossing.

Proof Figure 4 shows representatives of all four isomorphism classes of simple com-
plete topological graphs with vertices 1, 2, 3, 4. The notions of isomorphism and weak
isomorphism for these graphs coincide, since in each of the four drawings different
pairs of edges cross. Each of the drawings is chosen so that the vertices 1, 2, 3 appear
in counter-clockwise order in the triangle 123 and the vertex 4 is outside the triangle
123. This still leaves some freedom in choosing the outer face of the drawing: we may
always choose any of the three faces adjacent to the vertex 4, but the rotation system
of the drawing stays the same. Since the rotation of the vertex 4 is (1, 2, 3) in H1,
which is without crossings, and (1, 3, 2) in H2, H3 and H4, which have one crossing,
the case when the vertex 4 is in the outer face of 123 follows. The other case follows
by the symmetry exchanging the outer and the inner face of the triangle 123. ��

Lemma 11 Let G be a simple complete topological graph with vertices 1, 2, . . . , 6.
Suppose that G contains a convex graph C5 induced by the vertices 1, 2, . . . , 5, which
appear in this counter-clockwise order on its outer face. Then the rotation of the vertex
6 is not (1, 4, 2, 5, 3).

Proof Let H be the induced convex graph G[{1, 2, 3, 4, 5}]. Suppose for contradic-
tion that the rotation of the vertex 6 in G is (1, 4, 2, 5, 3). We distinguish two cases
according to the face of H in which the vertex 6 is contained. See Fig. 5.

(a) The vertex 6 is in one of the inner faces of H . By symmetry, we may assume that
it is either in the inner pentagonal face or in the intersection of the triangles 234
and 134. The rotation of the vertex 6 in G[{1, 3, 4, 6}] is (1, 4, 3). By Lemma 10
applied to the triangle 134, the edge 61 lies completely inside the triangle 134. The
vertex 6 is also outside the triangle 125 and the rotation of 6 in G[{1, 2, 5, 6}] is
(1, 2, 5). By Lemma 10, the edges 61 and 25 do not cross. But this is a contradiction
as the vertices 6 and 1 are separated by a closed curve formed by portions of the
edges 25, 14, 43, 31, which the edge 16 cannot cross.
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(a) (b)

Fig. 5 Impossibility of adding a vertex with rotation (1, 4, 2, 5, 3). The thick edges cannot be crossed by
the edge 61

Fig. 6 Impossibility of adding a
vertex with rotation (1, 3, 2, 4)

to the triangular face adjacent to
vertices 2 and 3. The thick edges
cannot be crossed by the edge 54

(b) The vertex 6 is in the outer face of H . By Lemma 10 applied to the triangle 125,
the edge 61 cannot cross the edge 25. Consequently, the edge 61 crosses no edge of
H . Similarly, no other edge adjacent to 6 can cross an edge of H . This contradicts
the conclusion of Lemma 10 applied to the triangle 134. ��

Lemma 12 Let G be a simple complete topological graph with vertices 1, 2, . . . , 5.
Suppose that G contains a convex graph H induced by the vertices 1, 2, 3, 4, which
appear in this counter-clockwise order on its outer face. If the vertex 5 is inside the
triangular face of H adjacent to vertices 2 and 3, then its rotation is not (1, 3, 2, 4).

Proof See Fig. 6. Suppose for contradiction that the vertex 5 is inside the triangular
face of H adjacent to vertices 2 and 3 and its rotation in G is (1, 3, 2, 4). By Lemma 10
applied to the triangles 234 and 134, the edge 54 does not cross the edges 13, 23, 34
and 24. But portions of these edges form a closed curve separating the vertices 4 and
5, a contradiction. ��
Lemma 13 Let G be a simple complete topological graph with vertices 1, 2, . . . , 7.
Suppose that G contains a twisted graph T6 induced by the vertices 1, 2, . . . , 6, in this
canonical order. Then the rotation of the vertex 7 is not (1, 2, 3, 6, 5, 4).

Proof Suppose for contradiction that the rotation of the vertex 7 is (1, 2, 3, 6, 5, 4).
The subgraphs G1 = G[{1, 2, 3, 4}] and G2 = G[{3, 4, 5, 6}] are both isomorphic to
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Fig. 7 Impossibility of adding a vertex with rotation (1, 2, 3, 6, 5, 4) to the twisted graph T6. The grey
area represents the triangular face adjacent to the vertices 3 and 4 in the subgraphs induced by the vertices
1, 2, 3, 4 (left) and 3, 4, 5, 6 (right)

the convex graph C4. The 4-cycles corresponding to the outer face of C4 are 1243 and
3465, respectively. The two triangular faces adjacent to the vertices 3 and 4 in G1 and
G2 cover the whole plane; see Fig. 7. It follows that at least one of these two faces
contains the vertex 7. The rotation of the vertex 7 is (1, 2, 3, 4) in G1 and (6, 5, 4, 3)

in G2, which contradicts Lemma 12. ��

3.4 Proof of Theorem 3

Now we finish the proof of Theorem 3 by combining previous results from this section.
Let g(n) be the number of different rotation systems of simple complete topological
graphs with n vertices. By Proposition 6, we have Tw(n) ≤ g(n). We show an upper
bound on g(n) by induction.

Let N = 4304
. Assume that n ≥ 2N , otherwise g(n) ≤ g(2N ), which is a constant.

We may also assume for simplicity that n = 2k where k is a positive integer.
Let G be a simple complete topological graph with vertices v1, v2, . . . , vn . Let G1

be the subgraph of G induced by the vertices v1, . . . , vn/2 and let G2 be the subgraph
of G induced by the vertices vn/2+1, . . . , vn . Fix a rotation system R1 for G1 and R2
for G2. Choose an arbitrary drawing of G1 with the rotation system R1. Let vi be a
vertex of G2. We show an upper bound on the number of possible rotations of vi in
the subgraph Gi

1 of G induced by V (G1) ∪ {vi }.
By Theorem 8, every simple complete topological graph with N vertices contains

C5 or T6. Therefore, every induced subgraph of G1 with N vertices contains a subgraph
H weakly isomorphic to C5 or T6. By Lemmas 11 or 13, one of the cyclic permutations
of the vertices of H is forbidden in the rotation of vi . Note that Lemmas 11 and 13
can be applied regardless of the particular way how H is drawn. Consequently, for
each N -tuple of vertices in G1, a non-empty subset of their cyclic permutations is
forbidden in the rotation of vi .

Let Ri
1 denote the set of all possible rotations of vi in Gi

1. To pass from cyclic
permutations to linear permutations, we arbitrarily select a first element in each cyclic
permutation from Ri

1 and denote the resulting set of permutations as P i
1. For each

forbidden cyclic permutation ρ of N elements, the permutations from P i
1 avoid all

N linear permutations obtained from ρ. In particular, the VC-dimension of the set
{π−1;π ∈ P i

1} is at most N − 1. Let f (m) be the maximum possible size of a set of
m-permutations with VC-dimension N − 1. By Theorem 7,
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|Ri
1| = |P i

1| ≤ f (n/2) ≤ 2(n/2)·((2/t !)α(n/2)t +O(α(n/2)t−1)),

where t = (N −2)/2. For every i > n/2, the rotation of vi in G is uniquely determined
by the rotation πi of vi in Gi

1, the rotation π ′
i of vi in G2 and by one of the

(n/2)(n/2 − 1)

n − 1

(
n − 1
n/2

)
≤ n2n

ways of merging πi and π ′
i together. For i ≤ n/2, the situation is symmetric.

It follows that the number of all possible rotation systems of G with R1 and R2
fixed is at most

( f (n/2) · n2n)n ≤ nn · 2n2 · 2(n2/2)·((2/t !)α(n/2)t +O(α(n/2)t−1))

≤ 2c(n2/2)·α(n)t
,

where c is an absolute constant. Since there are g(n/2) possibilities for each of the
rotation systems R1 and R2, we have

g(n) ≤ (g(n/2))2 · 2c(n2/2)·α(n)t

≤ g(2N )n · 2c(n2/2+2(n/2)2/2+4(n/4)2/2+··· )·α(n)t

≤ g(2N )n · 2c(n2)·α(n)t = 2O(n2·α(n)t ).

3.5 Combinatorial Generalization of Theorem 3

Here we generalize Theorem 3 to a purely combinatorial statement involving n-tuples
of cyclic permutations. The aim is to estimate the number of possible rotation sys-
tems of a simple complete topological graph using as little topological information as
possible. In particular, the only condition we need comes from drawings of complete
graphs with four vertices.

Observation 14 [20,29] The eight rotation systems listed in Table 1 are the only pos-
sible rotation systems of a simple complete topological graph with vertices 1, 2, 3, 4.

The eight rotation systems from Observation 14 can be characterized by the fol-
lowing parity condition. Let l ∈ {1, 2, 3, 4} and {i, j, k} = {1, 2, 3, 4} \ {l}, with
i = min{i, j, k}. We call the rotation (i, j, k) at l positive if j < k and negative if
k < j . A 4-tuple of rotations at vertices 1, 2, 3, 4 forms a rotation system of a simple
complete topological graph with vertices 1, 2, 3, 4 if and only if the number of nega-
tive rotations is even. Note that this characterization does not depend on the particular
linear ordering of the vertices.

An abstract rotation system R on a set V = {v1, . . . , vn} is an n-tuple of cyclic
(n − 1)-permutations πv1 , . . . , πvn where the set of elements of πvi is V \ {vi }. A
subsystem of R induced by a subset W = {w1, . . . , wk} ⊂ V , denoted by R[W ], is

123



738 Discrete Comput Geom (2013) 50:727–770

Table 1 The eight possible
rotation systems of a simple
complete topological graph with
four vertices

The labels refer to the drawings
in Fig. 4, where H R

i denotes the
mirror image of Hi

Graph Rotation system

H1 ((2, 4, 3), (1, 3, 4), (1, 4, 2), (1, 2, 3))

H R
2 ((2, 4, 3), (1, 4, 3), (1, 2, 4), (1, 2, 3))

H R
3 ((2, 3, 4), (1, 3, 4), (1, 2, 4), (1, 2, 3))

H R
4 ((2, 3, 4), (1, 4, 3), (1, 4, 2), (1, 2, 3))

H R
1 ((2, 3, 4), (1, 4, 3), (1, 2, 4), (1, 3, 2))

H2 ((2, 3, 4), (1, 3, 4), (1, 4, 2), (1, 3, 2))

H3 ((2, 4, 3), (1, 4, 3), (1, 4, 2), (1, 3, 2))

H4 ((2, 4, 3), (1, 3, 4), (1, 2, 4), (1, 3, 2))

a |W |-tuple of cyclic permutations ρw1 , . . . , ρwk where ρwi is a restriction of πwi to
the subset W \ {wi }.

An abstract rotation system is realizable if it is a rotation system of a simple com-
plete topological graph. Realizable rotation systems on a set W of size 4 are precisely
those satisfying the parity condition for some linear ordering of W . An abstract rotation
system R is good if every subsystem of R induced by a 4-element subset is realizable.

We prove the following theorem, generalizing Theorem 3.

Theorem 15 The number of good abstract rotation systems on an n-element set is at
most

2n2·α(n)O(1)

.

We do not know whether the upper bound in Theorem 15 is asymptotically tight.
The best lower bound 2�(n2) on the number of good abstract rotation systems comes
from Theorem 1.

Problem 1 Is it true that the number of good abstract rotation systems on an n-element
set is bounded by 2O(n2)?

We note that the asymptotic number of abstract rotation systems may vary sig-
nificantly if a different pattern of the same size is forbidden. There are 16 possi-
ble abstract rotation systems on every 4-element set. If the forbidden pattern con-
sists of a different set of eight abstract rotation systems, we may obtain 2�(n2 log n)

abstract rotation systems on n elements satisfying this restriction. For example,
consider the set A of all abstract rotation systems on the set {1, 2, . . . , n} where
in every induced subsystem on four elements i < j < k < l, we forbid the
eight abstract rotation systems with rotation ( j, l, k) at i . The following construc-
tion shows that the size of A is 2�(n2 log n). Consider an abstract rotation system
R = (π1, π2, . . . , πn) where πi ( j) ∈ {1, . . . , i − 1} for j ≤ i − 1 and πi ( j) = j + 1
for j ≥ i . Clearly, the rotation at i in every subsystem of R induced by four ele-
ments i < j < k < l is ( j, k, l). The number of such abstract rotation systems is
∏n

i=1(i − 1)! = 2�(n2 log n).
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Fig. 8 Partial realizations of the
good abstract rotation systems
R5

1 and R5
2. Thick segments

represent the portions of the
edges incident with the vertex 5

Good abstract rotation systems do not characterize realizable abstract rotation sys-
tems completely. For example, the following two good abstract rotation systems on
five elements are not realizable:

R5
1 = ((2, 5, 3, 4), (1, 3, 4, 5), (1, 2, 5, 4), (1, 2, 5, 3), (1, 3, 4, 2)),

R5
2 = ((2, 3, 5, 4), (1, 3, 4, 5), (1, 5, 2, 4), (1, 2, 5, 3), (1, 4, 3, 2)).

It is straightforward to check that both R5
1 and R5

2 are good. Suppose that these systems
are realizable. In both cases, in the subgraph H induced by the vertices 1, 2, 3, 4, the
edges 13 and 24 cross. Fix a drawing of H as a convex graph with vertices 1, 2, 3, 4 on
the outer face in clockwise order; see Fig. 8. In both cases, the orientations of triangles
and the rotations of vertices imply, by Lemma 10, that the vertex 5 must lie inside
the triangles 132 and 143. But this is impossible as the two triangles have disjoint
interiors.

While it is likely that there is no finite characterization of realizable abstract rotation
systems by a finite list of forbidden subsystems, it is known that realizable abstract
rotation systems can be recognized in polynomial time [21].

To prove Theorem 15, we proceed in the same way as in the proof of Theorem 3,
but we need to replace Theorem 8, Lemmas 11 and 13 by combinatorial analogues.

An abstract rotation system on n elements is called convex and denoted by Cn if
the elements can be ordered in a sequence v1, v2, . . . , vn so that the rotation at vi

is (v1, v2 . . . , vi−1, v1+1, vi+2, . . . , vn). An abstract rotation system on n elements
is called twisted and denoted by Tn if the elements can be ordered in a sequence
v1, v2, . . . , vn so that the rotation at vi is (vi−1, . . . , v2, v1, v1+1, vi+2 . . . , vn). Note
that Cn is a rotation system of the convex graph Cn and Tn is a rotation system of the
twisted graph Tn .

Two abstract rotation systems are isomorphic if they differ only by relabeling of
their ground set. An abstract rotation system R contains an abstract rotation system
S if R has an induced subsystem isomorphic to S.

The following theorem generalizes Theorem 8.

Theorem 16 For all positive integers m1, m2 there is an M such that every good
abstract rotation system on M elements contains Cm1 or Tm2 .

To keep the proof simple, we do not try to optimize the value of M , as a func-
tion of the parameters m1 and m2. However, it is likely that the same bound as in
Theorem 8 can be proved even in this generalized setting, by adapting the original
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topological proof [30]. We also note that the assumption of being good is not necessary:
Theorem 16 holds in general for all abstract rotation systems, only with larger values
of M .

Proof Let (π1, π2, . . . , πM ) be a good abstract rotation system on the set {1, 2, . . . ,

M}. Assume without loss of generality that π1 = (2, 3, . . . , M) and that πi (1) = 1
for i > 1. For every three elements i, j, k with 1 < i < j < k, consider the induced
abstract rotation system R[{1, i, j, k}]. For l ∈ {i, j, k}, let ti, j,k(l) = 1 if the rotation
at l in R[{1, i, j, k}] is positive and ti, j,k(l) = 0 if the rotation at l in R[{1, i, j, k}] is
negative. The type of the triple (i, j, k) is the sequence ti, j,k(i)ti, j,k( j)ti, j,k(k). By the
parity condition, we have the following four types of triples: 111, 100, 010 and 001.
By Ramsey’s theorem, if M is sufficiently large, there is a subset W ⊆ {2, 3, . . . , M}
of size m = max(m1, m2) such that all triples from W have the same type. Without
loss of generality, assume that W = {2, 3, . . . , m + 1}. Let abc, with a, b, c ∈ {0, 1},
be the type shared by all the triples from W . If a = 1, then for each l ∈ W , the
entries l + 1, l + 2, . . . , m + 1 form an increasing sequence in πl . If a = 0, the
entries l + 1, l + 2, . . . , m + 1 form a decreasing sequence in πl . Similarly, the entries
2, 3, . . . , l − 1 form an increasing sequence in πl if c = 1 and a decreasing sequence
if c = 0. If b = 1, then in πl , all entries smaller than l appear before all entries larger
than l. If b = 0, then in πl , all entries smaller than l appear after all entries larger
than l. Therefore, if abc = 111 or 010, then W induces an abstract rotation system
isomorphic to Cm , and if abc = 100 or 001, then W induces an abstract rotation system
isomorphic to Tm . ��

The following two lemmas generalize Lemma 11 and Lemma 13. Again, we do not
try to optimize the sizes of the two abstract rotation systems Cm1 and Tm2 .

Lemma 17 Let R be a good abstract rotation system on the set {1, 2, . . . , 8}. Suppose
that the subsystem of R induced by the vertices 1, 2, . . . , 7 is C7, with (v1, . . . , v7) =
(1, . . . , 7). Then the rotation at 8 is not (1, 3, 5, 7, 2, 4, 6).

Proof Let R = (π1, π2, . . . , π8) and suppose for contradiction that π8 = (1, 3,

5, 7, 2, 4, 6). Let i, i + 1, i + 2 be three consecutive numbers in the cyclic sequence
(1, 2, . . . , 7). The subsystem R[{i, i + 1, i + 2, 8}] = (ρi

i , ρ
i
i+1, ρ

i
i+2, ρ

i
8) has at

least one negative triple among ρi
i , ρ

i
i+1, ρ

i
i+2. If ρ

j
j is negative, that is, ρ

j
j = ( j +

1, 8, j + 2), we have π j = (1, 2, . . . , j − 1, j + 1, 8, j + 2, . . . , 7). Similarly, if

ρ
j−1
j is negative, then π j = (1, 2, . . . , j − 1, 8, j + 1, j + 2, . . . , 7). Finally, if ρ

j−2
j

is negative, then π j = (1, 2, . . . , j − 2, 8, j − 1, j + 1, j + 2, . . . , 7). Therefore, a
negative triple ρi

j precisely determines the position of the element 8 in the rotation

π j , and each such rotation can arise from at most one negative triple ρi
j . It follows

that in each of the rotations π j , j ∈ {1, 2, . . . , 7}, the element 8 appears in one of
the three possible positions between the elements j − 2 and j + 2. But then the
subsystem R[{1, 3, 5, 10}] = ((10, 3, 5), (1, 10, 5), (1, 3, 10), (1, 3, 5)) has exactly
one negative triple, a contradiction. ��

Let R = (ρ1, ρ2, ρ3, ρ4) be an abstract rotation system on a 4-element set. The
signature of R is a sequence (ε1, ε2, ε3, ε4) of four symbols, where εi is ‘+’ if ρi is
positive and ‘−’ if ρi is negative.
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Lemma 18 Let m = 816. Let R be a good abstract rotation system on the set
{1, 2, . . . , m}. Suppose that the subsystem of R induced by the vertices 1, 2, . . .,
m − 1 is Tm−1, with (v1, . . . , vm−1) = (1, . . . , m − 1). Then the rotation at m is
not (1, 3, . . . , m − 1, 2, 4, . . . , m − 2).

Proof Let R = (π1, π2, . . . , πm) and suppose for contradiction that πm =
(1, 3, . . . , m − 1, 2, 4, . . . , m − 2). Let k = 8, W = {2k + 1, 2k + 2, . . . , m − 4} and
m′ = |W | = m − 2k − 4.

For i ∈ W ∪ {m − 3, m − 2}, we say that a rotation πi is of the first type if the
element m appears in πi within the subinterval (i − 2k, . . . , 1, i + 1), of the second
type if m appears in πi within the subinterval (i + 2, . . . , m − 1, i − 1), of the third
type if πi = (i − 1, . . . , 1, i + 1, m, i + 2, . . . , m − 1), and of the fourth type if m
appears in πi within the subinterval (i − 1, . . . , i − 2k). Let W1 (W2, W3) be the set
of those elements i ∈ W such that πi is of the first (second, third) type, respectively.
Let W ′

4 be the set of those elements i ∈ W ∪ {m − 3, m − 2} such that πi is of the
fourth type.

First we show that |W ′
4| ≤ 8k. If |W ′

4| ≥ 8k + 1, then at least 4k + 1 elements
i1 < i2 < · · · < i4k+1 of W ′

4 are all odd or all even. In particular, the rotation ρm

in the subsystem R[{i1, i2k+1, i4k+1, m}] = (ρi1 , ρi2k+1 , ρi4k+1 , ρm) is positive. Since
the rotations πi1 , πi2k+1 and πi4k+1 are of the fourth type, we observe that the signature
of R[{i1, i2k+1, i4k+1, m}] is (+,+,−,+), which is a contradiction with the parity
condition.

Next we show that |W3| ≤ m′/2+3. Suppose for contradiction that |W3| ≥ m′/2+4.
Let W E

3 be the set of even elements of W3 and let I be the smallest interval
containing W E

3 . Let W O
3 = W3 \ W E

3 be the set of odd elements of W3. Since
|W E

3 ∪ (W O
3 \ I )| ≤ m′/2 + 1, the interval I contains at least 3 odd elements

o1 < o2 < o3 of W3. In particular, for e1 = min I and e3 = max I , we have
e1, e3 ∈ W E

3 , o2 ≥ e1 + 3 and e3 ≥ o2 + 3. It follows that R[{e1, o2, e3, m}] =
((m, o2, e3), (e1, m, e3), (o2, e1, m), (o2, e1, e3)). But this subsystem has signature
(+,−,−,−), a contradiction.

For each i ∈ W1 and j ∈ {1, 2, . . . , k}, we consider the subsystem R[{i − 2 j + 1,

i, i + 1, m}] = (ρ
i, j
i−2 j+1, ρ

i, j
i , ρ

i, j
i+1, ρ

i, j
m ). Since the parity of i is opposite to the

parity of i − 2 j + 1 and i + 1, the rotation ρ
i, j
m is negative. Since the rotation πi is of

the first type, we have ρ
i, j
i = (i − 2 j + 1, m, i + 1). It follows that the signature of

R[{i −2 j +1, i, i +1, m}] is either (+,−,+,−) or (−,−,−,−). Moreover, there is a
j (i) ∈ {0, 1, . . . , k} such that for j ≤ j (i) the signature of R[{i −2 j +1, i, i +1, m}]
is (−,−,−,−) and for j > j (i) the signature of R[{i − 2 j + 1, i, i + 1, m}] is
(+,−,+,−).

Similarly for each i ∈ W2 and j ∈ {1, 2, . . . , k}, we consider the subsys-
tem R[{i − 2 j, i, i + 2, m}] = (σ

i, j
i−2 j , σ

i, j
i , σ

i, j
i+1, σ

i, j
m ). We have σ

i, j
m = (i −

2 j, i, i + 2) and σ
i, j
i = (i − 2 j, i + 2, m), thus R[{i − 2 j, i, i + 2, m}] has sig-

nature either (+,+,+,+) or (−,+,−,+). Again, there is a j (i) ∈ {0, 1, . . . , k}
such that the signature is (−,+,−,+) for j ≤ j (i) and (+,+,+,+) for
j > j (i).
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Let W +
1 = {i ∈ W1; j (i) < k}. For every i ∈ W +

1 , the signature of R[{i − 2k +
1, i, i + 1, m}] is (+,−,+,−). In particular, the rotation πi+1 is of the fourth type.
Therefore, |W +

1 | ≤ |W ′
4| ≤ 8k.

Similarly, let W +
2 = {i ∈ W2; j (i) < k}. For every i ∈ W +

1 , the signature of
R[{i −2k, i, i +2, m}] is (+,+,+,+). In particular, the rotation πi+2 is of the fourth
type. Therefore, |W +

2 | ≤ |W ′
4| ≤ 8k.

Let W −
1 = W1 \ W +

1 = {i ∈ W1; j (i) = k}. For every i ∈ W +
2 and every

j ∈ {1, 2, . . . , k}, the signature of R[{i − 2 j + 1, i, i + 1, m}] is (−,−,−,−).
In particular, πi−2 j+1 = (i − 2 j, . . . , 1, i − 2 j + 2, . . . , i, m, i + 1, . . . , m − 1).
Observe that for every l ∈ {2, . . . , m − 5}, there is at most one pair i, j such that
i ∈ W −

1 , j,∈ {1, 2, . . . , k} and l = i − 2 j + 1. Thus we have |W −
1 | ≤ m−6

k .
Let W −

2 = W2 \ W +
2 = {i ∈ W2; j (i) = k}. For every i ∈ W +

2 and every j ∈
{1, 2, . . . , k}, the signature of R[{i −2 j, i, i +2, m}] is (−,+,−,+). In particular, the
element m appears in πi−2 j in one of the two positions in the subinterval (i, i+1, i+2).
This implies that for every l ∈ {1, 2, . . . , m − 6}, there is at most one pair i, j such
that i ∈ W −

2 , j,∈ {1, 2, . . . , k} and l = i − 2 j . Thus we have |W −
2 | ≤ m−6

k .
Putting all the estimates together, we have

m′ = |W | ≤ |W +
1 | + |W −

1 | + |W +
2 | + |W −

2 | + |W3| + |W ′
4|

≤ m′

2
+ 3 + 2(m − 6)

k
+ 24k

and thus

k(m − 2k − 4) ≤ 6k + 4(m − 6) + 48k2,

(k − 4)m ≤ 50k2 + 10k − 24.

By our choice m = 816 and k = 8, this gives 4 · 816≤3,256 and we have a
contradiction. ��

3.6 Graphs with Maximum Number of Crossings

Harborth and Mengersen [14] investigated simple complete topological graphs on n
vertices with maximum number of crossings, which is

(n
4

)
. They showed the lower

bound e�(
√

n) on the number T max
w (n) of different weak isomorphism classes of

such (unlabeled) graphs. Their construction actually gives a better lower bound
T max

w (n) ≥ 2n(log n−O(1)) [20].
We do not have any better upper bound on T max

w (n) than that from Theorem 3, thus
the problem of determining T max

w (n) asymptotically seems to be wide open. However,

the following observation could help with improving the upper bound to 2O(n2).
Let G be a simple complete topological graph with vertex set V and with

(|V |
4

)

crossings. Let v ∈ V and let G ′ be a subgraph of G induced by V \ {v}. A face
of G ′ is a connected region of the set obtained from the plane by removing all the
edges of G ′. Each bounded face of G ′ is an intersection of the interiors of a particular
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subset of triangles of G ′. Two faces in two different weakly isomorphic drawings
of G ′ are considered equivalent if they share the same subset of triangles they are
contained in. By a combinatorial face we mean an equivalence class of faces, but also
any particular face from the class. Lemma 10 implies that the combinatorial face of G ′
that contains v uniquely determines the rotation of v in G. Therefore, the number of
possible rotations of v, with the weak isomorphism class of G ′ fixed, is bounded from
above by the number f (G ′) of possible combinatorial faces in a simple topological
graph weakly isomorphic to G ′. The number f (G ′) may be exponential, for example
when G ′ is the convex graph Cn . This graph has n/2 pairwise crossing edges (main
diagonals), which may be drawn through a common point x . Then each of the edges
can be redrawn to go around x from the left or from the right. Each of these choices
produces a different combinatorial face containing x . On the other hand, it can be
shown that f (Cn) = 2O(n), since each of the bounded combinatorial faces of Cn can
be assigned to a unique subset of pairwise crossing diagonals, in the following way.
Let C be the Hamiltonian cycle of Cn bounding the outer face. To each diagonal e of C
we assign the region r(e) bounded by e and by the shorter arc of C determined by the
endpoints of e. (For the main diagonals, we choose the “shorter” arc arbitrarily.) Each
face f is assigned to a set R( f ) of minimal regions r(e) containing f . The set R( f )

determines all triangles containing f , and all diagonals e such that r(e) ∈ R( f ) are
pairwise crossing. A set of pairwise crossing diagonals in Cn is uniquely determined
by the set of their endpoints. Therefore, there are at most 2n−1 possible sets R( f ) and
so f (Cn) ≤ 2n−1 + 1.

We do not know whether similar upper bound holds for all simple complete topo-
logical graphs.

Problem 2 Is it true that for every simple complete topological graph G with n
vertices, the number of possible combinatorial faces in simple complete topological
graphs weakly isomorphic to G satisfies f (G) ≤ 2O(n)?

A positive answer to Problem 2 would imply that T max
w (n) = 2O(n2), by the proof

in Sect. 3.4.
A similar question can be asked in the combinatorial setting. In a simple com-

plete topological graph with n vertices and
(n

4

)
crossings, every 4-tuple of vertices

induces a crossing. Therefore, for every complete subgraph with four vertices there
are six possible rotation systems, corresponding to the rotation systems of the graphs
H2, H3, H4, H R

2 , H R
3 , H R

4 in Table 1. In addition to the parity condition, these rota-
tion systems satisfy the following condition. There exists a pair i, j ∈ {1, 2, 3, 4} such
that for {k, l} = {1, 2, 3, 4} \ {i, j}, the rotation at k is (i, j, l) and the rotation at l is
(i, j, k). In fact, there are always four such pairs i, j , corresponding to the four edges
without crossing in the drawing.

Problem 3 What is the number of abstract rotation systems on n elements, where
every subsystem induced by four elements is realizable as a rotation system of a
simple drawing of K4 with one crossing?

We do not know better lower bound than that implied by the topological construction
by Harborth and Mengersen [14,20]. The best upper bound comes from Theorem 15.
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Fig. 9 Left A simple drawing of P3 + P3 which cannot be extended by an edge uv. Right A topologically
connected drawing of a graph with four components, with every spanning forest topologically disconnected

4 The Upper Bound in Theorem 2

Let G = (V, E) be a graph with n vertices and m edges. If v is an isolated vertex in
G, then Tw(G) = Tw(G − v). Thus, we may assume that G has no isolated vertices.
The upper bound on Tw(G) for other graphs G then directly follows.

Let G be a simple topological graph realizing G. A topological component of G is
a maximal connected subset of the plane that is a union of vertices and edges of G.
Note that a topological component of G is a union of components of G. A topological
graph G is topologically connected if it has only one topological component.

First we extend G by adding edges connecting the topological components of
G as follows. Let C1 and C2 be two topological components of G. We redraw C2
so that it has a vertex v2 on the boundary of its outer face, and place this drawing
inside a face of C1 containing a vertex v1 on its boundary. Then we may add the
edge v1v2 as a curve without crossings. We repeat this process until there is only
one topological component. Since the graph G had no isolated vertices, we added at
most n/2 ≤ m new edges, so the new graph has n vertices and �(m) edges. In this
way, we might have created at most nn ≤ 2O(n log n) ≤ 2O(m log n) different graphs.
Thus, for proving the upper bound on Tw(G), we may assume that G is topologically
connected.

Ideally, we would like to extend the graph G to a connected graph, but it is not
clear that it is always possible to connect two components of G that form a single
topological component in the drawing by an edge so that the resulting drawing is still
a simple topological graph. For example, there are simple topological graphs where
some pairs of vertices from different components cannot be connected by an edge, so
that the resulting drawing is still simple; see Fig. 9, left.

4.1 A Construction of a Topological Spanning Tree

Next we construct a topological spanning tree T of G; see Fig. 10, left. A topological
spanning tree T of G is a simply connected subset of the single topological component
of G containing all vertices of G and satisfying the property that the only nonseparating
points of T are the vertices of G. Our goal is to find such a tree consisting of O(n)

connected portions of edges of G. If G is a complete graph, we may take as T the
star consisting of all edges incident with one vertex of G [20], since such edges are
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Fig. 10 A topological spanning tree T of a simple topological graph with two components (left) and the
corresponding T -representation (right)

internally disjoint. If G is connected, we may start with a drawing of an arbitrary
spanning tree of G, but as some edges of the tree may cross, we may need to remove
portions of some edges to break cycles. If G has multiple components, the construction
is a bit more involved. For example, it is not enough to take a union of spanning trees
of the individual components, as some of the spanning trees may be topologically
disjoint, even if G is topologically connected; see Fig. 9, right. Also we may need to
include in T multiple disjoint portions of the same edge.

Let C1, . . . , Ck be the connected components of G. We choose their order in such
a way that for every i ∈ {1, 2, . . . , k}, the drawing of C1 ∪ · · · ∪ Ci is topologically
connected. Then for every i ∈ {2, 3, . . . , k}, there is an edge ei in Ci that crosses some
edge fi ∈ C1 ∪ · · · ∪ Ci−1. Let T1 be a spanning tree of C1 and let e1 be an edge
of T1. For every i ∈ {2, 3, . . . , k}, let Ti be a spanning tree of Ci containing ei . For
every i ∈ {1, 2, . . . , k}, let ei,1 = ei and let ei,2, . . . , ei,mi be the remaining edges of
Ti ordered in such a way that for every j ∈ {1, 2, . . . , mi }, the subgraph of Ti formed
by the edges ei,1, ei,2, . . . , ei, j is connected.

In the rest of this section we often identify the vertices, edges and subgraphs of G
with the corresponding vertices, edges and subgraphs of G.

The construction of T proceeds in k phases. In the first phase, we construct a
topological spanning tree T1 of C1, in the following way. We start with the tree
T1,1 consisting of the single edge e1. Let j ∈ {2, 3, . . . , m1} and suppose that the
tree T1, j−1 has been defined. Let v1, j be the vertex of ei, j that is not contained
in the edges e1, . . . , e j−1. If ei, j crosses none of the edges e1,1, . . . , e1, j−1, then
let T1, j = T1, j−1 ∪ e1, j . Otherwise, among the crossings of e1, j with the edges
e1,1, . . . , e1, j−1, let xi, j be the crossing closest to v1, j . The tree T1, j is now obtained
from T1, j−1 by attaching the portion of e1, j between x1, j and v1, j . Finally, we put
T1 = T1,m1 .

Let i ∈ {2, 3, . . . , k} and suppose that the tree Ti−1 has been defined. In the
i th phase, we construct the tree Ti in the following way. Let ei = wiw

′
i and let

xi be the crossing of ei with fi−1. If ei crosses Ti−1 in at least one point, then
let xi,1 and x ′

i,1 be the crossings of ei with Ti−1 closest to wi and w′
i , respec-

tively. The tree Ti,1 is then obtained from Ti−1 by attaching the portion of ei
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between wi and xi,1 and the portion of ei between w′
i and x ′

i,1. If ei is disjoint
with Ti−1, then we construct Ti,1 from Ti−1 by adding the whole edge ei and
joining ei with Ti−1 by the shortest portion of fi−1 connecting xi with a point
of Ti−1, which may be an endpoint of fi−1 or a crossing. The rest of the i th
phase is similar to the construction of T1. In j th step, we construct Ti, j from
Ti, j−1 by attaching the portion of ei, j connecting the vertex of ei, j not contained
in Ti, j−1 with the closest point of Ti, j−1 along ei, j . Finally, we put Ti = Ti,mi and
T = Tk .

It follows from the construction that the tree T has n′ ≤ 2n vertices, which are
either vertices or crossings of G, and hence at most 2n edges, which are portions of
edges of G.

4.2 A Construction of a T -Representation

Now we construct the T -representation of G, which generalizes the star-cut represen-
tation defined in [20]. Consider G drawn on the sphere S2 and cut the sphere along
the edges of T . The resulting open set S2 \ T can be mapped by an orientation pre-
serving homeomorphism � to an open regular (2n′ − 2)-gon D, in such a way that
the inverse map �−1 can be continuously extended to the closure of D so that the
vertices and edges of D are mapped to the vertices and edges of T . Note that every
edge of T corresponds to two edges of D, and a vertex of degree d in T corresponds
to d vertices of D. See Fig. 10, right. During the cutting operation, every edge e of
G can be cut into at most n′ pieces by the edges of T . Each such piece becomes
a pseudochord of D. That is, a simple curve in D with endpoints on the boundary
of D, and with the property that every two such curves cross in at most one point.
Moreover, two pseudochords sharing an endpoint are internally disjoint, as they cor-
respond to portions of edges with a common vertex. To separate the endpoints of
the pseudochords, we cut a small disc around each vertex w of D, draw a part of its
boundary inside D as an arc gw and shorten the pseudochords incident with w so
that their endpoints are on gw. For an edge e of D, let Oe be the counter-clockwise
order of the endpoints of the pseudochords along e. Similarly, for each vertex w of
D, let Ow be the counter-clockwise order of the endpoints of the pseudochords along
gw. The orders Oe and Ow are given as sequences of labels of the pseudochords.
The collection of the orders Oe and Ow, which together form a cyclic sequence of
endpoints of the pseudochords along the boundary of D, is called the perimetric
order.

The T -representation of G is given by (1) the topological spanning tree T and
(2) the perimetric order OD . The tree T is given as an abstract graph with a rotation
system, which determines its combinatorial planar embedding.

Note that the perimetric order determines which pairs of pseudochords cross and
how the pseudochords connect to the edges. Thus the T -representation of G determines
the weak isomorphism class of G. However, topological graphs weakly isomorphic to
G may have several different T -representations, which differ by the orders of crossings
along the edges of T . We say that two T -representations are weakly isomorphic if they
are representations of weakly isomorphic topological graphs.
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4.3 Counting Topological Spanning Trees

The upper bound on Tw(G) will follow from an upper bound on the number of weak
isomorphism classes of T -representations of simple drawings of G. First we estimate
the number of different topological spanning trees.

Lemma 19 Let G be a graph with n vertices, m edges and no isolated vertices.
Topologically connected simple realizations of G have at most 2O(n log n) different
topological spanning trees, up to a homeomorphism of the plane.

Proof Let k be the number of connected components of G. A component with ni

vertices has at most nni −2
i spanning trees, hence G has at most 2O(n log n) spanning

forests. Let T1∪T2∪· · ·∪Tk be a fixed spanning forest of G. The inductive construction
of the topological spanning tree T consists of n − k steps. In each step, an edge of
some spanning tree Ti is added to the construction. Consider the step where a portion
of the edge ei, j is added to the tree Ti, j−1. The new edge is attached either to a vertex
of Ti, j−1 or to an interior point of some edge of Ti, j−1. There are two ways how to
attach a new edge to an edge of Ti, j−1, and d ways how to attach a new edge to a
vertex of degree d in Ti, j−1. Together, there are 4(ni, j − 1) ≤ 4n′ − 4 ≤ 8n different
ways how to attach a new edge, where ni, j is the number of vertices of Ti, j−1, and
there are at most m choices for the edge ei, j .

Now consider the step where portions of the edge ei are added to the tree Ti−1. If
ei crosses Ti−1, then two portions of ei are added and this step is equivalent to two
previous steps. If ei does not cross Ti−1, then the whole edge ei and a portion of fi−1
are added. There are at most m choices for ei , m choices for fi−1, two ways how to
attach the portion of fi−1 to ei and at most 8n different ways how to attach the portion
of fi−1 to Ti−1. Altogether, we have at most (8nm)n−1 ≤ 2O(n log n) ways how to
construct T . ��

4.4 Counting T -Representations

It remains to estimate for each topological spanning tree T , the maximum num-
ber of weak isomorphism classes of T -representations. This will be the dominant
term in the estimate of Tw(G). Every edge of G corresponds to at most 2n pseudo-
chords in the T -representation. Hence the T -representation has at most 2mn pseudo-
chords, with at most

(4mn
8n

)
(4mn)! ≤ 2O(mn log n) different perimetric orders. This

gives a trivial 2O(mn log n) upper bound on the number of weak isomorphism classes of
T -representations.

To determine the weak isomorphism class, we do not need the whole information
given by the perimetric order. In fact, we only need to know the number of pseudo-
chords corresponding to each edge of G and the type of each pseudochord [21], which
we define in the next paragraph. There are at most (2n)m ≤ 2O(m log n) choices of the
numbers of pseudochords corresponding to the edges of G in the T -representation.
This upper bound is asymptotically dominated by the upper bounds in Theorem 2,
hence we consider these numbers fixed in the rest of this section.
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Fig. 11 Four categories of pairs of types of pseudochords

The type t (p) of a pseudochord p is the pair (X, Y ) where each of X, Y is either
an edge of the polygon D containing the endpoint of p or an endpoint of p on the
arc gw for some vertex w of D. For each vertex w of D representing a vertex v of
G, we consider deg(v) points on gw as possible values of X and Y . For each triple of
vertices w1, w2, w3 of D representing a crossing x of G, we have exactly one possible
endpoint as a possible value of X and Y , on exactly one of the arcs gw1, gw2 , gw3 . This
follows from the fact that T contains exactly three portions of edges incident with x
and only the fourth portion becomes a pseudochord.

Let p and p′ be pseudochords with types (X, Y ) and (X ′, Y ′), respectively. We say
that the types (X, Y ) and (X ′, Y ′) are

crossing if the elements X, X ′, Y, Y ′ are pairwise distinct and their cyclic order
around the boundary of D is (X, X ′, Y, Y ′) or (X, Y ′, Y, X ′),
avoiding if they are not crossing and all the elements X, X ′, Y, Y ′ are pairwise
distinct,
parallel if (X, Y ) = (X ′, Y ′) or (X, Y ) = (Y ′, X ′), and
adjacent otherwise, that is, if exactly one of the following four equalities holds:
X = X ′, X = Y ′, Y = X ′ or Y = Y ′.

See Fig. 11 for examples.
If the elements X, Y, X ′, Y ′ are pairwise distinct, we can directly determine whether

p and p′ cross: crossing types imply crossing pseudochords and avoiding types imply
disjoint pseudochords. If, for example, X = X ′ (in which case X is an edge of D), we
cannot determine whether p and p′ cross, since this depends on the relative position of
the endpoints of p and p′ on X . The pairs of pseudochords with parallel and adjacent
types can be arranged into maximal sequences, called ladders, formed by portions of
two edges of G, for which we can determine whether they cross or not. See [21] for
details.

A pseudochord is called external if it represents the initial or the terminal portion of
an edge of G. Thus, at least one of the endpoints of an external pseudochord lies on one
of the arcs gw where w is a vertex of D representing a vertex of G. All the other pseudo-
chords are called internal. Every external pseudochord can have one of O((n + m)2)

possible types. Every internal pseudochord, representing an internal portion of an edge
of G, can have only O(n2) different types, since for the variables X, Y , we are consid-
ering only edges of D and points on the arcs gw, where w is a vertex of D representing
a crossing of G. Altogether, there are at most (O(n + m)4m) ≤ 2O(m log n) combina-
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tions of types of the external pseudochords. This is again asymptotically dominated
by the upper bounds in Theorem 2. In the rest of this section, we consider only internal
pseudochords. For a subset F ⊆ E of edges of G, let f (F) be the number of possible
combinations of types of the internal pseudochords corresponding to the edges from
F . Similarly, for a set S of internal pseudochords, let f (S) be the number of possible
combinations of types of pseudochords from S. Our goal is to obtain a good upper
bound on f (E).

A trivial estimate gives the upper bound f (E) ≤ O(n2)mn = 2O(mn log n). This can
be improved by considering the fact that the pseudochords representing a common
edge of G do not cross. Also note that for two pseudochords p, p′ representing a
common edge e, their types are always avoiding. It follows that the set of types of the
pseudochords representing e can be represented as a noncrossing matching of size at
most 2n on a set of at most 8n points in convex position, where each point corresponds
to an edge or a vertex of D. Observe that the order of the pseudochords along e can be
reconstructed from this matching, thus this representation is injective. The number of
such matchings is bounded from above by 2O(n). Together, this gives the upper bound
f (E) ≤ 2O(nm).

This estimate can be improved even further. In a simple topological graph, edges
incident to a common vertex v do not cross. Therefore, all the internal pseudochords
representing edges incident with v are pairwise disjoint. Let P(v) be the set of these
pseudochords. Note that two pseudochords from P(v) representing different edges
may have avoiding, parallel or adjacent types. Let d be the degree of v. Similarly as
before, we can represent the set of types of the pseudochords from P(v) as a noncross-
ing matching M on a set of at most 8dn points in convex position, where each vertex
of D is represented by a point and each edge of D is represented by d consecutive
points. Again, from the matching M and from the types of the external pseudochords
representing the edges incident with v we can uniquely determine which edge each
pseudochords represents and how the pseudochords connect together to form the (por-
tions of) edges incident with v. A straightforward upper bound f (P(v)) ≤ 2O(dn)

follows. To get a better upper bound, we observe that many of these pseudochords
share the same type. More precisely, we have up to 2dn pseudochords in P(v), but
only O(n) different types, since no two of the types are crossing. There are 2O(n)

ways of choosing the set of pairwise noncrossing types for internal pseudochords. For
a fixed set S of O(n) types, we assign to each type t ∈ S its weight, that is, a positive
integer n(t) denoting the number of pseudochords from P(v) with type t . The set
{n(t), t ∈ S} satisfying the property

∑
t∈S n(t) = |P(v)| is called the weight vector

of S. From the set S and its weight vector, we can reconstruct the matching M and
determine the type of each pseudochord and how the pseudochords connect to edges.
This idea is similar to encoding curves on a surface using normal coordinates [36,37].
For a fixed S, there are (

O(dn)

O(n)

)
= d O(n) = 2O(n log d)

different weight vectors. This gives the upper bound f (P(v)) ≤ 2O(n log d). By
Jensen’s inequality, f (E) ≤ 2O(n2 log(m/n)). Together with Lemma 19, this gives the
first upper bound in Theorem 2.

123



750 Discrete Comput Geom (2013) 50:727–770

The previous method gives a good upper bound on Tw(G) for dense graphs. For
graphs with o(n2) edges, the method is useful if the graph has very irregular degree
sequence; more precisely, if it has a small number of vertices covering almost all the
edges. For graphs with o(n3/2) edges and with most of the vertices of degree �(m/n),
we get better results by considering larger subsets of edges. We just need to balance
the number of edges in the subset to keep the number of their crossings small enough.

Lemma 20 Let F ⊆ E be a set of k edges. Then

(F) ≤
(

O(m + k2)

O(k2)

)
· 2O(k2 log k) · 2O(n+k2) ·

(
kn

O(n + k2).

)

In particular, for k = �√n� we have

f (F) ≤ 2O(n log n).

Proof Let P(F) be the set of (both external and internal) pseudochords representing
the edges of F . Since every two edges cross at most once, there are at most

(k
2

)

crossings among the pseudochords from P(F). In particular, at most k2 pseudochords
from P(F) cross other pseudochord from P(F). Let P1(F) ⊆ P(F) be the set of
pseudochords crossing at least one pseudochord from P(F). Let P0(F) be the set
of internal pseudochords from P(F) \ P1(F). We estimate the number of perimetric
orders of |P0(F) ∪ P1(F)| pseudochords in D inducing at most

(k
2

)
crossings. Each

such perimetric order, together with the set of types of the external pseudochords
from P(F), determine the types of all pseudochords from P(F), since no member of
P(F) \ P1(F) crosses a member of P0(F) ∪ P1(F).

For the pseudochords from P1(F), we have at most
(O(m+k2)

2k2

)
ways of choosing

the set of their endpoints on the boundary of D, and at most (k2)! ≤ 2O(k2 log k) ways
of matching them together. Here we do not need to optimize for matchings inducing
O(k2) crossings. However, Proposition 22 in the next section implies the upper bound
2O(k2).

The pseudochords from P0(F) form a noncrossing matching in the regions of
D \ (

⋃
P1(F)

)
. To determine the positions of the pseudochords from P0(F), we need

to refine their types into subtypes by splitting the edges of D by the endpoints of
the pseudochords from P1(F). See Fig. 12. There are at most O(n + k2) portions of
edges of D after this splitting, hence at most 2O(n+k2) choices for the set of pairwise
noncrossing subtypes of the pseudochords from P0(F). Finally, there are at most( kn

O(n+k2)

)
ways of assigning a vector of positive integers with total sum at most kn to

the chosen set of subtypes. This is sufficient to determine the perimetric order of the
pseudochords from P(F) and the lemma follows. ��

The second upper bound in Theorem 2 is proved as follows. By Lemma 19, we may
fix a topological spanning tree. Then we partition the edge set of G into O(m/

√
n)

subsets of size at most
√

n and apply Lemma 20 to each of the subsets. Theorem 4 is
a special case of Theorem 2, where the graph G is a matching.
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Fig. 12 Illustration for the
proof of Lemma 20. The dotted
lines represent pseudochords
from P1(F). The pseudochords
p, q, r, s all have the same type,
r and s also have the same
subtype, but p, q and r have
pairwise different subtypes

5 The Upper Bound in Theorem 5

We start with some additional definitions and a combinatorial definition of the isomor-
phism of topological graphs. Then we show that we need to consider only topologically
connected topological graphs. Finally, we reduce the problem to counting isomor-
phism classes of arrangements of pseudochords and present two different solutions
to this problem. In the first solution we split the problem into two parts: enumerating
chord diagrams and enumerating arrangements with fixed boundary, using encoding
by binary vectors. The second approach is based on enumerating the dual graphs of
the arrangements, which form a subclass of quadrangulations of a disc.

5.1 A Combinatorial Definition of Isomorphism

A rotation of a crossing c in a topological graph is the clockwise cyclic order in which
the four portions of the two edges crossing at c leave the point c. Note that each
crossing has exactly two possible rotations. An extended rotation system of a simple
topological graph is the set of rotations of all its vertices and crossings. Assuming
that T and T ′ are drawings of the same abstract graph, we say that their (extended)
rotation systems are inverse if for each vertex v ∈ V (T ) (and each crossing c in T )
the rotation of v and the rotation of the corresponding vertex v′ ∈ V (T ′) are inverse
cyclic permutations (and so are the rotation of c and the rotation of the corresponding
crossing c′ in T ′). For example, if T ′ is a mirror image of T , then T and T ′ have
inverse (extended) rotation systems.

Topologically connected topological graphs G and H are isomorphic if (1) G and
H are weakly isomorphic, (2) for each edge e of G the order of crossings with the
other edges of G is the same as the order of crossings on the corresponding edge e′ in
H , and (3) the extended rotation systems of G and H are either the same or inverse.
This induces a one-to-one correspondence between the faces of G and H such that
the crossings and the vertices incident with a face f of G appear along the boundary
of f in the same (or inverse) cyclic order as the corresponding crossings and vertices
in H appear along the boundary of the face f ′ corresponding to f . It follows from
Jordan–Schönflies theorem that this definition is equivalent to the previous one in
Sect. 1.
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Let G be a topological graph with more than one topological component. The face
structure of G is a collection of face boundaries, represented as oriented facial walks
in the underlying abstract graph, of all noncontractible faces of G, that is, faces with
more than one boundary component. The orientations are chosen in such a way that
either for each noncontractible face the facial walk of the outer boundary component is
oriented clockwise and the facial walks of all inner boundary components are oriented
counter-clockwise, or vice versa. Both choices are regarded as giving the same face
structure. By this condition, the orientations of the facial walks in the face structure
encode relative orientations of the topological components. Note that the rotation
system of G is not sufficient to determine the orientation of topological components
that are simple cycles.

Topological graphs G and H with more than one topological component are
isomorphic if there is a one-to-one mapping between the vertices and edges of G
and H satisfying the conditions (1)–(3) and, in addition, (4) the face structures of G
and H are the same.

5.2 Reduction to Topologically Connected Graphs

Let G be a graph with no isolated vertices. Let G be a topological graph realizing G.
If G has more than one topological component, we want to extend it to a topologically
connected graph by adding edges connecting the topological components, in the same
way as in the previous section. However, for this extension to be possible we may need
to rearrange the topological components of G, which changes the face structure of G.
While preserving the isomorphism classes of the k topological components of G, there
are 2k ways of choosing their orientation and at most O(n4)2k possible face structures
of topological graphs built from these components. Thus there are at most 2O(n log n)

rearrangements of topological components of G. Hence, by the same argument as in
the previous section, we may further assume that G is topologically connected.

5.3 Arrangements of Pseudochords

An essential part of the structure of a particular isomorphism class of simple topologi-
cal graphs is captured by the following combinatorial object, which slightly generalizes
arrangements of pseudolines.

An arrangement of pseudochords is a finite set M of simple curves in the plane
with endpoints on a common simple closed curve CM , such that all the curves from M
lie in the region bounded by CM and every two curves in M have at most one common
point, which is a proper crossing. The elements of M are called pseudochords. The
arrangement M is simple if no three pseudochords from M share a common crossing.
The perimetric order of M is the counter-clockwise cyclic order of the endpoints
of the pseudochords of M on CM . The perimetric order of M determines which
pairs of pseudochords cross and which do not, but it does not determine the orders
of crossings on the pseudochords. Two (labeled) arrangements of pseudochords are
isomorphic if they have the same perimetric order and the same orders of crossings
on the corresponding pseudochords. Equivalently, one arrangement can be obtained
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from the other one by an orientation preserving homeomorphism. Note that a T -
representation of a simple topological graph can be regarded as a simple arrangement
of pseudochords.

The following proposition is inspired by Felsner’s [10] enumeration of simple
wiring diagrams. Originally it appeared in [20] as Proposition 7, but in an incorrect,
stronger form.

Proposition 21 [20, a correct form of Proposition 7] The number of isomorphism
classes of simple arrangements of n pseudochords with fixed perimetric order inducing
k crossings is at most 22k .

Proof Let M = {p1, p2, . . . , pn} be a simple arrangement of pseudochords with
endpoints on a circle CM and with a given perimetric order. Cut the circle at an
arbitrary point and unfold it by a homeomorphism to a horizontal line l, while keeping
all the pseudochords above l. Orient each pseudochord pi from its left endpoint ai to
its right endpoint bi . Let ki be the number of crossings on pi and let ci

1, ci
2, . . . , ci

ki
be

the crossings of pi ordered from ai to bi . Let pr(i, j) be the pseudochord that crosses
pi at ci

j .
For two crossing pseudochords pi and p j we say that pi is to the left of p j if ai is

to the left of a j . This is equivalent with the rotation of their common crossing being
(ai , b j , a j , bi ).

To each pi we assign a vector αi = (αi
1, α

i
2, . . . , α

i
ki

) ∈ {0, 1}ki where αi
j = 0 if

pr(i, j) is to the left of pi and αi
j = 1 if pi is to the left of pr(i, j).

The sum of the lengths of the vectors αi is equal to
∑n

i=1 ki = 2k. Hence, there
are at most 22k different sequences (α1, α2, . . . , αn) encoding an arrangement with
the given perimetric order and the chosen orientation of pseudochords.

It remains to show that we can uniquely reconstruct the isomorphism class of M
from the vectors α1, α2, . . . , αn by identifying the pseudochords pr(i, j). We proceed
by induction on k and n. For arrangements without crossings there is only one isomor-
phism class with a fixed perimetric order. Now, suppose that we can reconstruct the
isomorphism class for arrangements with at most k − 1 crossings and take a sequence
α = (α1, α2, . . . , αn) encoding an arrangement M with k crossings.

If some of the vectors αi is empty, the corresponding pseudochord pi is empty (has
no crossing). We may then draw pi as an arbitrary curve γi from ai to bi in the upper
half-plane of l. Then we split the arrangement into two parts: the inner part consisting
of pseudochords with endpoints between ai and bi , and the outer part with endpoints
to the left of ai or to the right of bi . We draw both parts separately by induction.
Finally, by applying a suitable homeomorphism we place the inner part inside the
region bounded by γi and l and the outer part outside that region.

Further we assume that M has no empty pseudochords.
Without loss of generality we may assume that the left endpoints are ordered along l

as a1, a2, . . . , an from left to right. Clearly, α1 = (1, 1, . . . , 1) and αn = (0, 0, . . . , 0).
It follows that there exists s ∈ {1, . . . , n − 1} such that αs

1 = 1 and αs+1
1 = 0.

Claim The first crossing on the pseudochords ps and ps+1 is their common crossing.
That is, r(s, 1) = s + 1 and r(s + 1, 1) = s.

123



754 Discrete Comput Geom (2013) 50:727–770

Fig. 13 ps′ cannot be the first
pseudochord crossing ps

Proof of claim Refer to Fig. 13. For contradiction, suppose that r(s, 1) = s′ ≥ s + 2
(the case when r(s + 1, 1) ≤ s − 1 is symmetric). Then r(s + 1, 1) /∈ {s, s′}. Hence,
r(s + 1, 1) = s′′ for some s′′ < s and the crossing of ps+1 with ps′′ occurs within
the triangle asas+1cs

1. This forces the pseudochords ps′ and ps′′ to cross twice, a
contradiction. ��

Let c = cs
1 = cs+1

1 be the first crossing on ps and ps+1. Since the two arcs asc and
as+1c are free of crossings, there is no endpoint between as and as+1 on l. For the
induction step, we swap the endpoints as and as+1 in the perimetric order of M and
delete the first value from the vectors αs and αs+1. In this way we obtain an encoding
α′ of an arrangement M ′ with k − 1 crossings, which is obtained from M by deleting
the arcs asc and as+1c, including a small open neighborhood of c. By the induction
hypothesis, the isomorphism class of M ′ can be uniquely reconstructed from α′. By
attaching to M ′ two crossing arcs starting at as and as+1 and thus extending the two
pseudochords ps and ps+1, we obtain an arrangement isomorphic to M .

5.4 Counting Isomorphism Classes of Topologically Connected
Topological Graphs

Let G be a graph with n vertices, m edges and no isolated vertices. Let G be a topo-
logically connected simple topological graph that realizes G. The isomorphism class
of G is determined by the isomorphism class of a T -representation of G. To determine
the isomorphism class of a T -representation, we need to determine (1) the topolog-
ical spanning tree T , (2) the perimetric order of the T -representation, and (3) the
isomorphism type of the induced arrangement of pseudochords.

(1) By Lemma 19, there are at most 2O(n log n) choices for the topological spanning
tree T of G, up to a homeomorphism of the plane. For the rest of the section, we
fix one topological spanning tree T of G.

(2) With T fixed, a T -representation can have at most 2O(mn log n) diferent perimetric
orders, as we have seen in Sect. 4.4.

This estimate is good enough when G has m = ω(n log n) edges, but we need a
better upper bound for sparser graphs. This can be achieved by counting only perimetric
orders that induce at most

(m
2

)
crossings.

There are at most
(4mn

8n

) ≤ 2O(n log n) ways of choosing the set of endpoints of the
pseudochords along the boundary of the disc D in the T -representation. To determine
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the perimetric order, we need, in addition, to determine a perfect matching of the
endpoints inducing at most

(m
2

)
crossings.

Such matchings can be also regarded as representations of circle graphs with a
given number of vertices and edges. In the literature, these structures are called chord
diagrams [16,32]. See Fig. 14, left. Following the notation in [32], let C(n, k) denote
the number of diagrams of n chords with k crossings. It is well known that C(n, 0),
which is the number of noncrossing perfect matchings of 2n points on the circle, is
equal to the nth Catalan number. Precise enumeration results for C(n, k) in the form
of generating functions were obtained by Touchard [38] and Riordan [35], but explicit
formulas for C(n, k) were computed only for k ≤ 6 [38].

The following asymptotic upper bound is implicit in Read’s paper [32].

Proposition 22 [32] For the number of diagrams of n chords with at most k crossings,
we have the upper bound

k∑

i=0

C(n, i) ≤ C(n)

(
n + k

n

)

where C(n) is the nth Catalan number.

Proof Like in the proof of Proposition 21, the key “trick” is breaking the symmetry of
the circle by cutting it at one point and unfolding onto a horizontal line l. The chords
then become arcs in the upper half-plane with endpoints on l. Each such arc has a
distinguished left endpoint and a right endpoint. Instead of arbitrary arcs, Read [32]
constructs triangular “teeth” consisting of a diagonal segment from the left endpoint
followed by a vertical segment to the right endpoint and calls the resulting drawing
the sawtooth diagram associated to the original chord diagram. See Fig. 14, right.

Let L be the set of all the left endpoints of the chords on l, and R the set of all the
right endpoints. For every point x on l, there are at least as many left endpoints than
right endpoints to the left of x . Therefore the sets L and R correspond to the sets of
n left and n right parentheses that are correctly matched. There are exactly C(n) such
partitions (L , R) of the 2n points on l.

Fig. 14 A chord diagram with seven chords and six crossings and a corresponding sawtooth diagram with
κ = (1, 2, 1, 0, 2, 0, 0)
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One partition (L , R) can be shared by more sawtooth diagrams, if crossings are
allowed. To determine the sawtooth diagram (and the corresponding chord diagram)
uniquely, we encode the intersection graph of the chords as follows. Let b1, b2, . . . , bn

be the points of R ordered from left to right. For i = 1, 2, . . . , n, let ci be the chord
with right endpoint bi , let ai be the left endpoint of ci and let ki be the number of
chords with left endpoint to the right of ai that cross ci . We claim that the vector
κ = (k1, k2, . . . , kn), together with the partition (L , R), uniquely determines the
sawtooth diagram. This can be seen by drawing the diagram from left to right. All
the crossings of the chord ci with chords with left endpoint to the right of ai occur
on the vertical segment of ci with endpoint bi . Therefore, every time we reach the
x-coordinate of some bi , we take the (ki + 1)th diagonal segment from the bottom
and connect its right endpoint by a vertical line to bi . All the other diagonal segments
are extended further to the right.

Since
∑n

i=1 ki ≤ k, for every partition (L , R) there are at most
(n+k

k

)
possible

vectors κ and the proposition follows. ��
By Proposition 22, by the entropy bound for binomial coefficients and by the

inequality loge(1 + x) ≤ x , the number of possible perimetric orders of the
T -representation is at most

2O(n log n) · C(2mn)

(
2mn + m2

2mn

)
≤ 22mn log(1+ m

4n )+ m2
2 log(1+ 4n

m )+4mn+O(n log n)

≤ 22mn(log(1+ m
4n )+2+log2 e)+O(n log n).

(3) By Proposition 21, there are less than 2m2
isomorphism classes of simple arrange-

ments of pseudochords induced by the T -representation with a given perimetric
order. Together with Proposition 22 and previous discussion, this implies that

T (G) ≤ 2m2+2mn(log(1+ m
4n )+3.443)+O(n log n).

For graphs with m = O(n) the second term in the exponent becomes more signif-
icant. Since m ≥ n/2, the exponent can be also bounded by

m2 · (1 + 8 + 4 log2(9/8) + 1/2 · log2 9) + o(m2) ≤ 11.265m2 + o(1),

using the entropy bound for the binomial coefficient
(4m2+m2/2

4m2

)
. This proves the second

upper bound in Theorem 5.

5.4.1 Arrangements and Quadrangulations

Here we show an alternative approach to enumerating simple arrangements of pseudo-
chords.

A quadrangulation of the disc D is a 2-connected plane graph embedded in D such
that its outer face coincides with the boundary of D and every inner face is bounded
by a 4-cycle. A quadrangulation is called simple if it has no separating 4-cycle. The
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Fig. 15 A simple arrangement
of seven pseudochords with nine
crossings and its dual
quadrangulation

vertices of the quadrangulation lying on the boundary of D are called external, all the
other vertices are internal.

Mullin and Schellenberg [25] proved that there are

(3M + 3)!(2N + M − 1)!
(M − 1)!(2M + 3)!N !(N + M + 1)! ≤

(
3M + 3

M

)(
2N + M − 1

N

)

isomorphism classes of rooted simple quadrangulations of the disc with N internal
and 2M + 4 external vertices.

The dual graph of a simple arrangement of pseudochords is constructed as follows.
Place one vertex inside each 2-dimensional cell and one vertex in the interior of every
boundary edge. Then join all pairs of vertices that correspond to adjacent 2-cells or to
a boundary edge and its adjacent 2-cell. See Fig. 15.

Observe that the dual graph of a simple arrangement of n pseudochords with k
crossings is a simple quadrangulation with 2n external and n + k +1 internal vertices.
From the quadrangulation the original arrangement can be uniquely reconstructed up
to isomorphism. However, not all simple quadrangulations can be obtained in this
way: the graph of the 3-dimensional cube is such an example.

By plugging M = n − 2 and N = n + i + 1 into Mullin’s and Schellenberg’s
formula and summing over i = 0, 1, . . . , k we obtain the following upper bound.

Proposition 23 There are at most

(
3n − 3
n − 2

)(
3n + 2k

n + k + 1

)

isomorphism classes of simple arrangements of n pseudochords with at most k
crossings.

Instead of using Proposition 22 and 21, we may directly apply Proposition 23 with
n := 2mn and k := (m

2

)
. This gives the first upper bound in Theorem 5:
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T (G) ≤
(

6mn
2mn

) (
m2 + 6mn
m2

2 + 2mn

)
· 2O(n log n)

≤ 2m2+2mn(1+3 log2 3)+O(n log n)

≤ 2m2+11.51mn+O(n log n).

Substituting n ≤ 2m, the exponent can be also bounded by

m2 ·
(

4 log2 3 + 8 log2
3

2
+ 17

2
· log2

26

17
+ 9

2
· log2

26

9

)
+o(m2)≤23.118m2 + o(1),

using the entropy bound for the binomial coefficients
(12m2

4m2

)
and

( 13m2

9m2/2

)
.

5.5 Upper Bounds for Very Sparse Graphs

The upper bound T (G) ≤ 2O(m2) is trivially obtained from the upper bound on the
number of unlabeled plane graphs (or planar maps). Indeed, every drawing G of G can
be transformed into a plane graph H by subdividing the edges of G by its crossings
and regarding the crossings of G as new 4-valent vertices in H . The graph H has thus
at most n + (m

2

)
vertices, at most m + 2

(m
2

) = m2 vertices, at most m + 2
(m

2

) = m2

edges, no loops and no multiple edges.
A rooted connected planar map is an unlabeled connected plane multigraph with

a distinguished vertex, the root. In particular, multiple edges and loops are allowed.
Tutte [39] showed that there are

2(2M)!3M

M !(M + 2)! = 2(log2(12)+o(1))M

rooted connected planar maps with M edges (see also [5,6,9]). Walsh and Lehman [40]
showed that the number of rooted connected planar loopless maps with M edges is

6(4M + 1)!
M !(3M + 3)! = 2(log2(256/27)+o(1))M .

This implies the upper bound T (G) ≤ 2(log2(256/27)+o(1))m2
. Somewhat better esti-

mates could be obtained by reducing the problem to counting 4-regular connected
planar maps [33,34], since typically almost all vertices in H are the 4-valent vertices
obtained from the crossings of G. But such a reduction would be less straightforward

and the resulting upper bound 2( 1
2 log2(196/27)+o(1))m2

would not improve our upper
bound 2m2+O(mn) for dense graphs (for graphs with more than 27n edges the first
upper bound from Theorem 5 is better).

Note that by the reduction to counting planar maps, for every fixed constant k,
we also obtain the upper bound 2O(km2) on the number of isomorphism classes of
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connected topological graphs with m edges where all pairs of edges are allowed to
cross k times.

6 The Lower Bounds

In this section we present constructions of many pairwise different simple drawings of
a given graph G, proving the lower bounds in Theorem 5 and 2. Since we are dealing
with arbitrary graphs, we use the following tool to find large subgraphs with more
“regular” structure.

Let G be a graph and let A, B be disjoint subsets of its vertices. By G[A, B] we
denote the bipartite graph (A∪B, EG(A, B)) consisting of all edges with one endpoint
in A and the other endpoint in B.

Lemma 24 Let q, r be positive integers with q ≥ 3 and 1 ≤ r ≤ (q
2

)
. Let H be a

graph with vertex set {1, 2, . . . , q} and with r edges. Let G = (V, E) be a graph
with n vertices and m edges. There is a partition of the vertex set V into q clusters
V1, . . . , Vq such that for every edge {i, j} of H the number of edges in the bipartite
graph G[Vi , Vj ] is at least

2m

q2

(

1 −
√

r(q − 2)

2
· n

m
− O

(√
m

n3

))

.

This is a variant of the result by Kühn and Osthus [18, Theorem 3], who consider
the case of r = (q

2

)
and assume that G has maximum degree bounded by a constant

fraction of n. The proof of Lemma 24 is similar to that of Theorem 3 in [18]. The main
idea is to use the second order method to analyze the random partition.

During the analysis we need to bound the number of pairs of adjacent edges in a
graph G, which we denote by p(G). Let G(n, m) be the class of all graphs with n
vertices and m edges and let f (n, m) be the maximum of p(G) over all G ∈ G(n, m).
Ahlswede and Katona [3] proved that the maximum of p(G) is always attained for at
least one of two special graphs in G(n, m), a quasi-star or a quasi-clique. Ábrego et
al. [1] completely characterized all graphs G ∈ G(n, m) for which p(G) = f (n, m).
The problem of computing f (n, m) has been studied and partially solved by many
researches; see [1] or [26] for an overview of previous results. Although all the values of
f (n, m)have been computed, the behavior of the function depends on certain nontrivial
number-theoretic properties of the parameters m, n [1]. Nikiforov [26] proved tight
asymptotic upper bounds on f (n, m), which may be stated in a simplified form as
follows.

Lemma 25 [26, Theorem 2] For all n and m,

f (n, m) ≤ √
2m3/2 if m ≥ n2/4, and

f (n, m) ≤ 1
2

(
(n2 − 2m)3/2 − n3

) + 2nm if m < n2/4.

We use a weaker, even more simplified asymptotic upper bound, which is easier to
apply. For our purposes, we need the bound to be tight only for small values of m.
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Corollary 26 For all n and m,

f (n, m) ≤ 1

2
nm + O

(
m2

n

)
.

Proof If m ≥ n2/4, then by Lemma 25 we have

f (n, m) ≤ √
2m3/2 · 2m1/2

n
≤ 2

√
2m2

n
.

If m < n2/4, then by Lemma 25, the desired upper bound is equivalent to the inequality

3mn − n3 + (n2 − 2m)3/2 ≤ O(m2/n).

Using the inequality
√

1 − x ≤ 1 − x/2, which holds for x ≤ 1, we have

3mn − n3 + (n2 − 2m)3/2 = 3mn + n3((1 − 2m/n2)3/2 − 1)

≤ 3mn + n3
((

1 − m

n2

)3 − 1

)

= 3m2

n
− m3

n3 .

��
Proof of Lemma 24 Let V1, V2, . . . , Vq be a random partition of the vertex set V ,
where each vertex is assigned independently to cluster Vi with probability 1/q. For
{i, j} ∈ E(H), let Xi, j be a random variable counting the number of edges in the
bipartite graph G[Vi , Vj ]. Clearly, we have EXi, j = 2m/q2. Let σ 2 = σ 2

i, j =
VARXi, j .

By Chebyshev’s inequality, we have

P

(
Xi, j <

2m

q2 − √
rσ

)
<

1

r
.

It follows that there is a partition V1, V2, . . . , Vq such that for every edge {i, j} of H ,
the graph G[Vi , Vj ] has at least 2m

q2 − √
rσ edges.

To complete the proof, we need to estimate σ from above. Let X = Xi, j for some
{i, j} ∈ E(H). We have

σ 2 = EX2 − (EX)2 = EX2 − 4m2

q4 .

For every edge e of G, let Xe be the indicator variable of the event that e has one
endpoint in Vi and the other endpoint in Vj . Clearly, X = ∑

e∈E Xe. Recall that p(G)

denotes the number of pairs of adjacent edges in G. We have
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EX2 =
∑

e∈E

EX2
e + 2 ·

∑

e,e′∈E; e �=e′
EXe Xe′

= 2m

q2 + 2 · 2

q3 · p(G) + 2 · 4

q4

((
m
2

)
− p(G)

)

= 2m

q2 + 8

q4

(
m
2

)
+

(
4

q3 − 8

q4

)
p(G).

By Corollary 26, p(G) ≤ 1
2 nm + O

(
m2

n

)
. Hence,

σ 2 ≤ 2m

q2 + 4m2

q4 + 4q − 8

q4 · 1

2
nm + O

(
m2

n

)
− 4m2

q4

≤ 2q − 4

q4 · nm + O

(
m2

n

)

≤
(√

2q − 4

q2 · √
nm + O

(
m3/2

n3/2

))2

and the lemma follows. ��

6.1 The Lower Bound in Theorem 5

The construction giving the first lower bound in Theorem 5 generalizes the construction
from [20].

Let ε > 0 and let G = (V, E) be a graph with n vertices and m edges. We
apply Lemma 24 with q = 6, r = 3 and E(H) = {{1, 4}, {2, 5}, {3, 6}}. If m >

(6 + ε) · n, then Lemma 24 implies that there is a partition of V into six clusters
V1, V2, . . . , V6 such that each of the three subgraphs G[V1, V4], G[V2, V5], G[V3, V6]
has �(m) edges. We may assume that G[V3, V6] has the least number of edges of these
three graphs.

Like in [20], we construct 2�(m2) drawings of G that are all weakly isomorphic to
the same geometric graph with vertices in convex position. For each k = 1, 2, . . . , 6,
we place the vertices of the set Vk on the unit circle, inside a small neighbor-
hood of the point (cos( kπ

3 ), sin( kπ
3 )); see Fig. 16, left. For every pair of vertices

u ∈ Vk and v ∈ Vl such that |k − l| �= 3, we draw the edge uv as a straight-
line segment. For k ∈ {1, 2, 3}, the edges between the sets Vk and Vk+3 are drawn
inside a narrow rectangle Rk such that all the crossings among this group of edges
occur outside the region R = R1 ∩ R2 ∩ R3, and for k, l ∈ {1, 2, 3}, k �= l,
all the crossings between the edges of G[Vk, Vk+3] and G[Vl , Vl+3] lie inside R.
In the region R, the edges connecting V2 with V5 form �(m) parallel curves.
Together with the edges connecting V1 with V4, they form an �(m) × �(m) grid
inside R.

We partition the crossings of this grid into �(m) parallel diagonals forming hor-
izontal rows. Each (horizontal) edge e connecting V3 with V6 is drawn along one of
the diagonal di . Each edge is assigned to a different diagonal. In the neighborhood of
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Fig. 16 A construction of 2�(m2) pairwise nonisomorphic drawings of a given graph

each crossing c in di we can decide whether the edge e passes above or below c; see
Fig. 16, right. These two possibilities give us two nonisomorphic topological graphs,
and the choices can be made independently at each crossing of the grid. Since we make
the choice at �(m2) crossings, we obtain 2�(m2) pairwise nonisomorphic drawings
of G.

For graphs with superlinear number of edges, Lemma 24 gives a partition where
each of the graphs G[Vi , Vj ] has c = 2m/q2 − o(m) edges. In the previous
construction, this gives a grid with c2 = 4m2/q4 − o(m2) crossings and hence
23m2/q4−o(m2) pairwise nonisomorphic drawings of G, since 3/4 of the crossings
can be covered by c parallel diagonals. For q = 6, this gives the lower bound
T (G) ≥ 2m2/432−o(m2).

The constant 1/432 can be easily improved. Previous construction used as a “tem-
plate” a convex geometric drawing of K6. This topological graph has one free triangle,
that is, a triangular face bounded by three pairwise crossing edges. A free triangle may
be switched by moving a portion of one of the boundary edges over the crossing of
the other two edges. This feature is then amplified by replacing the free triangle by
the grid construction. A set of k free triangles is independent if no two of the triangles
share a vertex. Equivalently, every two triangles share at most one boundary edge. This
guarantees that each of the 2k combinations of switched triangles is possible. There
are simple drawings of K6 with two independent free triangles [14,13]. If we use one
of them as a template, we get 2m2/216−o(m2) pairwise nonisomorphic drawings of G.

Using larger simple complete topological graphs as templates, much better lower
bounds can be obtained. Instead of free triangles, we may consider, in general, free
k-tuples, which consist of k pairwise crossing edges with all

(k
2

)
crossings close to each

other, forming locally an arrangement of k pseudolines. A system of free k-tuples is
independent if no two k-tuples share a crossing.

When replacing a free 4-tuple by the grid construction, we use both horizontal and
vertical diagonals of the grid. After drawing the horizontal and vertical edges along the
diagonals, half of the crossings in the grid become free 4-tuples and the other half free
triangles. Every free 4-tuple can be drawn in 8 different ways. Therefore, by replacing
each of the original four edges by c parallel edges, we obtain 2(1/2+3·1/2)c2 = 22c2
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Fig. 17 A complete convex
geometric graph with 10 vertices
and an independent system of 25
free triangles (light grey), 5 free
4-tuples (dark grey) and one free
5-tuple

pairwise nonisomorphic drawings. That is, every free 4-tuple in the template with q
vertices contributes 8m2/q4 to the exponent in the lower bound on T (G).

For example, the regular convex drawing of K10 on Fig. 17 has, after small pertur-
bation, one free 5-tuple, 5 free 4-tuples and 25 free triangles, all independent. Using
this drawing as a template, we obtain the lower bound T (G) ≥ 2m2·123/104−o(m2) >

2m2/82 − o(1) (for simplicity, we estimate the contribution of the free 5-tuple by the
contribution of a free 4-tuple).

Further improvement can be obtained using all possible partial arrangements of
three pairwise crossing systems of parallel pseudolines, in place of the grid construc-
tion, which produces only a subset of all such arrangements. Felsner and Valtr [11]
proved that there are 2(4.5 log2 3−6−o(1))n2

> 21.132·n2 − o(1) partial arrangements of
3n pseudolines that form three pairwise crossing subsets of n parallel pseudolines.
They observed that these partial arrangements are dual to rhombic tilings of a regular
hexagon and used MacMahon’s formula enumerating these tilings. This also implies
the rough lower bound 22.264·n2 − o(1) on the number of partial arrangements of
4n pseudolines that form four pairwise crossing subsets of n parallel pseudolines.
Using these estimates with the template from Fig. 17, we obtain the lower bound
T (G) ≥ 2m2·167.585/104−o(m2) > 2m2/60 − o(1).

This lower bound on T (G) is very likely far from being optimal. However, it is
probably hard to close the gap between the lower and upper bound on T (G), given
that even for pseudoline arrangements, the best known lower and upper bounds on
their number differ significantly [11].

6.2 The Lower Bound in Theorem 2

Fix ε > 0 and let G be a graph with n vertices and m edges, with no isolated vertices,
and satisfying at least one of the conditions m > (1 + ε)n or �(G) < (1 − ε)n.
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Fig. 18 Two ways of drawing
the edge w1w2

6.2.1 The First Construction

First we show that Tw(G) ≥ 2�(m) for graphs with m > (4 + ε)n, generalizing a
construction by Pach and Tóth [29].

Without loss of generality assume that n is odd. Let W be a random subset of
(n + 1)/2 vertices of G. The expected number of edges in the induced graph G[W ] is

(
(n + 1)/2

2

)

(
n
2

) m = n + 1

4n
m =

(
1

4
+ 1

4n

)
m.

Let W0 be a subset of (n + 1)/2 vertices inducing at least (1/4 + 1/(4n))m edges.
Every graph with m edges has a bipartite subgraph with at least m/2 edges. Let
W0 = W1 ∪ W2 be a bipartition such that the bipartite graph G[W1, W2] has at least
(1/8 + 1/(8n))m edges.

We place the vertices of V on three parallel vertical lines as follows. The vertices of
W ′ = V \ W0 are placed on the y-axis to the points (0, i/2), i = 0, 1, . . . , (n − 3)/2,
the verticesxc of W1 to the points (−1, i), i = 0, 1, . . . , |W1| − 1, and the vertices
of W2 to the points (1, i), i = 1, 2, . . . , |W2| − 1. Observe that the midpoint of
every straight-line segment with one endpoint in W1 and the other endpoint in W2 lies
in W ′.

The idea of obtaining exponentially many pairwise different drawings of G is now
similar as in the grid construction in the previous subsection. The edges of G[W ′] are
drawn as arcs close to the y-axis. Every edge e = w1w2 of G[W1, W2] is drawn as an
arc along the straight-line segment w1w2, in one of two possible ways: either close
above or close below the segment. See Fig. 18. Let w′ be the midpoint of w1w2. If w′
is adjacent to a vertex u ∈ V \ {w1, w2}, then in one of the two drawings the edges
w1w2 and w′u cross and in the other one they are disjoint. Since the minimum degree
in G is at least 1, for every w′ ∈ W ′, there is at most one pair of vertices w1 ∈ W1
and w2 ∈ W2 such that w′ is a midpoint of the segment w1w2 and w′ is not adjacent
to V \ {w1, w2}. This implies that for at least

(1/8 + 1/(8n))m − (n − 1)/2 > ((1/8 + 1/(8n) − 1/(8 + 2ε))m = �(m)

edges of G[W1, W2], the two choices produce two weakly nonisomorphic drawings.
Since the choices for all the edges are independent, this gives 2�(m) pairwise weakly
nonisomorphic drawings of G in total.
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6.2.2 The Second Construction

The lower bound on Tw(G) can be improved for sparse graphs with minimum degree
at least 1 that have at least (1 + ε)n edges or maximum degree at most (1 − ε)n. Such
assumptions are needed to guarantee a nontrivial number of pairs of independent edges,
to avoid graphs like stars, which can only be drawn without crossings. For every such
graph G we show the lower bound Tw(G) ≥ 2�(n log n). Moreover, all the drawings
in this construction are geometric graphs; that is, the edges are drawn as straight-line
segments.

Lemma 27 Let G be a graph with n vertices, m edges, no isolated vertices and
satisfying m > (1 + ε)n or �(G) < (1 − ε)n. Then the vertex set of G can be
partitioned into three parts V1, V2, V3 such that |V1| ≥ n/4, every vertex from V1 has
a neighbor in V2 and the induced graph G[V3] has at least �ε/2 · n� edges.

Proof We distinguish two cases.

Case 1: G has a spanning forest F with no isolated vertices such that its components
can be partitioned into two subforests F1 and F2, each with at least �εn� vertices.
Assume that |V (F1)| ≥ |V (F2)|. We set V3 = V (F2). Now V1 and V2 are defined
as the color classes of a proper 2-coloring of F1, with |V1| ≥ |V2|.
Case 2: No spanning forest as in Case 1 exists. Let F be a spanning forest with
no isolated vertices and maximum possible number of components. If some of
the components has a path of length three as a subgraph, then by removing the
middle edge of the path, the tree splits into two smaller nontrivial components,
contradicting the choice of F . It follows that every component of F is a star, that
is, a graph isomorphic to K1,k for some k ≥ 1. Let T0 be the largest component in
F . By the assumption, T0 is a star with more than �(1−ε)n� vertices. In particular,
�(G) ≥ �(T0) ≥ (1 − ε)n. Hence we have m > (1 + ε)n. This means that G
has more than εn edges that do not belong to T0. Let V3 be the set of vertices
spanned by �ε/2 · n� such edges, together with all vertices that do not belong to
T0. Finally, we set V2 to be the one-element set containing the central vertex of T0
and V1 = V (T0) \ (V2 ∪ V3). ��

Let V1, V2, V3 be the partition from Lemma 27. Let H be a bipartite subgraph of
G[V3] with at least �ε/4 · n� edges. Split the set V3 into two parts according to the
bipartition of H and place all vertices from one part in a small disc with center (0, 0)

and radius r < 1/3 and all vertices from the second part in a small disc with center
(1, 0) and radius r , so that the vertices are in general position. Draw all edges of G[V3]
as straight-line segments. See Fig. 19. There are two lines t1, t2 parallel to the y-axis
going through points (x1, 0) and (x2, 0), respectively, such that r < x1 < x2 < 1 − r
and no two edges of G[V3] cross between t1 and t2. In particular, the edges of G[V3]
split the vertical strip S between t1 and t2 into at least �ε/4 · n� + 1 regions. Place all
vertices of V2 inside S above the horizontal line with y-coordinate r , and each of the
vertices of V1 in one of the �ε/4 ·n�+1 regions of S, so that all vertices are in general
position. Draw all the remaining edges as straight-line segments. The choice of the
region for each vertex v of V1 determines how many edges from H an edge connecting
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Fig. 19 An illustration of the
second construction for the
lower bound in Theorem 2

v with V2 crosses. In total, this gives (|E(H)| + 1)|V1| ≥ (ε/4 · n)n/4 ≥ 2�(n log n)

pairwise weakly nonisomorphic geometric drawings of G.

7 Geometric Graphs

A geometric graph is a topological graph where edges are drawn as straight-line
segments. It is also usually assumed that the vertices are in general position, that is,
no three of them lie on a line.

For geometric graphs, asymptotically matching lower and upper bounds on both
the number of isomorphism and weak isomorphism classes can be easily derived from
known results. It is easy to see that there are at least 2�(n log n) weak isomorphism
classes of complete geometric graphs with n vertices, even when we drop the labels of
vertices: place a set A of n/2 points in convex position, draw the complete geometric
graph on A and distribute the remaining n/2 points in the �(n4) bounded faces of A.
The number of edges here is not crucial: the same asymptotic lower bound is known
for matchings on n vertices (see the remark after Theorem 4 in the Introduction).

For every given abstract graph G with n vertices, there are at most 2O(n log n)

isomorphism classes of geometric graphs realizing G. This follows from the upper
bound on the number of sign patterns [41]; see also [24, Theorem 6.2.1]. The reduction
proceeds as follows. We define 2n variables as the 2n coordinates of the n vertices.
Every condition of the form “segments xy and uv cross”, “point x is to the left of
the ray uv”, “the crossing of xy with uv is closer to x than the crossing of xy with
wz”, or “vertices x, y, z are seen from u in clockwise order”, is then expressed in a
straightforward way by inequalities of quadratic polynomials in the 2n variables. Then
the theorem on the number of sign patterns is applied.

By the combinatorial definition of isomorphism in Sect. 5.1, this proves the upper
bound for topologically connected geometric graphs. By the reduction in Sect. 5.2,
the upper bound holds also for general geometric graphs.

8 Concluding Remarks and Open Problems

The problem of counting the asymptotic number of “nonequivalent” simple drawings
of a graph in the plane has been answered only partially. Many open questions remain.
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The gap between the lower and upper bounds on Tw(G) proved in Theorem 2 is
wide open, especially for graphs with low density. For graphs with cn2 edges, the
lower and upper bounds on log Tw(G) differ by a logarithmic factor. We conjecture
that the correct answer is closer to the lower bound.

We do not even know whether Tw(G) is a monotone function with respect to the
subgraph relation, since there are simple topological graphs that cannot be extended to
simple complete topological graphs. See Fig. 9, left, for an example. Due to somewhat
“rigid” properties of simple complete topological graphs, we have a much better upper
bound for the complete graph than, say, for the complete bipartite graph on the same
number of vertices.

Problem 4 Does the complete graph Kn maximize the value Tw(G) among the graphs
G with n vertices? More generally, is it true that Tw(H) ≤ Tw(G) if H ⊆ G?

Our methods for proving upper bounds on the number of weak isomorphism classes
of simple topological graphs do not generalize to the case of topological graphs with
two crossings per pair of edges allowed.

Problem 5 What is the number of weak isomorphism classes of drawings of a graph
G where every two independent edges are allowed to cross at most twice and every
two adjacent edges at most once?

For the complete graph with n vertices, Pach and Tóth [29] proved the lower bound
2�(n2 log n) and the upper bound 2o(n4).

A nontrivial lower bound can be proved also in the case when G is a matching.
Ackerman et al. [2] constructed a system of n x-monotone curves where every pair of
curves intersect in at most one point where they either cross or touch, with �(n4/3)

pairs of touching curves. Eyal Ackerman (personal communication) noted that this also
follows from an earlier result by Pach and Sharir [28], who constructed an arrangement
of n segments with �(n4/3) vertically visible pairs of disjoint segments. By changing
the drawing in the neighborhood of every touching point, we obtain 2�(n4/3) different
intersection graphs of 2-intersecting curves, also called string graphs of rank 2 [29].
This improves the trivial lower bound observed by Pach and Tóth [29].

In Sect. 3, we proved that certain patterns are forbidden in the rotation systems
of simple complete topological graphs, or more generally, in good abstract rotation
systems. The problem of counting topological graphs was thus reduced to a combi-
natorial problem of counting permutations with forbidden patterns, by the recursion
in Sect. 3.4. A general problem of this type can be formulated as follows. Given a
constant N and a collection F = {F1, F2, . . . , Fm} of sets of N -element permutation
patterns, we say that a set P of permutations on n elements is F-restricted if for each
N -tuple X = (x1, x2, . . . , xN ) of positions, there is an i ∈ {1, 2, . . . , m} such that
for every permutation π ∈ P , all permutations from Fi are forbidden as restrictions
of π at X . What is the maximum size of an F-restricted set P of permutations on n
elements?

For example, in the special case of the Stanley-Wilf conjecture, the collection F
consists of a single one-element set. A set of permutations with VC-dimension at most
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k is an F-restricted set where the collection F consists of (k + 1)! one-element sets,
each containing a different permutation of {1, 2, . . . , k + 1}.

In Sect. 3.4, we reduced the upper bound in Theorem 3 to the upper bound on the
size of an F-restricted set where F consists of the following 2

(N
5

) + 2
(N

6

)
sets. For

every set A ⊂ {1, 2, . . . , N } of five positions, the collection F contains a set FA of
all permutations of N elements whose restriction to A is (1, 4, 2, 5, 3) or some of
its four cyclic shifts, and a set F ′

A of all permutations of N elements whose restric-
tion to A is (1, 3, 5, 2, 4) or some of its four cyclic shifts. Similarly, for every set
B ⊂ {1, 2, . . . , N } of six positions, the collection F contains a set FB of all permu-
tations of N elements whose restriction to B is (1, 2, 3, 6, 5, 4) or some of its five
cyclic shifts, and a set F ′

B of all permutations of N elements whose restriction to B is
(1, 4, 5, 6, 3, 2) or some of its five cyclic shifts. This follows from Lemma 11, 13 and
from the proof of Theorem 8, where the canonical linear ordering of the vertices of
the unavoidable convex or twisted graphs is consistent with the linear ordering of the
vertices of the given simple complete topological graph. Such F-restricted sets of per-
mutations are a special case of sets with VC-dimension smaller than N , which can have
superexponential size [8], and generalize the sets with a single forbidden permutation
pattern, for which a single exponential upper bound on their size is known [17,23].
Therefore one might ask for which collections F it is true that F-restricted sets of
permutations have only exponential size.

A positive answer to the following problem would improve the upper bound in
Theorem 3 to Tw(Kn) ≤ 2O(n2), which would be asymptotically optimal.

Problem 6 Let N > 6 be a constant positive integer. Let P be a set of permutations of
n elements such that for every N-tuple X of positions, there is either a 5-tuple A ⊂ X
such that the pattern (1, 3, 5, 2, 4) and all its cyclic shifts are forbidden as restrictions
at A, or a 5-tuple A′ ⊂ X such that the pattern (1, 4, 2, 5, 3) and all its cyclic shifts
are forbidden as restrictions at A′, or a 6-tuple B ⊂ X such that (1, 2, 3, 6, 5, 4) and
all its cyclic shifts are forbidden as restrictions at B, or a 6-tuple B ′ ⊂ X such that
(1, 4, 5, 6, 3, 2) and all its cyclic shifts are forbidden as restrictions at B ′. Is it true
that |P| ≤ 2O(n)?

For N = 4 and F = {{(1, 2, 3, 4)}, {(3, 4, 1, 2)}}, a construction in [8] shows an
F-restricted set of permutations of superexponential size. Such a construction does
not necessarily satisfy the conditions in Problem 6 since, for example, the pattern
(3, 4, 1, 2) is a restriction of just one cyclic shift of (1, 2, 3, 6, 5, 4), one cyclic shift
of (1, 4, 5, 6, 3, 2) and of no cyclic shift of either (1, 3, 5, 2, 4) or (1, 4, 2, 5, 3). On
the other hand, this construction does give a superexponential lower bound on the
size of sets of permutations satisfying the restrictions implied by Lemmas 17 and 18,
which appear in the proof of the combinatorial Theorem 15. This follows from the fact
that every cyclic shift of the inverse of (1, 3, . . . , 815, 2, 4, . . . , 814) contains both
patterns (1, 2, 3, 4) and (3, 4, 1, 2). Therefore, a positive solution to Problem 1 will
require a different approach.
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