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Abstract Let P be a set of points in general position in the plane. Join all pairs of
points in P with straight line segments. The number of segment-crossings in such a
drawing, denoted by cr(P ), is the rectilinear crossing number of P . A halving line
of P is a line passing through two points of P that divides the rest of the points of P

in (almost) half. The number of halving lines of P is denoted by h(P ). Similarly, a
k-edge, 0 ≤ k ≤ n/2−1, is a line passing through two points of P and leaving exactly
k points of P on one side. The number of ≤ k-edges of P is denoted by E≤k(P ). Let
cr(n), h(n), and E≤k(n) denote the minimum of cr(P ), the maximum of h(P ), and
the minimum of E≤k(P ), respectively, over all sets P of n points in general position
in the plane. We show that the previously best known lower bound on E≤k(n) is
tight for k < �(4n − 2)/9� and improve it for all k ≥ �(4n − 2)/9�. This in turn
improves the lower bound on cr(n) from 0.37968

(
n
4

) + Θ(n3) to 277
729

(
n
4

) + Θ(n3) ≥
0.37997

(
n
4

) + Θ(n3). We also give the exact values of cr(n) and h(n) for all n ≤ 27.
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Exact values were known only for n ≤ 18 and odd n ≤ 21 for the crossing number,
and for n ≤ 14 and odd n ≤ 21 for halving lines.

Keywords k-Edges · k-Sets · Halving lines · Rectilinear crossing numbers ·
Allowable sequences · Geometric drawings

1 Introduction

We consider three important well-known problems in Combinatorial Geometry: the
rectilinear crossing number, the maximum number of halving lines, and the minimum
number of (≤ k)-edges of complete geometric graphs on n vertices. All point sets in
this paper are in the plane, finite, and in general position.

Let P be a finite set of points in general position in the plane. The rectilinear
crossing number of P , denoted by cr(P ), is the number of crossings obtained when
all straight line segments joining pairs of points in P are drawn. (A crossing is the
intersection of two segments in their interior.) The rectilinear crossing number of n

is the minimum number of crossings determined by any set of n points, i.e., cr(n) =
min{cr(P ) : |P | = n}. The problem of determining cr(n) for each n was posed by
Erdős and Guy [18, 20] in the early 1970s. This is equivalent to finding the minimum
number of convex quadrilaterals determined by n points, as every pair of crossing
segments bijectively corresponds to the diagonals of a convex quadrilateral.

A halving line of P is a line passing through two points of P and dividing the
rest in almost half. So when P has n points and n is even, a halving line of P leaves
n/2 − 1 points of P on each side; whereas when n is odd, a halving line leaves
(n− 3)/2 points on one side and (n− 1)/2 on the other. The number of halving lines
of P is denoted by h(P ). Generalizing a halving line, a k-edge of P , with 0 ≤ k ≤
n/2 − 1, is a line through two points of P leaving exactly k points on one side. The
number of k-edges of P is denoted by Ek(P ). Since a halving line is a (�n/2� − 1)-
edge, then E�n/2�−1(P ) = h(P ). Similarly, for 0 ≤ k ≤ n/2−1, E≤k(P ) and E≥k(P )

denote the number of ≤ k-edges and ≥ k-edges of P , respectively. That is, E≤k(P ) =
∑k

j=0 Ej(P ) and E≥k(P ) = ∑�n/2�−1
j=k Ej (P ) = (

n
2

) − ∑k−1
j=0 Ej(P ). Let h(n) and

E≤k(n) be the maximum of h(P ) and the minimum of E≤k(P ), respectively, over
all sets P of n points. A concept closely related to k-edges is that of k-sets; a k-set
of P is a set Q that can be separated from P \ Q with a straight line. Rotating this
separating line clockwise until it hits a point on each side yields a (k −1)-edge, and it
turns out that this association is bijective. Thus the number of k-sets of P is equal to
the number of (k − 1)-edges of P . As a consequence, any of the results obtained here
for k-edges can be directly translated into equivalent results for (k + 1)-sets. Erdős,
Lovász, Simmons, and Straus [17, 21] first introduced the concepts of halving lines,
k-sets, and k-edges.

Since the introduction of these parameters back in the early 1970s, the determi-
nation (or estimation) of cr(n), h(n), and E≤k(n) have become classical problems
in combinatorial geometry. General bounds are known but exact values have only
been found for small n. The best known general bounds for the halving lines are
Ω(nec

√
logn) ≤ h(n) ≤ O(n4/3), due to Tóth [26] and Dey [16], respectively. Later
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on Nivasch [23] found a simpler construction with a smaller constant c. The previ-
ously best asymptotic bounds for the crossing number were

0.3792

(
n

4

)
+ Θ

(
n3) ≤ cr(n) ≤ 0.380488

(
n

4

)
+ Θ

(
n3). (1)

The lower bound is due to Aichholzer et al. [11] and it follows from (2) as we indicate
below. The upper bound follows from a recursive construction devised by Ábrego and
Fernández-Merchant [6] using a suitable initial construction found by the authors
in [2]. The best lower bound for the minimum number of ≤ k-edges is

E≤k(n) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − �n/3�

2

)

− max
{
0,

(
k + 1 − �n/3�)(n − 3�n/3�)}, (2)

due to Aichholzer et al. [11]. Further references and related problems can be found
in [14].

The last two problems are naturally related, and their connection to the first prob-
lem is shown by the following identity, independently proved by Lovász et al. [22]
and Ábrego and Fernández-Merchant [7]. For any set P of n points,

g(P ) = 3

(
n

4

)
−

�n/2�−1∑

k=0

k(n − k − 2)Ek(P ), or equivalently

g(P ) =
�n/2�−2∑

k=0

(n − 2k − 3)E≤k(P ) − 3

4

(
n

3

)
+ (

1 + (−1)n+1)1

8

(
n

2

)
. (3)

Hence, lower bounds on E≤k(n) give lower bounds on cr(n).
The majority of our results (all non-constructive parts) are proved in the more gen-

eral context of generalized configurations of points, where the points in P are joined
by pseudosegments rather than straight line segments. Goodman and Pollack [19] es-
tablished a correspondence between the set of generalized configurations of points
and what they called allowable sequences. In Sect. 2, we define allowable sequences,
introduce the necessary notation to state the three problems above in the context of
allowable sequences, and include a summary of results for these problems in both,
the geometric and the allowable sequence context.

The main result in this paper is Theorem 1 in Sect. 3, which bounds E≥k(P ) by a
function of Ek−1(P ). This result has the following important consequences.

1. In Sect. 4, we find exact values of cr(n) and h(n) for n ≤ 27. Exact values were
only known for n ≤ 18 and odd n ≤ 21 in the case of cr(n), and for n ≤ 14 and
odd n ≤ 21 in the case of h(n). (See Table 1.) We also show that the same val-
ues are achieved for the more general case of the pseudolinear crossing number
c̃r(n) and the maximum number of halving pseudolines h̃(n). (See Sect. 2 for the
definitions.)
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Table 1 New exact values. The * values were only known in the rectilinear case

n

14 16 18 20 22 23 24 25 26 27

h(n) = h̃(n) 22∗ 27 33 38 44 75 51 85 57 96

cr(n) = c̃r(n) 324∗ 603∗ 1029∗ 1657 2528 3077 3699 4430 5250 6180

2. Theorem 2 in Sect. 5 improves the lower bound in (2) for k ≥ �(4n − 11)/9�. It
gives a recursive lower bound whose asymptotic value is given by

E≤k(n) ≥
(

n

2

)
− 1

9

√

1 − 2k + 2

n

(
5n2 + 19n − 31

)
,

as shown in Corollary 3.
3. Theorem 3 in Sect. 6 improves the lower bound in (1) to

cr(n) ≥ 277

729

(
n

4

)
+ Θ

(
n3) ≥ 0.37997

(
n

4

)
+ Θ

(
n3).

In Sect. 7, and to complement item 2 above, we show that (2) is tight for
k < �(4n − 11)/9�. More precisely, we construct sets of points simultaneously
achieving equality in (2) for all k < �(4n − 11)/9�.

Several results of this paper appeared (without proofs) in the conference proceed-
ings of LAGOS’07 [3, 4].

2 Allowable Sequences and Generalized Configurations of Points

Any set P of n points in the plane can be encoded by a sequence of permutations of
the set [n] = {1,2, . . . , n} as follows. Consider a directed line l. Orthogonally project
P onto l and label the points of P from 1 to n according to their order in l. In this
order, the identity permutation (1,2, . . . , n), is the first permutation of our sequence.
Note that l can be chosen so that none of the projections overlap. Continuously ro-
tate l counterclockwise. The order of the projections of P onto l changes every time
two projections overlap, that is, every time a line through two points of P becomes
perpendicular to l. Each time this happens, a new permutation is recorded as part of
our sequence. After a 180◦-rotation of l we obtain a sequence of

(
n
2

) + 1 permuta-
tions such that the first permutation (1,2, . . . , n) is the identity, the last permutation
(n,n − 1, . . . ,2,1) is the reverse of the identity, any two consecutive permutations
differ by a transposition of adjacent elements, and any pair of points (labels 1, . . . , n)
transpose exactly once. This sequence is known as a halfperiod of the circular se-
quence associated to P . The circular sequence of P is then a doubly infinite sequence
of permutations obtained by rotating l indefinitely in both directions.

As an abstract generalization of a circular sequence, a simple allowable se-
quence on [n] is a doubly infinite sequence Π = (. . . , π−1,π0,π1, . . .) of per-
mutations of [n], such that any two consecutive permutations πi and πi+1 dif-
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fer by a transposition τ(πi) of neighboring elements, and such that for ev-
ery j , πj is the reverse permutation of πj+(n

2)
. A halfperiod of Π is a se-

quence of
(
n
2

) + 1 consecutive permutations of [n]. As before, any halfperiod
of Π uniquely determines Π and all properties for halfperiods mentioned above
still hold. Moreover, the halfperiod π = (πi,πi+1, . . . , πi+(n

2)
) is completely deter-

mined by the transpositions τ(πi), τ (πi+1), . . . , τ (πi+(n
2)−1). Note that the sequence

(. . . , τ (π−1), τ (π0), τ (π1), . . .) is
(
n
2

)
-periodic. Thus we indistinctly refer to π as a

sequence of permutations or as a sequence of (suitable) transpositions. Allowable
sequences that are the circular sequence of a set of points are called stretchable.

A pseudoline is a curve in P
2, the projective plane, whose removal does not dis-

connect P
2. Alternatively, a pseudoline is a simple curve in the plane that extends

infinitely in both directions. A simple generalized configuration of points consists of
a set of

(
n
2

)
pseudolines and n points in the plane such that each pseudoline passes

through exactly two points, and any two pseudolines intersect exactly once.
Circular and allowable sequences were first introduced by Goodman and Pollack

[19]. They proved that not every allowable sequence is stretchable and established
a correspondence between allowable sequences and generalized configurations of
points.

The three problems at hand can be extended to generalized configurations of
points, or equivalently, to simple allowable sequences. In this new setting, a trans-
position of two points in positions k and k + 1, or n − k and n − k + 1 in a simple
allowable sequence Π corresponds to a (k − 1)-edge. We say that such transposition
is a k-transposition, or respectively, an (n − k)-transposition, and if 1 ≤ k ≤ n/2 all
these transpositions are called k-critical. Therefore Ek(Π), E≤k(Π), and E≥k(Π)

correspond to the number of (k +1)-critical, (≤ k +1)-critical, and (≥ k +1)-critical
transpositions in any halfperiod of Π . A halving line of Π is a �n/2�-transposition,
and thus h(Π) = E�n/2�−1(Π). Identity (3), which relates the number of k-edges to
the crossing number, was originally proved for allowable sequences. In this setting,
a pseudosegment is the segment of a pseudoline joining two points in a generalized
configuration of points, and cr(Π) is the number of pseudosegment-crossings in the
generalized configuration of points that corresponds to the allowable sequence Π .
All these definitions and functions coincide with their original counterparts for P

when Π is the circular sequence of P . However, when cr(n), h(n), and E≤k(n) are
minimized or maximized over all allowable sequences on [n] rather than over all sets
of n points, the corresponding quantities may change and therefore we use the no-
tation c̃r(n), h̃(n), and Ẽ≤k(n). Because n-point sets correspond to the stretchable
simple allowable sequences on [n], it follows that c̃r(n) ≤ cr(n), h̃(n) ≥ h(n), and
Ẽ≤k(n) ≤ E≤k(n). Tamaki and Tokuyama [25] extended Dey’s upper bound for al-
lowable sequences to h̃(n) = O(n4/3). Ábrego et al. [1] proved that the lower bound
for E≤k(n) in (2) is also a lower bound on Ẽ≤k(n). They used this bound to extend
(and even slightly improve) the corresponding lower bound on cr(n) to c̃r(n).

Our main result, Theorem 1 in Sect. 3, concentrates on the central behavior of
allowable sequences. We bound E≥k(Π) by a function of Ek−1(Π). As a conse-
quence, we improve (or match) the upper bounds on h̃(n) for n ≤ 27, and thus the
lower bounds on c̃r(n) in the same range. This is sufficient to match the correspond-
ing best known geometric constructions [9] for h(n) and cr(n). This shows that for
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all n ≤ 27, h̃(n) = h(n) and c̃r(n) = cr(n) whose exact values are summarized in
Table 1.

3 The Central Theorem

In this section, we present our main theorem. Given a halfperiod π = (π0,π1,π2, . . . ,

π(n
2)

) of an allowable sequence and an integer 1 ≤ k < n/2, the k-center of the permu-
tation πj , denoted by C(k,πj ), is the set of elements in the middle n − 2k positions
of πj . Let L0, C0 = C(k,π0), and R0 be the set of elements in the first k, middle
n − 2k, and last k positions, respectively, of the permutation π0. Define

s(k,π) = min

{∣∣C0 ∩ C(k,πi)
∣∣ : 0 ≤ i ≤

(
n

2

)}
.

Note that s(k,π) ≤ n−2k −1 because at least one of the n−2k elements of C0 must
leave the k-center.

Theorem 1 Let Π be an allowable sequence on [n] and π any halfperiod of Π . If
s = s(k,π), then

E≥k(Π) ≤ (n − 2k − 1)Ek−1(Π) − s

2

(
Ek−1(Π) − n + 1

)
.

Proof For presentation purposes, we divide this proof into subsections.

Let Π be an allowable sequence on [n] and π = (π0,π1,π2, . . . , π(n
2)

) any half-
period of Π , s = s(k,π), and K = Ek−1(π).

Suppose that πi1,πi2, . . . , πiK is the subsequence of permutations in π ob-
tained when the k-critical transpositions τ(πi1), τ (πi2), . . . , τ (πiK ) of π occur (in
this order). For simplicity we write τj instead of τ(πij ). These permutations par-
tition π into K + 1 parts B0(π),B1(π),B2(π), . . . ,BK(π) called blocks, where
Bj (π) = {πl : ij ≤ l < ij+1} for 1 ≤ j ≤ K − 1, B0(π) = {πl : 0 ≤ l < i1}, and
BK(π) = {πl : iK ≤ l ≤ (

n
2

)}. Denote by pj the point that enters the k-center of πij

with τj . We say that a (≥ k + 1)-critical transposition in Bj (π), 1 ≤ j ≤ K , is an
essential transposition if it involves pj or if it occurs before τ1, and a nonessential
transposition otherwise.

Rearrangement of π We claim that, to bound E≥k(Π), we can assume that all
(≥ k + 1)-critical transpositions of π are essential transpositions. To show this, in
case π has nonessential transpositions, we modify π so that the obtained halfperiod
λ satisfies Ej(π) = Ej(λ) for all j < k, and thus E≥k(π) = E≥k(λ); and either λ

has only essential transpositions or the last nonessential transposition of λ occurs
in an earlier permutation than the last nonessential transposition of π . Applying this
procedure sufficiently many times, we end with a halfperiod λ all of whose (≥ k+1)-
critical transpositions are essential and such that Ej(π) = Ej(λ) for all j < k, and
thus E≥k(π) = E≥k(λ).
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Fig. 1 Classification of essential k-critical transpositions

This is how λ is constructed. Suppose Bj (π) is the last block of π that contains
nonessential transpositions. Define λ as the halfperiod that coincides with π every-
where except for the (≥ k + 1)-transpositions in Bj (π). All nonessential transposi-
tions in Bj (π) take place right before τj in λ, and right after τj occurs, all essential
transpositions in Bj (π) occur consecutively in Bj (λ) but probably in an order differ-
ent from Bj (π), so that the final position of pj is the same in Bj (π) and Bj (λ). Note
that in fact the last permutations of the blocks Bj (π) and Bj (λ) are equal.

Classification of k-Critical Transpositions From now on, we assume that π only
has essential transpositions. We classify the k-critical transpositions as follows (see
Fig. 1): τj is an arriving transposition if pj ∈ C0. An arriving transposition is
a-augmenting if it increments the number of elements in C0 in the k-center from
a − 1 to a, and it is neutral otherwise. We say that τj is a returning transposition if
it is a k-transposition and pj ∈ R0, or if it is an (n − k)-transposition and pj ∈ L0.
That is, pi is “getting back” to its starting region. Similarly, τj is a departing trans-
position if it is a k-transposition and pj ∈ L0, or if it is an (n − k)-transposition and
pj ∈ R0. That is, pj is “getting away” from its original region. We say that a de-
parting transposition τj is a cutting transposition, if τj is a k-transposition and the
next k-critical transposition that involves pj is an (n − k)-transposition; or if τi is
an (n − k)-transposition and the next k-critical transposition that involves pj is a
k-transposition. All other departing transpositions are called stalling.

Finally, we define the weight of a k-critical transposition τj , denoted by w(τj ),
as the number of (≥ k + 1)-critical transpositions in Bj (π) that are not between two
elements of C0. Transpositions with weight at most n − 2k − 1 − s are called light.
All other transpositions are heavy.

Let A,N,R,C,Slight, and Sheavy be the number of augmenting, neutral, returning,
cutting, light stalling, and heavy stalling transpositions, respectively. Then K = A +
N + R + C + Slight + Sheavy.
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Bounding E≥k(Π) Observe that the k-center of all permutations in B0(π) remains
unchanged. It follows that all (≥ k + 1)-critical transpositions of B0(π) are between
elements of C0. Thus

∑K
j=1 w(τj ) counts all (≥ k + 1)-critical transpositions except

those between two elements of C0. There are
(
n−2k

2

)
transpositions between elements

of C0, but each neutral transposition corresponds to a k-critical (not (≥ k+1)-critical)
transposition between two elements of C0. Thus

E≥k(Π) ≤
(

n − 2k

2

)
− N +

K∑

j=1

w(τj ). (4)

Bounds for the Weight of a k-Critical Transposition We bound the weight of a trans-
position depending on its class (departing, returning, etc.), as well as the number of
transpositions within a class, if necessary. For j ≥ 1 all (≥ k + 1)-critical transposi-
tions in Bj (π) involve pj and thus w(τj ) ≤ n − 2k − 1. However, since the weight
of τj does not count transpositions between two elements of C0, and there are always
at least s elements of C0 in the k-center, then w(τj ) ≤ n − 2k − s whenever τj is ar-
riving (because pj ∈ C0). Moreover, if τj is a-augmenting, then w(τj ) ≤ n− 2k − a.
If τj is a returning transposition, then pj has already been transposed with all the
elements of C0 that are in the k-center of πij . Since there are at least s such elements,
then w(τj ) ≤ n − 2k − 1 − s. Summarizing,

w(τj ) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n − 2k − 1 for all τj ,

n − 2k − s, if τj is neutral,

n − 2k − a, if τj is a-augmenting,

n − 2k − 1 − s, if τj is light stalling or returning.

(5)

Bounding C We bound the number of cutting transpositions. Since the first (last)
k elements of π0 are the last (first) elements of π(n

2)
, then the 2k elements not in

C0 must participate in at least one cutting transposition. That is, C ≥ 2k. Note that,
if p /∈ C0 participates in c ≥ 2 cutting transpositions, then there must be at least
c − 1 returning transpositions of p. In other words, there must be at least C − 2k ≥ 0
returning transpositions. There are C cutting transpositions and at least n − 2k − s

arriving transpositions (at least one a-augmenting arriving transposition for each s +
1 ≤ a ≤ n−2k). Then K −C − (n−2k − s) counts all other k-critical transpositions,
including in particular all returning transpositions. Thus K − C − (n − 2k − s) ≥
C − 2k, that is,

2C ≤ 4k + K − n + s. (6)

Augmenting and Heavy Stalling Transpositions We keep track of the augmenting
and heavy stalling transpositions together. To do this, we consider the bipartite graph
G whose vertices are the augmenting and the heavy stalling transpositions. The aug-
menting transposition τl is adjacent in G to the heavy stalling transposition τj if
j < l, pj is in the k-center of all permutations in blocks Bj to Bl , one transposition
from τj and τl is a k-transposition and the other is an (n − k)-transposition, and pl

does not swap with pj in Bl(π). We bound the degree of a vertex in G.
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Let τj be a heavy stalling transposition. If pj ∈ L0 (the case pj ∈ R0 is equiv-
alent), then τj is a k-transposition. Because pj moves to the right exactly w(τj ) >

n − 2k − 1 − s positions within Bj (π), it follows that the k-center right before τj+1

occurs (i.e., the k-center of πij+1−1) has at most n − 2k − 1 − w(τj ) < s points of C0

to the right of pj . Also, since τj is stalling, the next time that pj leaves the k-center
is by a k-transposition τj+b . This means that the k-center right before τj+b occurs
(i.e., the k-center of πij+b−1) has at least s points of C0 to the right of pj . Thus,
between τj and τj+b there must be at least s − (n−2k −1−w(τj )) arriving (n− k)-
transpositions τl such that pl remains to the right of pj in Bl(π), i.e., pl does not
swap with pj in Bl(π). These transpositions are adjacent to τj and thus the degree
of τj in G is at least w(τj ) − (n − 2k − 1 − s). Hence,

∣∣E(G)
∣∣ ≥

∑

τj heavy stalling

(
w(τj ) − (n − 2k − 1 − s)

)
,

where E(G) is the set of edges of G.
Let τl be an a-augmenting transposition. Since pl ∈ C0, and weights do not count

transpositions between two elements of C0, then at most n − 2k − a − w(τl) points
in L0 ∪ R0 do not swap with pl in Bl(π). Only these points are possible pj s such
that τj is adjacent to τl . Thus the degree of τl in G is at most n − 2k − a − w(τl) ≤
n − 2k − 1 − s − w(τl).

Note that there is at least one a-augmenting transposition for each s + 1 ≤ a ≤
n − 2k. This is because the k-center of at least one permutation of π contains exactly
s elements of C0 (by definition of s), and the k-center of π(n

2)
contains exactly n− 2k

elements of C0 (since it coincides with C0). Then the number of elements in the k-
center must be eventually incremented from s to n−2k. For each s +1 ≤ a ≤ n−2k,
we use n − 2k − a − w(τl) to bound the degree of one a-augmenting transposition.
For all other augmenting transpositions we use the bound n − 2k − 1 − s − w(τl).
Hence

∣∣E(G)
∣∣ ≤

∑

τj augmenting

(
(n − 2k − 1 − s) − w(τj )

) −
n−2k∑

a=s+1

(a − s − 1)

=
∑

τj augmenting

(
(n − 2k − 1 − s) − w(τj )

) −
(

n − 2k − s

2

)
.

The previous two inequalities imply that

∑

τj augmenting

w(τj ) +
∑

τj heavy stalling

w(τj )

≤ (n − 2k − 1 − s)(A + Sheavy) −
(

n − 2k − s

2

)
. (7)
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Final Calculations We use (5) and (7) to bound
∑K

i=1 w(τi) − N .

K∑

j=1

w(τj ) − N =
∑

τj cutting

w(τj ) +
∑

τj augmenting

w(τj ) +
∑

τj heavy stalling

w(τj )

+
∑

τj light stalling

w(τj ) +
∑

τj returning

w(τj ) +
∑

τj neutral

w(τj ) − N

≤ (n − 2k − 1)C + (n − 2k − 1 − s)(A + Sheavy) −
(

n − 2k − s

2

)

+ (n − 2k − 1 − s)(Slight + R) + (n − 2k − s)N − N

≤ sC + (n − 2k − 1 − s)K −
(

n − 2k − s

2

)
.

By (4),

E≥k(Π) ≤
(

n − 2k

2

)
−

(
n − 2k − s

2

)
+ sC + (n − 2k − 1 − s)K

= (n − 2k − 1)K − s

2
(2K − 2n + 4k + 1 + s − 2C).

Finally, by (6),

E≥k(Π) ≤ (n − 2k − 1)K − s

2
(K − n + 1). �

4 New Exact Values of h(n), ˜h(n), cr(n), and c̃r(n) for n ≤ 27

We start by stating a relaxed version of Theorem 1, which we use in the special case
when k = �n/2� − 1.

Corollary 1 Let Π be a simple allowable sequence on [n] and π any halfperiod
of Π . If s = s(k,π), then

E≥k(Π) ≤ (n − 2k − 1)Ek−1(Π) +
(

s

2

)

≤ (n − 2k − 1)Ek−1(Π) +
(

n − 2k − 1

2

)
.

Proof There are at least n − 2k − s elements of C0 that leave the k-center, so
there are at least n − 2k − s arriving transpositions. In addition, there are at least
2k departing transpositions, one per element not in C0. It follows that Ek−1(Π) ≥
2k + (n− 2k − s) = n− s. The first inequality now follows directly from Theorem 1.
Finally, s ≤ n − 2k − 1 for all halfperiods of Π which yields the second inequality.
Another consequence is that Ek−1(Π) ≥ n − s ≥ 2k + 1, which is in fact the mini-
mum possible value of Ek−1 (cf. [22]). �
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The previous corollary implies the following result for halving lines.

Corollary 2 If Π is a simple allowable sequence on [n] and n ≥ 6, then

h(Π) ≤
{⌊ 1

2

(
n
2

) − 1
2E≤n/2−3(Π)

⌋
if n is even,

⌊ 2
3

(
n
2

) − 2
3E≤(n−1)/2−3(Π) + 1

3

⌋
if n is odd.

Proof The inequality follows from Corollary 1 using k = �n/2�−1, and the identities
E≥�n/2�−1(Π) = h(Π) and E≤�n/2�−3(Π) + E�n/2�−2(Π) + h(Π) = (

n
2

)
. �

The exact values of h(n) were previously known only for even n ≤ 14 or odd
n ≤ 21 [8, 13]. The exact values of cr(n) were previously known only for even
n ≤ 18 or odd n ≤ 21 [11]. Inequality (2) is also valid in the context of allowable
sequences [1]. This bound for k = �n/2� − 3 and Corollary 2 give the new upper
bounds for h̃(n) in Table 1. We also obtained the new lower bounds for c̃r(n) re-
ported in Table 1. To do this we used identity (3) together with the new values of
h̃(n), the identity E≤�n/2�−2(Π) = (

n
2

)−h(Π), and inequality (2) for k ≤ �n/2�− 3.

For example, if n = 24 then E≤10(Π) = (24
2

) − h(Π) ≥ 276 − h̃(24) = 225 and
by (2), the vector (E≤0(Π),E≤1(Π), . . . ,E≤9(Π)) is bounded below entry-wise
by (3,9,18,30,45,63,84,108,138,174), so (3) implies that c̃r(24) = ∑10

k=0(21 −
2k)E≤k(Π) − 3

4

(24
3

) ≥ 3699.
All the bounds shown in Table 1 are attained by Aichholzer’s et al. construc-

tions [9], and thus Table 1 actually shows the exact values of h̃(n), h(n), c̃r(n), and
cr(n) for n in the specified range.

The previous argument to obtain new upper bounds for h(n) does not improve
the general bound h(n) ≤ cn4/3. However, even with the current best constant c =
(31287/8192)1/3 < 1.5721 [8, 24], our bound is better when n is even in the range
8 ≤ n ≤ 184.

5 New Lower Bound for the Number of ≤ k-Edges

In this section, we obtain a new lower bound for the number of ≤ k-edges. Our em-
phasis is on finding the best possible asymptotic result as well as the best bounds
that apply to the small values of n for which the exact value is unknown. Theorem 2
provides the exact result that can be applied to small values of n, whereas Corollary 3
gives the best known asymptotic behavior.

Let m = �(4n − 11)/9�. For each n, define the following recursive sequence:

um−1 = 3

(
m + 1

2

)
+ 3

(
m + 1 − �n/3�

2

)
− 3

(
m −

⌊
n

3

⌋)(
n

3
−

⌊
n

3

⌋)
and

uk =
⌈

1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)⌉
for k ≥ m.

The following is the new lower bound on E≤k(n). It follows from Theorem 1.
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Theorem 2 For any n and k such that m − 1 ≤ k ≤ (n − 3)/2,

E≤k(n) ≥ uk.

Proof We need the following two lemmas to estimate the growth of the sequence uk

with respect to n and k. For presentation purposes, we defer their proofs to the end of
the section.

Lemma 1 For any k such that m − 1 ≤ k ≤ (n − 5)/2,

3

√

1 − 2k + 9/2

n
<

(
n
2

) − uk(
n
2

) − um−1
≤ 3

√

1 − 2k + 2

n
. (8)

Lemma 2 For any k such that m ≤ k ≤ (n − 5)/2,

3

√

1 − 2k + 9/2

n

((
n

2

)
− um−1

)
≥ (n − 1)(n − 2k − 3).

We prove the stronger statement Ẽ≤k(n) ≥ uk . Let Π be an allowable sequence on
[n] and π any of its halfperiods. We proceed by induction on k. If k = m−1 the result
holds by Inequality (2), proved in the more general context of allowable sequences
[1]. Assume that k ≥ m and E≤k−1(Π) ≥ uk−1. Let s = s(k + 1,π); by Theorem 1,

E≥k+1(Π) ≤ (n − 2k − 3)Ek(Π) − s

2

(
Ek(Π) − (n − 1)

)
.

If s = 0 or Ek(Π) ≥ n − 1, then E≥k+1(Π) ≤ (n − 2k − 3)Ek(Π). Thus

(
n

2

)
− E≤k(Π) ≤ (n − 2k − 3)

(
E≤k(Π) − E≤k−1(Π)

)
,

and by induction

E≤k(Π) ≥ 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)E≤k−1(Π)

)

≥ 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)
,

which implies that E≤k(Π) ≥ uk by definition of uk . Now assume s > 0 and
Ek(Π) < n − 1. Because Ek(Π) ≥ 2k + 3 (see the proof of Corollary 1), it follows
that k ≤ (n − 5)/2. By Theorem 1,

E≥k+1(Π) ≤ (n − 2k − 3)Ek(Π) − s

2

(
Ek(Π) − (n − 1)

)

=
(

n − 2k − 3 − s

2

)
Ek(Π) + s

2
(n − 1).
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Recall that s = s(k + 1,π) ≤ n − 2k − 3. Because Ek(Π) < n − 1, it follows that

E≥k+1(Π) ≤
(

n − 2k − 3 − s

2

)
(n − 1) + s

2
(n − 1)

= (n − 1)(n − 2k − 3).

Therefore

E≤k(Π) =
(

n

2

)
− E≥k+1(Π) ≥

(
n

2

)
− (n − 1)(n − 2k − 3).

By Lemma 2,

E≤k(Π) ≥
(

n

2

)
− 3

√

1 − 2k + 9/2

n

((
n

2

)
− um−1

)
,

and by Lemma 1, E≤k(Π) ≥ uk for all allowable sequences Π on [n]. Therefore
E≤k(n) ≥ Ẽ≤k(n) ≥ uk . �

Corollary 3 For any n and k such that m − 1 ≤ k ≤ (n − 2)/2,

E≤k(n) ≥
(

n

2

)
− 1

9

√

1 − 2k + 2

n

(
5n2 + 19n − 31

)
.

Proof Let Π be an allowable sequence on [n]. If k = �n/2�−1, then E≤�n/2�−1(Π) =(
n
2

)
. For k < �n/2� − 1, it follows that n ≥ 3 and from Theorem 2 and Lemma 1,

E≤k(Π) ≥ uk ≥
(

n

2

)
− 3

√

1 − 2k + 2

n

((
n

2

)
− um−1

)
.

Considering the possible residues of n modulo 9, it can be verified that for n ≥ 3,

um−1 ≥ 17

54
n2 − 65

54
n + 31

27

(
equality if n ≡ 3 (mod 9)

)
.

Therefore E≤k(n) ≥ Ẽ≤k(n) ≥ (
n
2

) − 1
9

√
1 − 2k+2

n
(5n2 + 19n − 31). �

5.1 Proofs of Lemmas 1 and 2

Proof of Lemma 1 The integer range [m − 1, (n − 5)/2] is empty for n ≤ 5. Assume
n ≥ 6 and proceed by induction on k. If k = m− 1, then 3

√
1 − (2m + 5/2)/n ≤ 1 ≤

3
√

1 − 2m/n is equivalent to �(4n − 11)/9� ≤ 4n/9 ≤ �(4n − 11)/9� + 5/4 which
holds in general. Assume that k ≥ m and that (8) holds for k − 1. From the definition
of uk and the induction hypothesis,

(
n

2

)
− uk ≤

(
n

2

)
− 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)



Discrete Comput Geom (2012) 48:192–215 205

= n − 2k − 3

n − 2k − 2

((
n

2

)
− uk−1

)

≤ 3

((
n

2

)
− um−1

)
n − 2k − 3

n − 2k − 2

√

1 − 2k

n
,

and (n−2k−3)
√

1 − 2k/n /(n−2k−2) ≤ √
1 − (2k + 2)/n because k ≤ (n−5)/2,

which proves the second inequality in (8). Similarly, from the definition of uk and the
induction hypothesis,

(
n

2

)
− uk ≥

(
n

2

)
− 1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)uk−1

)
− 1

= n − 2k − 3

n − 2k − 2

((
n

2

)
− uk−1

)
− 1

≥ 3

((
n

2

)
− um−1

)
n − 2k − 3

n − 2k − 2

√

1 − 2k + 5/2

n
− 1.

Hence, to prove the second inequality in (8), it is enough to show that 3(
(
n
2

) −
um−1)d > 1, where

d = n − 2k − 3

n − 2k − 2

√

1 − 2k + 5/2

n
−

√

1 − 2k + 9/2

n
(9)

is always positive because k ≤ (n − 5)/2. First note that

um−1 ≤ 3

(
m + 1

2

)
+ 3

(
m + 1 − �n/3�

2

)

≤ 3

(
(4n + 6)/9

2

)
+ 3

(
(n + 10)/9

2

)
,

which implies that

3

((
n

2

)
− um−1

)
≥ 1

9

(
5n2 − 25n + 4

)
. (10)

Multiplying the easily verified inequality

1 >
(n − 2k − 3)

√
n − 2k − 5/2 + (n − 2k − 2)

√
n − 2k − 9/2

(2n − 4k − 5)
√

n − 2k − 5/2

by (9), yields

d >
n − 2k − 9/4

(n − 2k − 2)2
√

n(n − 2k − 5/2)
· 2n − 4k − 4

2n − 4k − 5

>
n − 2k − 9/4

(n − 2k − 2)2
√

n(n − 2k − 5/2)
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=
(

1 − 1

4(n − 2k − 2)

)
1

(n − 2k − 2)
√

n(n − 2k − 2 − 1/2)
.

Since (4n − 11)/9 ≤ k ≤ (n − 5)/2, then 3 ≤ n − 2k − 2 ≤ (n + 4)/9. Thus

d >

(
1 − 1

12

)
27

(n + 4)
√

n(n − 1/2)
= 99

4(n + 4)
√

n(n − 1/2).

This inequality, together with (10), imply that for all n ≥ 6,

3

((
n

2

)
− um−1

)
d >

11

4

(
5n2 − 25n + 4

(n + 4)
√

n(n − 1/2)

)
> 1. �

Proof of Lemma 2 For each n ≤ 40 the integer range [m,(n−5)/2] is either empty or
contains only k = �(n − 5)/2�. For these cases, the inequality can easily be verified.
Assume n ≥ 41, it follows from (10) that

9

(
1 − 2k + 9/2

n

)((
n

2

)
− um−1

)2

≥ (n − 2k − 9/2)(5n2 − 25n + 4)2

81n
.

Since k ≤ (n − 5)/2, then

n − 2k − 9/2 ≥ (n − 2k − 3)2

n − 2k + 3
.

Also k ≥ m ≥ (4n − 11)/9 implies n − 2k + 3 ≤ (n + 49)/9 and thus

(n − 2k − 9/2)(5n2 − 25n + 4)2

81n
≥ (n − 2k − 3)2(5n2 − 25n + 4)2

9n(n + 49)
.

Finally, for n ≥ 41,

(5n2 − 25n + 4)2

9n(n + 49)
≥ (n − 1)2,

and consequently

9

(
1 − 2k + 9/2

n

)((
n

2

)
− um−1

)2

≥ (n − 1)2(n − 2k − 3)2. �

6 New Lower Bound on cr(n)

In this section, we use Corollary 3 to get the following new lower bound on cr(n).

Theorem 3 cr(n) ≥ 277
729

(
n
4

) + Θ(n3) > 0.379972
(
n
4

) + Θ(n3).
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Proof We actually prove that the right hand side is a lower bound on c̃r(n). According
to (3), if Π is an allowable sequence on [n], then

cr(Π) =
(

n

4

)(

24
�n/2�−1∑

k=0

1

n

(
1 − 2k

n

)
E≤k(Π)

n2

)

+ Θ
(
n3). (11)

Using inequality (2) for 0 ≤ k ≤ m − 1 gives

E≤k(Π)

n2
≥ 3

2

(
k

n

)2

+ 3

2
max

(
0,

k

n
− 1

3

)2

− Θ

(
1

n

)
.

Similarly, if m ≤ k ≤ �n/2� − 1, then by Corollary 3,

E≤k(Π)

n2
≥ 1

2
− 5

9

√

1 − 2k

n
+ Θ

(
1

n

)
.

These two inequalities in their corresponding ranges applied to (11) give a Rie-
mann sum (on the variable x = k/n) that can be estimated using the corresponding
integral. Note that the error terms are uniformly bounded by Θ(n3). Therefore,

cr(Π) ≥
(

n

4

)(
24

∫ 4/9

0

3

2
(1 − 2x)

(
x2 + max

(
0, x − 1

3

)2)
dx

)

+
(

n

4

)(
24

∫ 1/2

4/9
(1 − 2x)

(
1

2
− 5

9

√
1 − 2x

)
dx

)
+ Θ

(
n3)

≥
(

n

4

)(
86

243
+ 19

729

)
+ Θ

(
n3) = 277

729

(
n

4

)
+ Θ

(
n3). �

Table 2 gives the best lower bounds for c̃r(n) in the range 28 ≤ n ≤ 99 that follow
from using (3) with the bound in either (2) or the new bound from Theorem 2, with
the notable exception of n = 30 for which c̃r(30) = 9726 was recently determined by
Cetina et al. [15].

7 A Point Set with Few ≤ k-Edges for Every k ≤ 4n/9 − 1

Combining (2) and Theorem 2, we obtain the best known lower bound for E≤k(n). If
n is a multiple of 9 and k ≤ (4n/9) − 1, then this bound reads

E≤k(n) ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3
(
k+2

2

)
if 0 ≤ k ≤ n/3 − 1,

3
(
k+2

2

) + 3
(
k−n/3+2

2

)
if n/3 ≤ k ≤ 4n/9 − 2,

3
(
(4n/9−1)+2

2

) + 3
(
(4n/9−1)−n/3+2

2

) + 3 if k = 4n/9 − 1.

(12)

Our aim in this section is to show that this bound is tight for n ≥ 27. This improves
on the construction in [10], where tightness for (12) is proved for k ≤ (5n/12).

We recursively construct, for each integer r ≥ 3, a 9r-point set Sr such that for
every k ≤ (4n/9) − 1, E≤k(Sr) equals the right-hand side of (12).
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Table 2 New lower bounds for c̃r(n)

n c̃r(n) ≥ n c̃r(n) ≥ n c̃r(n) ≥ n c̃r(n) ≥

28 7233 46 59410 64 234223 82 649190

29 8421 47 65015 65 249732 83 682308

30 9726 48 70948 66 265888 84 716507

31 11207 49 77362 67 282974 85 752217

32 12830 50 84146 68 300767 86 789077

33 14626 51 91374 69 319389 87 827289

34 16613 52 99073 70 338913 88 866947

35 18796 53 107251 71 359311 89 907990

36 21164 54 115878 72 380531 90 950372

37 23785 55 125087 73 402798 91 994394

38 26621 56 134798 74 425980 92 1039840

39 29691 57 145030 75 450078 93 1086725

40 33048 58 155900 76 475305 94 1135377

41 36674 59 167344 77 501531 95 1185551

42 40561 60 179354 78 528738 96 1237263

43 44796 61 192095 79 557191 97 1290844

44 49324 62 205437 80 586684 98 1346029

45 54181 63 219457 81 617310 99 1402932

7.1 Constructing the Sets Sr

If a and b are distinct points, then �(ab) denotes the line spanned by a and b, and ab

denotes the closed line segment with endpoints a and b, directed from a toward b.
Let θ denote the clockwise rotation by an angle of 2π/3 around the origin. At this
point the reader may want to take a sneak preview at Fig. 2, where S3 is sketched.

For each r ≥ 3 the set Sr is naturally partitioned into nine sets of size r : Ar =
{a1, . . . , ar}, A′

r = {a′
1, . . . , a

′
r}, A′′

r , and their respective 2π/3 and 4π/3 rotations
around the origin. The elements of A′′

r are not labeled because they change in each
iteration. For i = 1, . . . , r , we let bi = θ(ai), b

′
i = θ(a′

i ), ci = θ2(ai), and c′
i = θ2(ai).

Thus if we let Br = {b1, . . . , br}, B ′
r = {b′

1, . . . , b
′
r}, B ′′

r = θ(A′′
r ), Cr = {c1, . . . , cr},

C′
r = {c′

1, . . . , c
′
r}, and C′′

r = θ2(A′′
r ), then we obtain Br ∪ B ′

r ∪ B ′′
r (respectively,

Cr ∪ C′
r ∪ C′′

r ) by applying θ (respectively, θ2) to Ar ∪ A′
r ∪ A′′

r . We refer to this
property as the 3-symmetry of Sr .

As we mentioned before, the construction of the sets Sr is recursive. For r ≥ 3,
we obtain Ar+1 and A′

r+1 by adding suitable points ar+1 to Ar and a′
r+1 to A′

r .
Keeping 3-symmetry, this determines Br+1, B ′

r+1, Cr+1, and C′
r+1. However, the

set A′′
r+1 is not obtained by adding a point to A′′

r , but instead is defined in terms of
Br+1,B

′
r+1,Cr+1, and C′

r+1; this explains why we have not listed the elements in
A′′

r ,B
′′
r , and C′′

r .
Before moving on with the construction, we remark that the sets Sr contain subsets

of more than two collinear points. As will become clear from the construction, the
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Fig. 2 The 27-point set S3. The points a∞, a′∞, b∞, b′∞, c∞, and c′∞ do not belong to S3

points can be slightly perturbed to general position, so that the number of ≤ k-edges
remains unchanged for every k ≤ 4n/9 − 1.

We start by describing S3, see Fig. 2. First we explicitly fix A3 and A′
3:

a1 = (−700,−50), a2 = (−410,150), a3 = (−436,144), a′
1 = (−1300,20), a′

2 =
(−1200,−10), and a′

3 = (−1170,−14). Thus B3, B ′
3, C3, and C′

3 also get deter-
mined. For the points in A′′

3 we do not give their exact coordinates, instead we simply
ask that they satisfy the following: all the points in A′′

3 lie on the x-axis, and are suf-
ficiently far to the left of A3 ∪ A′

3 so that if a line �1 passes through a point in A′′
3 and

a point in S3 \ (B ′′
3 ∪ C′′

3 ), and a line �2 passes through two points in S3 \ A′′
3, then

the slope of �1 is smaller in absolute value than the slope of �2, i.e., �1 is closer (in
slope) to a horizontal line, than �2.

We need to define six auxiliary points not in Sr : a∞ = �(a2a3) ∩ �(c2c3) and
a′∞ = �(a′

2a
′
3)∩ �(a2a3). As expected, let b∞ = θ(a∞), c∞ = θ2(a∞), b′∞ = θ(a′∞),

and c′∞ = θ2(a′∞).
We now describe how to get Sr+1 from Sr . The crucial step is to define the points

br+1 and a′
r+1 to be added to Br and A′

r to obtain Br+1 and A′
r+1, respectively. Then
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Fig. 3 br+1 is placed in between br and b∞ , above the line �(a′
r a2)

we construct A′′
r+1 and applying θ and θ2 to Br+1, A′

r+1, and A′′
r+1, we obtain the

rest of Sr+1.
Suppose that for some r ≥ 3, the set Sr has been constructed so that the following

properties hold for t = r (this is clearly true for the base case r = 3):

(I) The points a2, . . . , at appear in this order along a2a∞.
(II) The points a′

2, . . . , a
′
t appear in this order along a′

2a
′∞.

(III) For all i = 2, . . . , t −1 and j = 2, . . . , t , �(a′
iaj ) intersects the interior of bibi+1.

(IV) For all j = 2, . . . , t , �(a′
t aj ) intersects the interior of btb∞.

Now we add br+1 and a′
r+1. Place br+1 anywhere on the open line segment de-

termined by b∞ and the intersection point of �(a′
ra2) with brb∞. (The existence of

this intersection point is guaranteed by (IV), see Fig. 3.) Place a′
r+1 anywhere on the

open line segment determined by a′∞ and the intersection point of �(br+1a∞) with
a′
ra

′∞. (This intersection exists because a′∞, a∞, a2, and b∞ are collinear and appear
in this order along �(a′∞b∞), the line �(a′∞b∞) separates br+1 from a′

r , and the line
�(a′

ra2) separates br+1 from a∞, see Fig. 4.) Thus Br+1 and A′
r+1 and consequently

Ar+1,Cr+1,B
′
r+1, and C′

r+1, are defined. It is straightforward to check that (I)–(IV)
hold for t = r + 1.

It only remains to describe how to construct A′′
r+1. As we mentioned above, this

set is not a superset of A′′
r , instead it gets defined analogously to A′′

3: we let the points
in A′′

r+1 lie on the x-axis, and sufficiently far to the left of Ar+1 ∪ A′
r+1, so that if �1

passes through a point in A′′
r+1 and through a point in Sr+1 \ (B ′′

r+1 ∪ C′′
r+1), and �2

spans two points in Sr+1 \A′′
r+1, then the slope of �1 is smaller in absolute value than

the slope of �2.
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Fig. 4 a′
r+1 is placed in between a′

r and a′∞ , below the line �(a∞br+1)

7.2 Calculating E≤k(Sr)

We fix r ≥ 3, and proceed to determine E≤k(Sr) for each k, 0 ≤ k ≤ 4r − 1. It is
now convenient to label the elements of A′′

r ,B
′′
r , and C′′

r . Let a′′
1 , a′′

2 , . . . , a′′
r be the

elements of A′′
r , ordered as they appear from left to right along the negative x-axis.

As expected, let b′′
i = θ(a′′

i ) and c′′
i = θ2(a′′

i ), for i = 1, . . . , r .
We call a k-edge bichromatic if it joins two points with different label letters (i.e.,

if it is of the form ab, bc, or ac); otherwise, a k-edge is monochromatic. A monochro-
matic edge is of type aa if it is of the form �(aiaj ) for some integers i, j ; edges of
types aa′, aa′′, a′a′, a′a′′, a′′a′′ (and their counterparts for b and c) are similarly de-
fined. Finally, we say that an edge of any of the types aa, aa′, aa′′, a′a′, a′a′′, or
a′′a′′ is of type A; edges of types B and C are similarly defined. We let Ebic

≤k (respec-
tively, Emono≤k ) stand for the number of bichromatic (respectively, monochromatic)

≤ k-edges, so that E≤k(Sr) = Ebic
≤k(Sr) + Emono

≤k (Sr).
We say that a finite point set P is 3-decomposable if it can be partitioned into three

equal-size sets A, B , and C satisfying the following: there is a triangle T enclosing P

such that the orthogonal projections of P onto the three sides of T show A between
B and C on one side, B between A and C on another side, and C between A and B

on the third side (see [2]). We say that {A,B,C} is a 3-decomposition of P . It is easy
to see that if we let A := Ar ∪ A′

r ∪ A′′
r , B := Br ∪ B ′

r ∪ B ′′
r , and C := Cr ∪ C′

r ∪ C′′
r ,

then {A,B,C} is a 3-decomposition of Sr : indeed, it suffices to take an enclosing
triangle of Sr with one side orthogonal to the line spanned by the points in A′′, one
side orthogonal to the line spanned by the points in B ′′, and one side orthogonal to
the line spanned by the points in C′′. Thus, it follows from Claim 1 in [2] (where it is
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proved in the more general setting of allowable sequences) that

Ebic
≤k(Sr) =

⎧
⎨

⎩

3
(
k+2

2

)
, if 0 ≤ k ≤ 3r − 1;

3
(3r+1

2

) + (k − 3r + 1)9r, if 3r ≤ k ≤ 4r − 1.
(13)

We now count the monochromatic ≤ k-edges. By 3-symmetry, it suffices to focus
on those of type A.

It is readily checked that for all i and j distinct integers, �(aiaj ), �(a′
ia

′
j ), and

�(a′′
i a′′

j ) are k-edges for some k > 4r − 1. The same is true for �(aia
′
j ) whenever i

and j are not both equal to 1 (when i �= 1 and j �= 1 this follows from (III) and (IV)),
while �(a1a

′
1) is a (4r − 1)-edge. Now, for 1 ≤ i ≤ r and 2 ≤ j ≤ r , the line �(a′′

i a′
j )

separates 4r + i − j points of Sr from the rest. That is, �(a′′
i a′

j ) is a (4r + i − j)-edge
if i − j ≤ r/2 − 1 or a (5r − 2 − i + j)-edge if i − j > r/2 − 1. Similarly, �(a′′

i a′
1),

�(a′′
i aj ), and �(a′′

i a1) separate 4r + i − 2, 3r + i + j − 3, and 3r + i − 1 points of Sr

from the rest, respectively. In conclusion,

(i) for 1 ≤ s ≤ r , the number of (3r − 1 + s)-edges of types a′a′′ or aa′′ is 2s;
(ii) there is exactly one (4r − 1)-edge of type aa′; and

(iii) all other edges of type A are k-edges for some k > 4r − 1.

It follows that the number of ≤ k-edges of type A is

(a) 0, for k ≤ 3r − 1;

(b) 2
∑k−(3r−1)

s=1 s = 2
(
k−3r+2

2

)
, for 3r ≤ k ≤ 4r − 2;

(c) 1 + 2
∑(4r−1)−(3r−1)

s=1 s = 2
(
r+1

2

) + 1, for k = 4r − 1.

By 3-symmetry, for each integer k there are exactly as many (≤ k)-edges of type
A as there are of type B, and of type C. Therefore

Emono≤k (Sr) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if 0 ≤ k ≤ 3r − 1,

6
(
k−(3r−2)

2

)
if 3r ≤ k ≤ 4r − 2,

6
(
r+1

2

) + 3 if k = 4r − 1.

(14)

Because E≤k(Sr) = Ebic≤k(Sr) + Emono≤k (Sr), it follows by (13) and (14) that
E≤k(Sr ) equals the right-hand side of (12).

8 Concluding Remarks

The inequality in Theorem 1 is best possible. That is, there are n-point sets P whose
simple allowable sequence Π gives equality in the inequality of Corollary 1:

E≥k(Π) = (n − 2k − 1)Ek−1(Π) +
(

s

2

)
.

We present two constructions. The first has s = n − 2k − 1 and consists of 2k + 1
points which are the vertices of a regular polygon and n − 2k − 1 central points very
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close to the center of the polygon. This construction was given in [22] to show that
Ek−1 ≥ 2k + 1 is best possible. Indeed, note that the (k − 1)-edges of P correspond
to the larger diagonals of the polygon, and so Ek−1(Π) = 2k +1; moreover, any edge
formed by two points in the central part or one point in the central part and a vertex of
the polygon determine a ≥ k-edge. Thus E≥k(Π) = (

n−2k−1
2

)+ (2k +1)(n−2k −1),
which achieves the desired equality.

The second construction has s = 0 and thus it can only be achieved when k ≥ n/3.
Consider a (2t +1)-regular polygon where each vertex is replaced by a set of m points
on a small segment pointing in the direction of the center of the polygon. Let Π be
the allowable sequence corresponding to this point set, n = (2t + 1)m, and k = tm. It
is straightforward to verify that Ek−1(Π) = (2t + 1)m and E≥k(Π) = 2(2t + 1)

(
m
2

)
.

Thus E≥k(Π) = (m − 1)Ek−1(Π) = (n − 2k − 1)Ek−1(Π).
Prior to this work, there were two results that provided a lower bound for E≤k(P )

based on the behavior of values of k close to n/2. First, Welzl [27] as a particular
case of a more general result proved that E≤k(P ) ≥ F1(k, n), where

F1(k, n) =
(

n

2

)
− 2n

(
n/2∑

j=k+1

k

)1/2

<

(
n

2

)
−

√
2

2
n3/2

√
n − 2k.

Second, Balogh and Salazar [12] proved that E≤k(P ) ≥ F2(k, n), where F2(k, n) is
a function that, for n/3 ≤ k ≤ n/2, satisfies

F2(k, n) <

(
n

2

)
− 13

√
3

36
n3/2

√
n − 2k + o

(
n2).

By direct comparison, it follows that both F1(k, n) and F2(k, n) are smaller than the
bound in Corollary 3. Thus our bound is better than these two previous bounds.

A nice feature of Theorem 1 is that it can give better bounds for E≤k(n) and k large
enough, and for cr(n), provided someone finds a better bound than inequality (2) for
E≤k(n) when 4n/9 < k < n/2. For example, Ábrego et al. [5] considered 3-regular
point sets P . These are point sets with the property that for 1 ≤ j ≤ n/3, the j th
depth layer of P has exactly 3 points of P . A point p ∈ P is in the j th depth layer if
p belongs to a (j − 1)-edge but not to a (≤ j − 2)-edge of P . If n is a multiple of 18,
they proved the following lower bound:

E≤k(P ) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − n/3

2

)
+ 18

(
k + 2 − 4n/9

2

)
. (15)

This is better than the bound in Theorem 2 for k > 4n/9, however using Theorem 1 it
is possible to find an even better lower bound when k ≥ 17n/36. We construct a new
recursive sequence u′ starting at m = 17n/36 given by

u′
m−1 = 3

(
m + 1

2

)
+ 3

(
m + 1 − �n/3�

2

)
+ 18

(
m + 1 − �4n/9�

2

)
and

u′
k =

⌈
1

n − 2k − 2

((
n

2

)
+ (n − 2k − 3)u′

k−1

)⌉
for k ≥ m.
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The value of m = 17n/36 is the smallest possible for which u′
m is greater than

the right-hand side of (15). Following the proof of Theorem 2 it is possible to
show that E≤k(P ) ≥ u′

k for 17n/36 ≤ k < n/2. Thus, if we could show that (15)
holds for arbitrary point sets P , then we know that bound will no longer be tight
for k ≥ 17n/36. From equivalent statements to Lemmas 1 and 2, it follows that
u′

k ∼ (
n
2

) − (7
√

2n2/18)
√

1 − 2k/n. This in turn improves the crossing number of
3-regular point sets P to cr(P ) ≥ 0.380024

(
n
4

) + Θ(n3).
In [2] we considered other class of point sets called 3-decomposable. These are

point sets P for which there is a triangle T enclosing P and a balanced partition A,
B , and C of P , such that the orthogonal projections of P onto the sides of T show A

between B and C on one side, B between A and C on another side, and C between
A and B on the third side. For 3-decomposable sets P we were able to prove a lower
bound consisting of an infinite series of binomial coefficients:

E≤k(P ) ≥ 3

(
k + 2

2

)
+ 3

(
k + 2 − n/3

2

)
+ 3

∞∑

j=2

j (j + 1)

(
k + 2 − cjn

2

)
, (16)

where cj = 1/2 − 1/(3j (j + 1)).
Our main result does not improve this lower bound, however it gives an interesting

heuristic that provides some evidence about the potential truth of this inequality for
unrestricted point sets P . If we assume that the sum of the first t + 1 terms in the
right-hand side of (16) is a lower bound for E≤k(P ), then, just as we outlined in the
previous paragraph for t = 2, Theorem 1 gives a better bound when k is big enough.
This happens to be precisely when k ≥ ct+1n, which is also the value of k for which
the next term in the sum of (16) gives a nonzero contribution.

It was also shown in [2] that (16) implies the following bound for 3-decomposable
sets P :

cr(P ) ≥ 2

27

(
15 − π2)

(
n

4

)
+ Θ

(
n3) > 0.380029

(
n

4

)
+ Θ

(
n3). (17)

Theorem 1 does not improve the
(
n
4

)
coefficient, but it improves the speed of conver-

gence. For instance, using Theorem 1 together with the first 30 terms of (16) gives a
better bound than the one obtained solely from the first 101 terms of (16).

Finally, we reiterate our conjectures from [2] that inequalities (16) and (17) are
true for unrestricted point sets P . We in fact conjecture that for every k and n, the
class of 3-decomposable sets contains optimal sets for both E≤k(n) and cr(n).
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