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Abstract Let 2 ≤ n ≤ 4. We show that for an arbitrary measure μ with even contin-
uous density in R

n and any origin-symmetric convex body K in R
n,

μ(K) ≤ n

n − 1

|Bn
2 | n−1

n

|Bn−1
2 | max

ξ∈Sn−1
μ

(
K ∩ ξ⊥)

Voln(K)1/n,

where ξ⊥ is the central hyperplane in R
n perpendicular to ξ , and |Bn

2 | is the volume
of the unit Euclidean ball in R

n. This inequality is sharp, and it generalizes the hyper-
plane inequality in dimensions up to four to the setting of arbitrary measures in place
of volume. In order to prove this inequality, we first establish stability in the affir-
mative case of the Busemann–Petty problem for arbitrary measures in the following
sense: if ε > 0, K and L are origin-symmetric convex bodies in R

n, n ≤ 4, and

μ
(
K ∩ ξ⊥) ≤ μ

(
L ∩ ξ⊥) + ε, ∀ξ ∈ Sn−1,

then

μ(K) ≤ μ(L) + n

n − 1

|Bn
2 | n−1

n

|Bn−1
2 | Voln(K)1/nε.
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1 Introduction

The hyperplane problem of Bourgain [2, 3] asks whether there exists an absolute
constant C so that for any origin-symmetric convex body K in R

n

A. Koldobsky (�)
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
e-mail: koldobskiya@missouri.edu

mailto:koldobskiya@missouri.edu


Discrete Comput Geom (2012) 47:538–547 539

Voln(K)
n−1
n ≤ C max

ξ∈Sn−1
Voln−1

(
K ∩ ξ⊥)

, (1)

where ξ⊥ is the central hyperplane in R
n perpendicular to ξ. The problem is still

open, with the best-to-date estimate C ∼ n1/4 established by Klartag [16], who
slightly improved the previous estimate of Bourgain [4]. We refer the reader to re-
cent papers [7, 8] for the history and current state of the hyperplane problem.

In the case where the dimension n ≤ 4, the inequality (1) can be proved with the
best possible constant (see [11, Theorem 9.4.11]):

Voln(K)
n−1
n ≤ |Bn

2 | n−1
n

|Bn−1
2 | max

ξ∈Sn−1
Voln−1

(
K ∩ ξ⊥)

, (2)

with equality when K = Bn
2 is the Euclidean ball. Here |Bn

2 | = πn/2/�(1 + n/2) is
the volume of Bn

2 . Throughout the paper, we denote the constant in (2) by

cn = |Bn
2 | n−1

n

|Bn−1
2 | .

Note that cn < 1 for every n ∈ N; this is an easy consequence of the log-convexity of
the �-function.

Inequality (2) follows from the affirmative answer to the Busemann–Petty problem
in dimensions up to four. The Busemann–Petty problem, posed in 1956 (see [6]), asks
the following question. Suppose that K and L are origin-symmetric convex bodies in
R

n such that for every ξ ∈ Sn−1,

Voln−1
(
K ∩ ξ⊥) ≤ Voln−1

(
L ∩ ξ⊥)

.

Does it follow that

Voln(K) ≤ Voln(L)?

The answer is affirmative if n ≤ 4 and negative if n ≥ 5. The solution was completed
at the end of the 90’s as the result of a sequence of papers [1, 5, 9, 10, 12, 15, 17,
18, 23–28]; see [20, p. 3] or [11, p. 343] for the history of the solution. Applying the
affirmative part of the solution to the case where L = Bn

2 , one immediately gets (2).
In this article we prove that inequality (1) holds in dimensions up to four with

arbitrary measure in place of volume. Let f be an even continuous non-negative
function on R

n, and denote by μ the measure on R
n with density f . For every closed

bounded set B ⊂ R
n define

μ(B) =
∫

B

f (x)dx.

Our extension of (2) is as follows.

Theorem 1 If 2 ≤ n ≤ 4 and K is an origin-symmetric convex body in R
n, then

μ(K) ≤ n

n − 1
cn max

ξ∈Sn−1
μ

(
K ∩ ξ⊥)

Voln(K)1/n. (3)
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Moreover, the constant is the best possible, since there exists a sequence of measures
μj with even continuous densities such that

lim
j→∞

μj (B
n
2 )

maxξ∈Sn−1 μj (B
n
2 ∩ ξ⊥)Voln(Bn

2 )1/n
= n

n − 1
cn.

Zvavitch [29] found a remarkable generalization of the Busemann–Petty problem
to arbitrary measures, namely, one can replace volume by any measure with even con-
tinuous density in R

n. In particular, if n ≤ 4, then for any origin-symmetric convex
bodies K and L in R

n the inequalities

μ
(
K ∩ ξ⊥) ≤ μ

(
L ∩ ξ⊥)

, ∀ξ ∈ Sn−1

imply

μ(K) ≤ μ(L).

Zvavitch also proved that this is generally not true if n ≥ 5, namely, for any μ with
strictly positive even continuous density there exist K and L providing a counterex-
ample.

By analogy with the volume case, one would expect that this result immediately
implies (3). The argument, however, does not work in this setting, because the mea-
sure μ of sections of the Euclidean ball does not have to be a constant. Instead, to
prove (3) we establish stability in the affirmative part of Zvavitch’s result in the fol-
lowing sense,

Theorem 2 Let f be an even non-negative continuous function on R
n, 2 ≤ n ≤ 4,

let μ be the measure with density f, let K and L be origin-symmetric convex bodies
in R

n, and let ε > 0. Suppose that for every ξ ∈ Sn−1,

μ
(
K ∩ ξ⊥) ≤ μ

(
L ∩ ξ⊥) + ε. (4)

Then

μ(K) ≤ μ(L) + n

n − 1
cn Voln(K)1/nε. (5)

Interchanging K and L, we get

Corollary 1 Under the conditions of Theorem 2, we have

∣∣μ(K) − μ(L)
∣∣

≤ ncn

n − 1
max

ξ∈Sn−1

∣∣μ
(
K ∩ ξ⊥) − μ

(
L ∩ ξ⊥)∣∣max

{
Voln(K)

1
n ,Voln(L)

1
n
}
. (6)

Proof of Theorem 1 To prove the inequality (3) simply put L = ∅ in Corollary 1. To
show that the constant in (3) is sharp, let K = Bn

2 and, for every j ∈ N, let fj be
a non-negative continuous function on [0,1] supported in (1 − 1

j
,1) and such that
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∫ 1
0 fj (t) dt = 1. Let μj be the measure on R

n with density fj (|x|2), where |x|2 is
the Euclidean norm. We have

μj

(
Bn

2

) = ∣∣Sn−1
∣∣
∫ 1

0
rn−1fj (r) dr,

where |Sn−1| = 2πn/2/�(n/2) is the surface area of the unit sphere in R
n. For every

ξ ∈ Sn−1,

μj

(
Bn

2 ∩ ξ⊥) = ∣∣Sn−2
∣∣
∫ 1

0
rn−2fj (r) dr.

Clearly,

lim
j→∞

∫ 1
0 rn−1fj (r) dr

∫ 1
0 rn−2fj (r) dr

= 1.

The result follows from the equality (use the formula �(x + 1) = x�(x))

|Sn−1|
|Sn−2||Bn

2 |1/n
= n

n − 1
cn. �

It remains to prove Theorem 2. Note that stability in the original Busemann–Petty
problem (for volume) was established in [21]. We discuss the relation between dif-
ferent stability estimates in the end of the paper.

2 Preliminaries

We use the techniques of the Fourier approach to sections of convex bodies; see [20]
and [22] for details. As usual, we denote by S(Rn) the Schwartz space of rapidly
decreasing infinitely differentiable functions (test functions) in R

n, and S ′
(Rn) is the

space of distributions over S(Rn).

Suppose that f is a locally integrable complex-valued function on R
n with power

growth at infinity, i.e. there exists a number β > 0 so that

lim|x|2→∞
f (x)

|x|β2
= 0.

Then f represents a distribution acting by integration: for every φ ∈ S ,

〈f,φ〉 =
∫

Rn

f (x)φ(x) dx.

The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every
test function φ.

A distribution f is called even homogeneous of degree p ∈ R if
〈
f (x),φ(x/α)

〉 = |α|n+p〈f,φ〉
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for every test function φ and every α ∈ R, α �= 0. The Fourier transform of an even
homogeneous distribution of degree p is an even homogeneous distribution of degree
−n − p.

We say that a distribution is positive definite if its Fourier transform is a posi-
tive distribution in the sense that 〈f̂ , φ〉 ≥ 0 for every non-negative test function φ.

Schwartz’s generalization of Bochner’s theorem (see, for example, [14, p. 152]) states
that a distribution is positive definite if and only if it is the Fourier transform of a tem-
pered measure on R

n. Recall that a (non-negative, not necessarily finite) measure μ

is called tempered if
∫

Rn

(
1 + |x|2

)−β
dμ(x) < ∞

for some β > 0.

For an origin-symmetric convex body K in R
n we denote by

‖x‖K = min{a ≥ 0 : x ∈ aK}, x ∈ R
n

the norm in R
n generated by K. Our definition of a convex body assumes that the

origin is an interior point of K. If 0 < p < n, then ‖ · ‖−p
K is a locally integrable func-

tion on R
n and represents an even homogeneous of degree −p distribution. If ‖ · ‖−p

K

represents a positive definite distribution for some p ∈ (0, n), then its Fourier trans-
form is a tempered measure which is at the same time a homogeneous distribution of
degree −n + p. One can express such a measure in polar coordinates, as follows.

Proposition 1 ([20, Corollary 2.26]) Let K be an origin-symmetric convex body in
R

n and p ∈ (0, n). The function ‖ · ‖−p
K represents a positive definite distribution on

R
n if and only if there exists a finite Borel measure μ0 on Sn−1 so that for every even

test function φ,

∫

Rn

‖x‖−p
K φ(x)dx =

∫

Sn−1

(∫ ∞

0
tp−1φ̂(tξ) dt

)
dμ0(ξ).

The following proposition was proved in [12] (see [20, Corollary 4.9]).

Proposition 2 If 2 ≤ n ≤ 4 and K is any origin-symmetric convex body in R
n, then

the function ‖ · ‖−1
K represents a positive definite distribution.

For any even continuous function f on the sphere Sn−1 and any non-zero number
p ∈ R, we denote by f · rp the extension of f to an even homogeneous function
of degree p on R

n defined as follows. If x ∈ R
n, then x = rθ, where r = |x|2 and

θ = x/|x|2. We put

f · rp(x) = f (θ)rp.

It was proved in [20, Lemma 3.7] that the Fourier transform of f · r−n+1 is equal to
another continuous function g on Sn−1 extended to an even homogeneous of degree
−1 function g · r−1 on the whole of R

n (in fact, g is the spherical Radon transform
of f , up to a constant). This is why we can remove smoothness conditions in the
Parseval formula on the sphere [20, Corollary 3.23] and formulate it as follows.
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Proposition 3 Let K be an origin-symmetric convex body in R
n. Suppose that ‖ ·‖−1

K

is a positive definite distribution, and let μ0 be the finite Borel measure on Sn−1 that
corresponds to ‖ · ‖−1

K by Proposition 1. Then for any even continuous function f on
Sn−1,

∫

Sn−1

(
f · r−n+1)∧

(θ) dμ0(θ) =
∫

Sn−1
‖θ‖−1

K f (θ) dθ. (7)

Finally, we need a formula from [29], expressing the measure of a section in terms
of the Fourier transform. This formula generalizes the corresponding result for vol-
ume; see [19].

Proposition 4 ([29]) Let K be an origin-symmetric star body in R
n, then, for every

ξ ∈ Sn−1,

μ
(
K ∩ ξ⊥) = 1

π

(
|x|−n+1

2

∫ |x|2/‖x‖K

0
tn−2f

(
tx

|x|2
)

dt

)∧
(ξ),

where the Fourier transform of the function of x ∈ R
n in the right-hand side is a

continuous homogeneous of degree −1 function on R
n \ {0}.

3 Stability

The following elementary fact was used by Zvavitch [29] in his generalization of the
Busemann–Petty problem.

Lemma 1 Let a, b > 0 and let α be a non-negative function on (0,max{a, b}] so that
the integrals below converge. Then

∫ a

0
tn−1α(t) dt − a

∫ a

0
tn−2α(t) dt

≤
∫ b

0
tn−1α(t) dt − a

∫ b

0
tn−2α(t) dt. (8)

Proof The inequality (8) is equivalent to

a

∫ b

a

tn−2α(t) dt ≤
∫ b

a

tn−1α(t) dt.

Note that the latter inequality also holds in the case a ≥ b. �

The measure of a body can be expressed in polar coordinates as follows:

μ(K) =
∫

K

f (u)du =
∫

Sn−1

(∫ ‖x‖−1
K

0
tn−1f (tx) dt

)
dx. (9)
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In particular, if f = 1 we get the polar formula for volume:

nVoln(K) =
∫

Sn−1
‖x‖−n

K dx. (10)

We are ready to prove Theorem 2.

Proof of Theorem 2 First, we rewrite the condition (4) using Proposition 4:

(
|x|−n+1

2

∫ |x|2‖x‖K

0
tn−2f

(
tx

|x|2
)

dt

)∧
(ξ)

≤
(

|x|−n+1
2

∫ |x|2‖x‖L

0
tn−2f

(
tx

|x|2
)

dt

)∧
(ξ) + πε (11)

for each ξ ∈ Sn−1.

By Proposition 2, the function ‖ · ‖−1
K represents a positive definite distribution.

Let μ0 be the measure on Sn−1 corresponding to this positive definite distribution by
Proposition 1. Integrating (11) over Sn−1 with respect to the measure μ0 and applying
the spherical Parseval formula, Proposition 3, we get

∫

Sn−1

(
|x|−n+1

2

∫ |x|2‖x‖K

0
tn−2f

(
tx

|x|2
)

dt

)∧
(ξ) dμ0(ξ)

≤
∫

Sn−1

(
|x|−n+1

2

∫ |x|2‖x‖L

0
tn−2f

(
tx

|x|2
)

dt

)∧
(ξ) dμ0(ξ) + πε

∫

Sn−1
dμ0(ξ),

and

∫

Sn−1
‖x‖−1

K

(∫ ‖x‖−1
K

0
tn−2f (tx) dt

)
dx

≤
∫

Sn−1
‖x‖−1

K

(∫ ‖x‖−1
L

0
tn−2f (tx) dt

)
dx + πε

∫

Sn−1
dμ0(ξ). (12)

Applying Lemma 1 with a = ‖x‖−1
K , b = ‖x‖−1

L , α(t) = f (tx), we get

∫ ‖x‖−1
K

0
tn−1f (tx) dt − ‖x‖−1

K

∫ ‖x‖−1
K

0
tn−2f (tx) dt

≤
∫ ‖x‖−1

L

0
tn−1f (tx) dt − ‖x‖−1

K

∫ ‖x‖−1
L

0
tn−2f (tx) dt, ∀x ∈ Sn−1,

so

∫

Sn−1

(∫ ‖x‖−1
K

0
tn−1f (tx) dt

)
dx −

∫

Sn−1
‖x‖−1

K

(∫ ‖x‖−1
K

0
tn−2f (tx) dt

)
dx
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≤
∫

Sn−1

(∫ ‖x‖−1
L

0
tn−1f (tx) dt

)
dx −

∫

Sn−1
‖x‖−1

K

(∫ ‖x‖−1
L

0
tn−2f (tx) dt

)
dx.

(13)

Adding inequalities (12) and (13) and using the polar formula (9), we get

∫

Sn−1

(∫ ‖x‖−1
K

0
tn−1f (tx) dt

)
dx

≤
∫

Sn−1

(∫ ‖x‖−1
L

0
tn−1f (tx) dt

)
dx + πε

∫

Sn−1
dμ0(ξ),

and

μ(K) ≤ μ(L) + πε

∫

Sn−1
dμ0(ξ).

It remains to estimate the integral in the right-hand side of the latter inequality.
For this we use the formula for the Fourier transform (in the sense of distributions;
see [13, p. 194]):

(|x|−n+1
2

)∧
(ξ) = 2π

n+1
2

�(n−1
2 )

|ξ |−1
2 .

Using Parseval’s formula again, Proposition 3, and Hölder’s inequality, we obtain

πε

∫

Sn−1
dμ0(ξ) = πε�(n−1

2 )

2π
n+1

2

∫

Sn−1

(| · |−n+1
2

)∧
(ξ) dμ0(ξ)

= πε�(n−1
2 )

2π
n+1

2

∫

Sn−1
‖x‖−1

K dx

≤ πε�(n−1
2 )

2π
n+1

2

(∫

Sn−1
‖x‖−n

K dx

)1/n∣∣Sn−1
∣∣

n−1
n .

Now use the polar formula for volume (10) and note that

π�(n−1
2 )

2π
n+1

2

∣∣Sn−1
∣∣

n−1
n n1/n = n

n − 1
cn. �

Stability in the original Busemann–Petty problem was studied in [21], where it
was shown that if the dimension n ≤ 4, then for any origin-symmetric convex bodies
K and L in R

n and every ε > 0, the inequalities

Voln−1
(
K ∩ ξ⊥) ≤ Voln−1

(
L ∩ ξ⊥) + ε, ∀ξ ∈ Sn−1

imply

Voln(K)
n−1
n ≤ Voln(L)

n−1
n + cnε. (14)
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This is stronger than what Theorem 2 provides in the case of volume. In fact, if μ in
Theorem 2 is volume (f ≡ 1), then (5) reads

Voln(K) ≤ Voln(L) + nε

n − 1
cn Voln(K)1/n,

which follows from (14) by the Mean Value Theorem applied to the function h(t) =
tn/(n−1). However, Theorem 2 works for arbitrary measures, while the approach of
[21] does not allow this degree of generality.

Theorem 2 does not hold true in dimensions greater than four, simply because the
answer to the Busemann–Petty problem in these dimensions is negative. However, the
statement of this theorem becomes correct in all dimensions if we assume in addition
that K is an intersection body (see [20, Chap. 4] for the definition and properties of
intersection bodies). It was proved in [17] that an origin-symmetric star body K in
R

n is an intersection body if and only if the function ‖ · ‖−1
K represents a positive

definite distribution. The proof of Theorem 2 remains exactly the same in this case.
Corollary 1 holds in all dimensions under an additional assumption that K and L

are both intersection bodies, and the result of Theorem 1 is valid in all dimensions
when K is an intersection body (the unit Euclidean ball is an intersection body, so the
inequality (3) is sharp in the class of intersection bodies in every dimension). Note
that Proposition 2 means that every origin-symmetric convex body in R

n, n ≤ 4 is an
intersection body. The latter is no longer true if n ≥ 5.
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