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Abstract We show that any simple planar n-gon can be meshed in linear time by
O(n) quadrilaterals with all new angles bounded between 60 and 120 degrees.
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1 Introduction

We answer a question of Bern and Eppstein by proving:

Theorem 1.1 Any simply connected planar domain Ω whose boundary is a simple
n-gon has a quadrilateral mesh with O(n) pieces so that all angles are between 60◦
and 120◦, except that original angles of the polygon with angle < 60◦ remain. The
mesh can be constructed in time O(n).

The theorem is sharp in the sense that no shorter interval of angles suffices for all
polygons: using Euler’s formula, Bern and Eppstein proved (Theorem 5 of [2]) that
any quadrilateral mesh of a polygon with all angles ≥120◦ must contain an angle
≥120◦. On the other hand, any boundary angle θ > 120◦ must be subdivided by the
mesh in Theorem 1.1 and hence there must be a new angle ≤θ/2 in the mesh. Thus
taking polygons with an angle θ ↘ 120◦ shows 60◦ is the optimal lower bound.

It is perhaps best to think of Theorem 1.1 as an existence result. Although we give
a linear time algorithm for finding the mesh, the constant is large and the construction
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depends on other linear algorithms, such as Chazelle’s linear time triangulation of
polygons, that have not been implemented (as far as I know).

The three main tools in the proof of Theorem 1.1 are conformal maps, thick/thin
decompositions of polygons and hyperbolic tessellations. We will decompose Ω into
O(n) “thick” and “thin” parts. The thin parts have simple shapes and we can easily
construct an explicit mesh in each of them. The thick parts are more complicated, but
we can use a conformal map to transfer a mesh from the unit disk, D, to the thick
parts of Ω with small distortion. The mesh on D is produced using a finite piece of
an infinite tessellation of D by hyperbolic pentagons.

I would like to thank Marshall Bern for asking me the question that lead to The-
orem 1.1 and pointing out his paper [2] with David Eppstein. Also thanks to Joe
Mitchell for many helpful conversations on computational geometry. This paper is
part of a series [3–6] that exploits the close connection between the medial axis of a
planar domain, the geometry of its hyperbolic convex hull in H

3+ and the conformal
map of the domain to the disk. This was originally motivated by a result of Dennis
Sullivan [15] about boundaries of hyperbolic 3-manifolds and its generalization by
David Epstein (only one “p” this time) and Al Marden [9]. Many thanks to those
authors for the inspiration and insights they have provided. Also many thanks to the
referees for a careful reading of the original manuscript. Their thoughtful comments
and suggestions greatly improved the paper. One of them pointed out [11] where the
Riemann mapping theorem is used to prove that any polygon with all angles ≥π/5
can be dissected into triangles with all angles ≤2π/5.

2 Möbius Transformations and Hyperbolic Geometry

A linear fractional (or Möbius) transformation is a map of the form z → (az +
b)/(cz + d). This is a 1–1, onto, holomorphic map of the Riemann sphere S2 =
C ∪ {∞} to itself. Such maps form a group under composition and are well known
to map circles to circles (if we count straight lines as circles that pass through ∞).
Möbius transforms are conformal, so they preserve angles. Given two sets of dis-
tinct points {z1, z2, z3} and {w1,w2,w3} there is a unique Möbius transformation
that sends wk → zk for k = 1,2,3. A Möbius transformation maps the unit disk, D,
to itself iff it is of the form g(z) = λ(z − a)/(1 − āz) for some a ∈ D, |λ| = 1.

The hyperbolic metric on the unit disk is given by

ρ(v,w) = inf
∫

γ

2|dz|
1 − |z|2 ,

where the infimum is over all rectifiable arcs connecting v and w in D. This is a metric
of constant negative curvature. In some sources, the “2” is omitted; we have chosen
this version to be consistent with the trigonometric formulas found in [1]. Geodesics
for this metric are circular arcs that are perpendicular to the boundary (including
diameters). Hyperbolic area is given by 4dx dy/(1 − |z|2)2. The area of a triangle
with geodesic edges is π −α −β − γ , where α,β, γ are the interior angles. Thus the
area of any hyperbolic triangle is ≤π .



310 Discrete Comput Geom (2010) 44: 308–329

Fig. 1 Examples of hyperbolic convex hulls. The one on the left is uniformly perfect, the center is thick
with a large η, but not uniformly prefect, and the right is only thick with a small η (there are two geodesics
that almost touch, but do not share an endpoint)

The hyperbolic metric is well known to be invariant under Möbius transformations
of the disk, so it is enough to compute it when one point has been normalized to be 0
and the other rotated to the positive axis. If 0 < x < 1 and ρ = ρ(0, x), then

ρ = log
1 + x

1 − x
, x = eρ − 1

eρ + 1
.

It is also convenient to consider the isometric model of the upper half-space, H. In
this case, the hyperbolic metric is given by

ρ(v,w) = inf
∫

γ

|dz|
y

,

where z = x + iy, but geodesics are still circular arcs perpendicular to the boundary.
If E ⊂ T = ∂D is closed then T \ E = ⋃

Ij is a union of open intervals. The
hyperbolic convex hull of E, denoted CH(E), is the region in D bounded by E and
the collection of circular arcs {γj }, where γj is the hyperbolic geodesic with the same
endpoints as Ij ; see Fig. 1.

A closed set E ⊂ T is called η-thick if any two components of ∂CH(E) ∩ D that
don’t share an endpoint are at least hyperbolic distance η apart. If E is η-thick, then
any point in the hull is contained in a hyperbolic ball of radius η that is also contained
in the convex hull. The thickness condition can be written in other ways. For example,
E is η-thick iff non-adjacent complementary intervals have extremal distance at least
δ > 0 (with δ−1 � 2

π
log 1

η
for small δ, η) [6]. A closed set E is called uniformly

perfect if any two components of ∂CH(E)∩D are at least hyperbolic distance η part.
This stronger condition arises many places in function theory, but will not be used in
this paper.

3 A Subdivision of the Hyperbolic Disk

To prove Theorem 1.1, we will divide the interior of Ω into pieces called “thick”
and “thin” (see [6] and Sect. 7). The thin pieces will be meshed explicitly, but the
mesh on the thick pieces will be transferred from a quadrilateral mesh of a domain
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Fig. 2 A hyperbolic right
pentagon (left) and the its
neighbors in the tessellation T5

in the unit disk via a conformal map. Most of our time will be spent constructing the
mesh on the disk. In this section, we describe the subdomain and how to subdivide it
into circular arc triangles, quadrilaterals and pentagons. In the following sections, we
show how to construct quadrilateral meshes for each subregions that are consistent
along shared boundaries.

A compact hyperbolic polygon is a bounded region in hyperbolic space bounded
by a finite number geodesic segments. The polygon is “right” if every interior angle
is 90◦. There are no compact hyperbolic right triangles or quadrilaterals, but there are
hyperbolic right n-gons for every n ≥ 5 and any such can be extended to a tessellation
Tn of hyperbolic space by repeated reflections; see Fig. 2 for the case of pentagons
(the only case we use in this paper).

Let L = cosh−1(1 + 2 cos( 2π
5 )) ≈ 1.06128 denote the side length of a hyperbolic

right pentagon. We don’t need the specific value, but it can be computed using L = c,
γ = 2π/5, α = β = π/4 in the second hyperbolic law of cosines (see [1]):

cosh c = cosα cosβ + cosγ

sinα sinβ
.

In the tessellation T5, each edge of a pentagon lies on some hyperbolic geodesic.
Each of these geodesics divides T into two arcs and we let I5 denote the collection
of all such arcs.

Lemma 3.1 There is a c < ∞ so that given any arc J ⊂ T there are I1, I2 ∈ I5 with
I1 ⊂ J ⊂ I2 and |I2|/|I1| ≤ c (| · | denotes arclength).

Proof Let γ be the hyperbolic geodesic with the same endpoints as J . The top point
of γ (i.e., the point closest to 0) is contained in some pentagon of the tessellation.
By taking c larger, we can assume J is as short as we wish, so we may assume this
is not the central pentagon. Let a be the hyperbolic center of this pentagon and let
g(z) = λ(z − a)/(1 − āz) where |λ| = 1 is chosen g maps the pentagon to the central
pentagon. This is a Möbius transformation that sends a to 0, maps the diameter D

through a into λD and maps γ to a geodesic γ ′ that intersects the central pentagon
of the tessellation. Moreover, since g preserves angles, the angle between γ ′ and
D′ = λD is the same as between γ and D, and this is bounded away from 0, since
the intersection point is within distance L of the top point of γ .

Thus γ ′ also makes a large angle with D′ and so is some positive distance r from
the point b = −λa = g(0). The inverse of g is f (z) = λ̄(z − b)/(1 − b̄z) and the
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Fig. 3 A Carleson quadrilateral
and triangle

derivative of this is (1 − |b|2)/(1 − b̄z)2. From this we see that for |z| = 1,

1 − |b|
|z − b|2 ≤ ∣∣f ′(z)

∣∣ ≤ 2(1 − |b|)
|z − b|2 ,

so that |f ′(z)| � 2(1 − |b|) with a constant that depends only on |z − b|. Thus sets
outside a ball around b will be compressed similar amounts by f .

Choose geodesics γ1, γ2 from the tessellation edges on either side of γ ′ so that γ1
separates b from γ ′ and has a uniformly bounded distance r from b (we can easily
do this if 1 − |b| = 1 − |z| � |J | is small enough). Apply f to γ1, γ2 and we get two
geodesics of comparable Euclidean size whose base intervals are the desired I1, I2. �

A Carleson triangle in D is a region bounded by two geodesic rays that have a
common endpoint where they meet with interior angle 90◦. Any two such are Möbius
equivalent. A Carleson quadrilateral is bounded by one finite length hyperbolic seg-
ment and two geodesic rays, again with both interior angles equal 90◦; see Fig. 3.
It is determined up to isometry by the hyperbolic length of its finite length edge. In
this paper, all of our Carleson quadrilaterals with have length L, where L is the side
length of a right pentagon, as above.

We will prove the following:

Lemma 3.2 There is a c < ∞ so that the following holds. Suppose we are given
A > 1 and a finite collection intervals {Ij }N1 on the unit circle so that the expanded in-
tervals {AIj } are disjoint (these are the concentric intervals that are A times longer)
and each has length < π . Let E = ⋃

j Ij . We can find intervals {Jj } so that

(1)
√

AIj ⊂ Jj ⊂ c
√

AIj , j = 1, . . . ,N .
(2) Let F = ⋃

j Jj and let W ⊂ D be the hyperbolic convex hull of T\F . Then W has
a mesh {Wk} consisting of right hyperbolic pentagons, Carleson quadrilaterals
and Carleson triangles. A pentagon shares an edge only with other pentagons or
the top of a quadrilateral, a quadrilateral shares a top edge only with pentagons
and side edges with triangles and other quadrilaterals, and a triangle shares
edges only with quadrilaterals.

(3) Each component of ∂W ∩ D is an infinite geodesic that is the union of side edges
from two Carleson quadrilaterals and edges from three pentagons.

(4) Every pentagon used in the mesh is a uniformly bounded hyperbolic distance
from the hyperbolic convex hull of E.

(5) Every region Wk in the mesh has diameter bounded by O(dist(Wk,E)) (Euclid-
ean distances).
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Fig. 4 On the left are J,J1, J2.
The shaded region is a union of
the pentagons; the white is a
union of quadrilaterals and
triangles

Fig. 5 An example of meshing
a convex hull W with pentagons,
quadrilaterals and triangles. This
example is not to scale, since the
white regions should be much
smaller than their distances apart

Proof For each interval Ij given in the lemma, choose Jj ∈ I5 to be the minimal
interval containing

√
AIj . Then (1) clearly holds by Lemma 3.1.

Let γj be the geodesic with the same endpoints as Jj and let P0 be a pentagon in
T5 that is above γj (i.e., whose interior lies in the component of D \ γj containing 0)
and whose boundary contains the “top” of γj (the point closest to 0). Let P1,P2 be
the elements of T5 that are adjacent to P0 and also above γj . Then the part of γj

covered by the boundaries of these three pentagons contains an interval of hyperbolic
length 2L centered at the top point. Let γ 1

j be the geodesic containing the side of

P1 that has one endpoint on γj and is not on ∂P0. Let J 1
j ∈ I5 be the base interval

of γ 1
j . Let J 2

j ∈ I5 be the corresponding interval for P2 and let J ′
j = J 1

j ∪ Jj ∪ J 2
j ;

see Fig. 4.
Let G = ⋃

j (J
1
j ∪ Jj ∪ J 2

j ) and let {K} be the collection of intervals in I5 that are
compactly contained in T \ F , contain a point of T \ G and are maximal in the sense
of containment with respect to these properties. These clearly cover all of T\G. Now
add the intervals Jj , J

1
j , J 2

j to get a cover of the whole circle. Any open finite cover
of an interval has a subcover with overlaps of at most 2 (if a point is in three intervals
we can keep the ones with leftmost left endpoint and rightmost right endpoint and
throw away the third; repeat until every point is in at most two intervals). For such
a subcover, we mesh W with pentagons above the corresponding geodesics and by
Carleson quadrilaterals and triangles below; see Fig. 5. Conditions (2) and (3) are
clear from construction.

If x ∈ T \ F and d = dist(x,F ) then apply Lemma 3.1 to an interval of length
1
2d/c centered at x. We obtain an element of I5 containing x, missing F and of
length ≥ 1

2d/c. Thus the maximal interval of K containing x has at least this length.
This implies (4).
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Every right pentagon P has Euclidean diameter bounded by O(dist(P,T)) =
O(dist(P,E)). Every Carleson quadrilateral R has a top edge along a geodesic γ

with endpoints {a, b} and diam(R) � dist(R, {a, b}). Since γ misses the hyperbolic
convex hull of E, the latter is ≤dist(Q,R). Every Carleson triangle is adjacent to two
Carleson quadrilaterals of comparable Euclidean size that separate it from E, so the
estimate also holds for these triangles. Thus (5) holds. �

Lemma 3.3 If the collection {Ij }n1 satisfies the conditions of Lemma 3.2 and if, in
addition, the set E = ⋃

j Ij is a δ-thick set, then the mesh constructed in Lemma 3.2
has O(n) elements, with a constant that depends only on δ.

Proof Choose a disjoint collection of η-balls in S = CH(E) ∩ W and note that there
are O(n) such balls since S has hyperbolic area O(n) (it is a convex hyperbolic
polygon with O(n) sides, hence has a triangulation into O(n) hyperbolic triangles,
and every hyperbolic triangle has hyperbolic area ≤π ).

Every pentagon used in the proof of Lemma 3.2 is within a bounded hyperbolic
distance D of one of the chosen η-balls, so only O(1) pentagons can be associated
to any one ball (they are disjoint, have a fixed area and all lie in a ball of fixed radius,
hence fixed area). Thus the total number of pentagons used is O(n). Every Carleson
quadrilateral shares an edge with a pentagon and every Carleson triangle shares an
edge with a quadrilateral, so the number of these regions is also O(n). �

4 Meshing the Pentagons

In the last section, we subdivided the unit disk into hyperbolic pentagons, quadrilater-
als and triangles. Next we want to mesh each of these regions into quadrilaterals with
angles in the interval [60◦,120◦]. Moreover, along common edges of the regions, the
vertices of the meshes must match up correctly.

For each type of region, we will produce a mesh by quadrilaterals that have circular
arc boundaries and angles within a given range. In most cases, the boundary arcs lie
on circles with radius comparable to the region, and the quadrilaterals will be much
smaller, about 1/N as large, for a large N . If we replace the circular arc edges by
line segments, the angles change by only O(1/N), which still gives angles in the
desired range. The only exceptions will be certain parts of the mesh of the Carleson
triangles, that will require a separate argument to show the “snap-to-a-line” angles
are still between 60◦ and 120◦.

As before, L denotes the sidelength of a hyperbolic right pentagon.

Lemma 4.1 For sufficiently large integers N > 0 the following holds. Suppose P is
a hyperbolic right pentagon. Then there is mesh of P into hyperbolic quadrilater-
als with angles between 72◦ and 108◦. The mesh divides each side of the pentagon
into N segments of length L/N . Each quadrilateral Q in the mesh has hyperbolic
diameter O(1/N) and satisfies diam(Q) = O( 1

N
· diam(P )) in the Euclidean metric.

Replacing the edges of Q by line segments changes angles by only O(1/N).
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Fig. 6 Definitions used in the
mesh of a hyperbolic right
pentagon. Each pentagon is
divided into five quadrilaterals
as shown

Proof Connect the center c of the pentagon by hyperbolic geodesics to the (hyper-
bolic) center of each edge. This divides the pentagon into five quadrilaterals each of
which has 3 right angles and an angle of 72◦ at the center. Consider one of these
quadrilaterals Q with sides S1, S2, S3, S4 where S1, S2 each connects the center of
the pentagon to midpoints of adjacent sides. Then S3, S4 are each half of a side of the
pentagon adjacent at a vertex v, with S3 opposite S1 and S4 opposite S2 (Fig. 6).

Place a point x along S3 and let ex be the geodesic segment from S1 to S3 that
meets S3 at x and makes a 90◦ angle with S3. Similarly define a segment fy that joints
y ∈ S4 to S2. We claim that the segments cross at an angle (labeled φ in Fig. 6) that is
between 72◦ and 90◦. The two segments ex , fy divide Q into four quadrilaterals, one
of which contains the vertex v. This subquadrilateral, Q′ is a Lambert quadrilateral,
i.e., bounded by four hyperbolic geodesic segments and having 3 right angles. The
one non-right angle, φ, is a function of the hyperbolic lengths of the two opposite
sides (in this case a function of a = ρ(x, v) and b = ρ(y, v)),

cos(φ) = sinha sinhb,

see [1, Theorem 7.17.1]. Clearly, φ decreases as either a or b increase. For a and b

close to zero, we have φ ≈ 90◦ and when a, b take their maximum value (a = b is the
hyperbolic length of S3) we get Q′ = Q and φ = 72◦. Thus φ takes values between
72◦ and 90◦, as claimed.

To define a mesh of Q, take N equally spaced points {xk} ⊂ S3 and {yk} ⊂ S4 and
take the union of segments exk

, fyk
. This divides Q into quadrilaterals with geodesic

boundaries and angles between 72◦ and 108◦. Doing this for each of the five quadri-
laterals that make up the hyperbolic right pentagon gives a mesh of the pentagon. The
remaining claims are easy to verify; see Fig. 7.

�

5 Meshing the Quadrilaterals

Lemma 5.1 For sufficiently large integers N the following holds. Suppose {d1 <

d2 < . . . < dM} satisfy |dk − dk+1| ≤ 1/N for k = 1, . . . ,M − 1, d1 < 1/N , dM > N

and suppose R is a right Carleson quadrilateral. Then there is mesh of R into hyper-
bolic quadrilaterals with angles between 90◦ − O( 1

N
) and 90◦ + O( 1

N
). The mesh

divides the unique finite (hyperbolic) length side of R into N segments of length L/N .
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Fig. 7 A quadrilateral mesh of
a single pentagon and the mesh
on 11 adjoining pentagons.
Because vertices are evenly
spaced in the hyperbolic metric,
meshing of adjacent pentagons
match up

Each infinite length side of R has vertices exactly at the points that are hyperbolic
distance dk , k = 1, . . . ,m from the finite length side. If the base of R has length ≤π ,
then each element Q of the mesh satisfies diam(Q) = O( 1

N
· diam(R)) in the Euclid-

ean metric. Replacing the edges of Q by lines segments changes angles by at most
O(1/N).

We need a simple preliminary result.

Lemma 5.2 Suppose Q is a right circular quadrilateral, i.e., is bounded by four cir-
cular arcs and all four interior angles are 90◦. Then Q has two orthogonal foliations
by circular arcs. Every leaf of both foliations is perpendicular to the boundary at
both of its endpoints.

Proof To see this, take two opposite sides. Each lies on a circle and these circles
either intersect in 0, 1 or 2 points or are the same circle. In the first case, we can
conjugate by a Möbius transformation so both disks are centered at 0. Then the two
other sides must map to radial segments and the foliations are as claimed. If the
circles intersect in two points, we can assume these points are 0 and ∞ so the circles
are both lines passing through 0 and again the foliations are radial rays and circles
centered at 0. If the opposite sides belong to the same circle, we can conjugate it to be
the real line, with the two sides being arcs symmetric with respect to the origin. Then
the other two sides must be circular arcs centered at 0 and the two foliations are as
before. The last, and exceptional, case is if the two circles intersect in one point. Then
we can conjugate this point to infinity and the intersecting sides to two parallel lines.
The other two sides must map to perpendicular segments and the region is foliated by
perpendicular straight lines; see Fig. 8. �

Proof of Lemma 5.1 The two sides of R that lie in D but have infinite hyperbolic
length are geodesic rays that are both perpendicular to the geodesic containing the
top edge of R. Hence they are subarcs of non-intersecting circles (to see this, isomet-
rically map D → H so the top edge maps to a vertical segment and the geodesic rays
map to arcs of concentric circles). The foliations provided by the previous lemma
consist of (1) hyperbolic geodesics that are perpendicular to the top edge of R (the
unique finite length side) and (2) subarcs of circles that all pass through a, b (the
endpoints of the hyperbolic geodesic that contains the top edge of R). We call these
the vertical and horizontal foliations, respectively.
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Fig. 8 Any right circular quadrilateral is Möbius equivalent to one of these cases and hence has an or-
thogonal foliations by circular arcs

Fig. 9 A quadrilateral mesh of
a Carleson quadrilateral.
“Horizontal” edges lie on circles
that pass through the same two
points on the boundary (the
endpoints of the geodesic
contain the top edge). “Vertical”
edges are hyperbolic geodesics
perpendicular to the top edge

To prove the lemma, we simply subdivide the edges of R as described and take the
foliation leaves with these endpoints. The only point that needs to be checked is that
points on the two infinite length sides of R that are the same hyperbolic distance from
the top edge lie on the same horizontal foliation leaf. However, any two horizontal
leaves are equidistant from each other in the hyperbolic metric (to see this, map the
vertices a, b to 0,∞ by an isometry D → H and these leaves become rays, and the
claim is obvious since dilation is an isometry on H). Since the top edge is a horizontal
leaf, we are done; see Fig. 9.

�

6 Meshing the Triangles

Unlike our meshes of the Carleson quadrilaterals and right pentagons, our mesh of
the Carleson triangles will use the full interval of angles [60◦,120◦]. This is easy to
do if we just want to mesh by quadrilaterals with circular arc sides. However, we will
want to conformally map our mesh in D to Ω and then replace the curved edges in
the image by straight line segments. This can change the angles slightly, so we would
end up with angles in [60◦ − ε,120◦ + ε] (where ε depends on the ratio between the
diameters of our mesh elements and the diameter of T ). To get the sharp result, we
will have to be careful how we use angles near 60◦ and 120◦. To simplify matters, it
will be enough to simply consider one special Carleson triangle T in the upper half-
plane model with vertices at −1,1, i/(

√
2 − 1). The mesh for any other triangle will

be obtained as a Möbius image of the mesh we construct on this triangle.
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Fig. 10 The outer triangle T is a Carleson triangle in the upper half-plane with top point w = i/(
√

2−1).
Its interior is divided into an inner triangle Ti (shaded) with top point v and nine surrounding right circular
quadrilaterals. The points v1, v2 are equidistant from w in the hyperbolic metric. The left and right sides of
Ti are geodesic segments and extend to hit R as points v7, v8. The Carleson triangle with vertices v, v7, v8
is denoted Te

The triangle T has one vertex in H, and we refer to this as the “top point”. Adjacent
to the top point are two sides that we call the “left” and “right” sides. Inside T we will
construct an “inner triangle” Ti ⊂ T . The vertices of Ti form an ordinary equilateral
Euclidean triangle, but the edges of Ti itself are circular arcs meeting at three interior
angles of 90◦, and Ti is uniquely determined by this.

Lemma 6.1 The following holds for all sufficiently large integers N . There is a se-
quence d1 < d2 < · · · < dM with |dk − dk+1| ≤ 1/N for k = 1, . . . ,M − 1 and a
mesh of T into hyperbolic quadrilaterals with angles between 60◦ and 120◦ so that
the vertices along the left and right edges of T occur exactly at the points distance
dk , k = 1, . . . ,m from the top point. Every quadrilateral Q in the mesh satisfies
diam(Q) = O( 1

N
· diam(T )). The triangle T contains a symmetric right circular tri-

angle Ti ⊂ T so that outside Ti , only angles in [90◦ −O( 1
N

),90◦ +O( 1
N

)] are used.
The triangle Ti may be chosen as small as wish compared to T . Replacing edges by
straight line segments gives angles between 60◦ and 120◦.

The inner triangle Ti it is divided into three quadrilaterals by connecting the center
of the triangle to the midpoint of each edge by a straight line. The vertices of Ti and
the midpoints of its edges are connected to points on ∂T by circular arcs that are
perpendicular to both the boundaries of T and Ti at the points where they meet; see
Fig. 10. We mesh each of the nine resulting quadrilaterals using the foliations given
in Lemma 5.2, starting at the left and right sides of T at the points given by {dk}. We
assume that this collection contains the distances ρ(w,v1), ρ(w,v3), ρ(w,v5). When
a leaf ends we continue it in the next quadrilateral (assume we know how to do this
for the inner triangle and that the foliation there is symmetric). The path continues
until it either it hits c (the center of the inner triangle), hits [−1,1] (the base of T )
or hits the opposite side of T . In the latter case, symmetry implies the path ends at a
point the same distance from the top point as its starting point.

The choice of inner triangle Ti depends only on the choice of its top point. This lies
on the positive imaginary axis, and Ti is chosen to be symmetric with respect to this
line. The diameter of Ti is scaled so that the left and right edges of Ti are hyperbolic
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Fig. 11 How to scale the inner triangle. Suppose a is height 1 above the real axis and a, b lie on a
geodesic γ centered at d that makes a 45◦ angle with the horizontal at a. The �a0d is isosceles with
base angles 45◦ , so |ad| = |bd| = √

2. The line da is perpendicular to γ , so �dab is isosceles. Thus
|ab| = 2|bd| sin(15◦) = √

3 − 1

Fig. 12 Three foliations of a circular right triangle. Each leaf passes through an associated vertex and is
perpendicular to the opposite side. Connecting the center of the triangle to the midpoints of each side by the
straight leaf divides Ti into three quadrilaterals. We then restrict each foliation to two of the quadrilaterals
as shown, and leaves of the union give the mesh edges

geodesic segments (if the top point has height h above 0, the three vertices of Ti

should form an equilateral triangle of sidelength h(
√

3 − 1); see Fig. 11). Since any
point between the top point of T and the origin can be used, the inner triangle can be
as small as we wish.

We define three foliations on this triangle Ti . For each vertex v, reflect v through
the circular arc on the opposite side to define a point v∗ and foliate Ti by arcs that lie
on circles passing through both v and v∗. Note that each foliation leaf passes through
one of the vertices of Ti and is perpendicular to the opposite side; see Fig. 12. The
center of the triangle can be connected to the midpoint of each side by a foliation leaf
that is a straight line, dividing T into three quadrilaterals. Restrict each foliation to
the two quadrilaterals that are not adjacent to the vertex it passes through. This gives
two foliations on each quadrilateral; see Fig. 12. Taking a finite set of leaves for each
foliation gives a quadrilateral mesh of the right circular triangle.
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Fig. 13 The mesh of a Carleson triangle for two different positions of the inner triangle

Fig. 14 If we choose any point
z of the equilateral triangle then
chords of the foliation paths
with endpoint z form angles that
are bounded between 60◦ and
120◦

Combining this foliation of the inner triangle with the foliations of the surround-
ing quadrilaterals and choosing starting points along the left and right sides of T as
described earlier gives the desired mesh of T ; see Fig. 13. The only part of the lemma
left to prove is the claim that the angle are in the desired interval when replace the
curved edges by straight segments.

When we replace the circular arc edges in the mesh by straight line segments, it
is not obvious that all the angles remain in [60◦,120◦], but we will show that this is
true. Consider a point z in one of the three quadrilaterals and the two foliation paths
γ1, γ2 that connect it to the two opposite vertices, v1, v2, respectively; see Fig. 14.
Let L1,L2 be the lines through the center c and the points v1, v2. If we think of the
arc γ1 as a graph over the line L1 it is monotonically increasing as we move away
from v1 and remains increasing so as long as we stay inside the triangle (since γ1 is
perpendicular the opposite side of the triangle, the point of greatest distance from L1

occurs outside the triangle). Thus if we translate L1 to pass through the point z, we
see that γ1 stays on one side of this new line up to z and on the other side beyond z.
Thus any chord of γ1 in the triangle with one endpoint at z also stays on the same side
of the line as the corresponding arc of γ1. Similarly for γ2 and L2; see the right side
of Fig. 14. Thus if we replace foliation paths by segments, at each vertex there will
be two angles less than 120◦ and two greater than 60◦ (which are the angles formed
by L1 and L2). This completes the proof of Lemma 6.1.
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7 Meshing the Thick Parts by Conformal Maps

The Riemann mapping theorem says that given any simply connected planar domain
Ω (other than the whole plane) there is a 1–1, onto, holomorphic map of the disk
onto Ω . Moreover, we may map 0 to any point of Ω and specify the argument of the
derivative at 0. Such a mapping is conformal, i.e., it preserves angles locally. More
importantly, a conformal mapping is close to linear on small balls with estimates that
depend on the ball but not on the mapping. Koebe’s estimate (e.g., [10, Corollary 4.4])
says that if f : D → Ω is conformal then

1

4

∣∣f ′(z)
∣∣ ≤ dist(z, ∂Ω1)

dist(f (z), ∂Ω2)
≤ ∣∣f ′(z)

∣∣.
The closely related distortion theorem states [10, (4.17)] that if f is conformal on the
unit disk, then

1 − |z|
(1 + |z|)2

≤ |f ′(z)|
|f ′(0)| ≤ 1 + |z|

(1 − |z|)3
,

This says that on small balls f ′ is close to constant, and hence that f is close to linear.
More precisely, if f is conformal on a ball B(w, r) then

∣∣f (z) − L(z)
∣∣ ≤ O

(
ε2

∣∣f ′(z)
∣∣r), (7.1)

for z ∈ B(w, εr), where L(z) = f (w) + (z − w)f ′(w) is a Euclidean similarity.
We are particularly interested in conformal maps onto polygons. In this case, f is

given by the Schwarz–Christoffel formula

g(z) = A + C

∫ n−1∏
k=1

(w − zk)
αk−1 dw,

where the interior angles of Ω are {α1π, . . . , αnπ} and the preimages of the vertices
are z = {z1, . . . , zn}; see, e.g., [8, 12, 16]. The formula was discovered independently
by Christoffel in 1867 [7] and Schwarz in 1869 [13, 14]. For other references and
a brief history, see [8, Sect. 1.2]. The difficulty in using the formula is to find the
correct parameters z for a given Ω .

For a conformal map f onto a polygonal region, the points of the prevertex set
z ⊂ T are the only singularities of f on T. The map extends analytically across the
complementary intervals by the Schwarz reflection theorem. Thus for a point w ∈ D,
the map f extends to be conformal on the ball B = B(w,dist(w,E)), and if Q ⊂ B

and diam(Q) ≤ ε · dist(Q,E), then there is a linear map L so that
∣∣f (z) − L(z)

∣∣ ≤ O
(
ε diam

(
f (Q)

))
, (7.2)

for z ∈ Q. In particular, the images of the vertices of Q map to the vertices of quadri-
lateral whose angles differ by only O(ε) from the angles of Q. This is what allows us
to map our mesh via a conformal map and obtain a mesh with only slightly distorted
angles. More precisely,
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Fig. 15 A polygon with one
hyperbolic thin part (darker)
and six parabolic thin parts

Fig. 16 A polygon with five hyperbolic thin parts. This figure is not to scale. The channel on the right is
not thin because the upper edge is made up of numerous short edges; the extremal distance from any of
these to the lower edge is bounded away from zero

Lemma 7.1 Suppose f : D → Ω is a conformal map onto a polygonal domain with
singular set z and Q ⊂ D is a Euclidean quadrilateral with diam(Q) ≤ ε · dist(Q, z).
Then the images of the vertices of Q under f form a quadrilateral with angles differ-
ing by at most O(ε) from the corresponding angles of Q.

If we applied this directly to a general polygonal region we could prove that there
is a quadrilateral mesh with angles between 60◦ − O(ε) and 120◦ + O(ε) for any
ε > 0, but we would not have the O(n) bound on the number of pieces. Bounding
the number of terms comes from using a special decomposition of Ω and getting rid
of the ε’s comes from modifying the conformal map near the inner triangles in our
mesh of D. We will deal with the decomposition first.

A polygonal domain Ω is δ-thick if the corresponding prevertex set z is δ-thick,
as defined in Sect. 2. Equivalently, any two non-adjacent sides of Ω have extremal
distance at least δ in Ω . Extremal distance is a well know conformal invariant which
roughly measures the distance between two continua compared to their diameters.
For more details about extremal distance and thick domains, see [6].

A subdomain Ω ′ ⊂ Ω is δ-thin if (1) ∂Ω ′ ∩ ∂Ω consists of two segments S1, S2
(each a subset of distinct edges of Ω), (2) ∂Ω ′ ∩ Ω consists of two polygonal arcs,
each inscribed in an approximate circle and (3) the extremal distance between S1 and
S2 in Ω ′ is ≤δ. A thin part of Ω is called parabolic if the sides S1, S2 lie on adjacent
sides of Ω is called hyperbolic otherwise; see Figs. 15 and 16. The following result
is proven in [6].

Lemma 7.2 There is an δ0 > 0 and 0 < C < ∞ so that if δ < δ0 then the following
holds. Given a simply connected, polygonal domain Ω we can write Ω is a union
of subdomains {Ωj } belonging to two families N and K. The elements of N are
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Fig. 17 An overlapping thick
piece, Ω2, and thin piece, Ω1
and crosscuts γ1 = ∂Ω1 ∩ Ω2,
γ2 = ∂Ω2 ∩ Ω1. The shaded
region is Ω3 = Ω1 ∩ Ω2. This
region is divided into three
sections and in the center
section is denoted Ω4

O(δ)-thin polygons and the elements of K are δ-thick. The number of edges in all
the pieces put together is O(n) and all the pieces can be computed in time O(n)

(constant depends on ε). A piece can only intersect a piece of the opposite type. Any
such intersection is a 4δ-thin polygon.

Suppose Ω1 is one of the thick parts, and let f : D → Ω1 be a conformal map
with the origin mapping to a point outside of all the thin parts hitting Ω1. Note that
∂Ω1 ∩ Ω consists of crosscuts {γj } and let {Ij } be the preimages under f of these
boundary arcs. Each γj has an associated crosscut γ ′

j that is a boundary arc of the thin
part containing γj . The preimage of γ ′

j defines a crosscut in D whose endpoints define
an interval that contains AIj of Ij where A � exp(π/4δ). These larger intervals are
disjoint (since none of the thin parts intersect) and f (0) can be chosen so they all
have length < π .

Thus we can apply Lemma 3.2 to construct a domain W1 ⊂ D and a quadrilateral
mesh on it. Suppose ∂Ω1 has n1 sides. Since Ω1 is δ-thick, Lemma 3.3 implies the
mesh of W1 has O(n1) elements, with a constant depending on δ. Moreover, for any
ε > 0 we may assume Lemma 7.1 applies to all the quadrilaterals in our mesh of W1

if we take ε = O(1/N) where N is in Lemmas 4.1, 5.1 and 6.1. Thus f (W1) ⊂ Ω1

has a mesh with O(n1) quadrilaterals, the constant depending on δ and N , which we
will choose independent of Ω . If N is large enough, then all angles are in the desired
range, except possibly for the quadrilaterals corresponding to the inner triangles. This
determine the choice of N .

We also want to choose δ > 0 independent of Ω . As above, suppose Ω1 is a thick
piece and that it intersects a thin piece Ω2. The intersection, Ω3 = Ω1 ∩ Ω2 is a 4δ-
thin part and can be divided into three disjoint 12δ-thin parts as illustrated in Fig. 17.
Let Ω4 denote the “middle” part (the one separated from both γ1 and γ2). For points
inside Ω4, the conformal maps of the disk to Ω1 and Ω3 are very close to each other
if δ is small enough. The following result [6, Lemma 24] makes this precise:

Lemma 7.3 Suppose f : H → Ω1 is conformal. We can choose a conformal map
g : H → Ω3 so that for z ∈ f −1(Ω4), and uniform c > 0,C < ∞,

∣∣f (z) − g(z)
∣∣ ≤ C exp(−c/δ)max

(
diam(γ1),diam(γ2)

)
.

Since Ω3 is a thin part, we can renormalize our maps so that f (i) = g(i) is the
center of Ω4 and the preimages of the vertices of Ω3 under g can be grouped into two
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Fig. 18 Inside the middle of the overlap of a thick and thin part, the conformal map approximates a power
function. Points on a circular arc in the disk are mapped to points that lie on an approximate circular arc
and order is preserved

parts: those in a small interval {|x| < η} and those outside a large interval {|x| > 1/η},
where η tends to zero as δ tends to zero.

The corresponding terms of the Schwarz–Christoffel formula can be grouped as

g′(w) = B
∏

|zk |<η

wαk−1
(

1 − zk

w

)αk−1 ∏
|zj |>1/η

(
1 − w

zj

)αj −1

� Bw
∑

k:|zk |<η αk−1 = Bwβ,

where B is constant, and the dropped terms are close to 1 if η is close to 0. Thus g

approximates a power function. This implies that g, and hence f , maps the circular
arc {|z| = 1} ∩ H to a smooth crosscut of Ω4 that approximates a circular arc that is
close to perpendicular to the boundary, and that f followed by radial projection onto
this arc preserves the ordering of points and multiplies the distances between them
by approximately a constant factor (with error that tends to zero with δ); see Fig. 18.
This is one condition that determines our choice of δ. Another will be given in the
final section when we mesh hyperbolic thin parts.

We now transfer the mesh from W1 to f (W1) ⊂ Ω1. The unmeshed portions of
Ω are now all subsets of thin parts bounded by crosscuts that are almost circular
arcs. Moreover, the number of mesh vertices on each of theses crosscuts is the same
by (3) of Lemma 3.2 (namely 3N + 2M where N is from Lemma 4.1 and M is
from Lemmas 5.1 and 6.1). The mesh has all angles in [60◦,120◦], except those
corresponding to the inner triangles in the Carleson triangles, where they may be
O(ε) larger or smaller.

To fix this, we replace the conformal map by a linear map in the inner triangles.
Map each Carleson triangle in D used in the mesh of W1, to the Carleson triangle T

in H discussed in Sect. 6 using a Möbius transformation τ . Then g = fk ◦ τ−1 is a
conformal map of T into a part of f (W1) and we transfer our mesh of T outside the
inner triangle Ti via this map. This agrees with our previous definition. In the inner
triangle Ti , we use the linear map h(z) = g(c)+(z−c)g′(c) to transfer the mesh. This
preserves angles exactly and so the image quadrilaterals have angles in [60◦,120◦].
For quadrilaterals along the boundary of Ti , we apply h to the vertices on ∂Ti and g to
the vertices in T \ Ti . Along the boundary of Ti , |h(z) − g(z)| = O(η2)diam(g(Ti))

where η = diam(Ti)/dist(Ti, z) = O(diam(Ti)/diam(T )). Since the quadrilaterals
meshing T along ∂Ti have Euclidean diameter � η, and angles all near 90◦, we see
that the angles of the image quadrilaterals also have angles near 90◦ if η is small
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enough, i.e., if the inner triangle is small enough with respect to the outer triangle.
This determines the choice of the inner triangle.

This completes the proof that the desired mesh exists, except for meshing the
thin parts, which is done in the next section. However, this is not quite a linear time
algorithm for computing the mesh, since we have used evaluations of conformal maps
without an estimate of the work involved. We address this now.

The exact conformal map onto a general polygon probably can’t be computed in
finite time, but we can compute an approximate map onto a simple n-gon in time
O(n) with a constant depending only on the desired accuracy. In [6], I show that
a (1 + ε)-quasiconformal map from D to Ω can be computed and evaluated at n

points in time O(n) where the constant depends only on ε. I will refer to [6] for the
definition and relevant properties of quasiconformal mappings, but the point is that if
f : D → Ω is conformal and g : D → Ω is the (1+ε)-quasiconformal approximation
constructed in [6], and if we have a Euclidean quadrilateral Q in our mesh, then the
g-images of the vertices of Q give angles that are O(ε) close to the angles in the f

image. Thus using g to transfer the mesh vertices works just as well as f . The fast
Riemann mapping theorem given in [6] implies:

Theorem 7.4 Suppose we are given a thick simply connected region Ω bounded by
a simple n-gon and an ε > 0. We can compute the thick/thin decomposition of Ω , the
corresponding domain W and its quadrilateral mesh and a map g on vertices of the
mesh that extends to a (1 + ε)-quasiconformal map of the disk to Ω . The total work
is O(n) where the constant may depend on ε.

In fact, we do not need the full strength of the result in [6], giving the depen-
dence on ε, since we only need to apply the result for a small, but fixed, ε. More-
over, we only need the result for thick polygons, which is an easier case of the theo-
rem.

8 Meshing the Thin Parts

We are now done with the proof of Theorem 1.1 except for meshing thin parts. Each
such thin part is either bounded by two adjacent edges of Ω and an almost circular
crosscut γ (the parabolic case) or by two non-adjacent edges and two almost circular
crosscuts γ1, γ2 (the hyperbolic case).

We start with parabolic thin parts where the two adjacent edges of Ω meet at ver-
tex v with angle θ ≤ 120◦. The crosscut γ defines a neighborhood of v in Ω that
is approximately a sector, and we define a true circular sector S with vertex v of
comparable, but smaller, size; see Fig. 19. This sector is divided into pieces using
circular arcs concentric with v and radial segments, as shown in the left of Fig. 19.
There are several levels, with the width of the level decreasing by a factor of 2 as
we move away from v, and we split each level with radial segments in order to in-
crease the number of vertices on the outer edge of the sector. This can be done so
that if we divide S into four equal sectors (each of angle θ/4 ≤ 30◦) and add extra
vertices to the centers of some arcs, then the number of points on the outer edge
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Fig. 19 The crosscut γ is defines a neighborhood of the vertex v. We define a sector of comparable
size and partition the sector so that the number of vertices on the outer edge approximates the number of
points on the crosscut γ . The pieces are then meshed: Mesh 1 is used in dark shaded region, Mesh 2 (or
it reflection) the white regions and segments only in the lighter shaded regions. The number of vertices on
the outer edge is exactly the number on γ and corresponding points are joined by segments

in each subsector is the same as the number of vertices on γ in the same subsec-
tor.

If we list the points on γ and on the outer edge of the sector in order, then corre-
sponding points lie in the same subsector and can be joined by segments that make
angle between 90◦ − θ/2 − ε ≥ 75◦ − ε and 105◦ + ε with the chords of the outer
edge of the sector; see Fig. 20. A similar estimate holds for the chords on γ (with
a larger ε since γ is only an approximate circle). Here ε tends to zero as S shrinks
with respect to γ . We simply choose a relative size for S that causes these angles to
be between 60◦ and 120◦.

Mesh 1

0 < θ ≤ 120

60 ≤ θ1 = 180 − 60 − 1

2
θ ≤ 120

60 ≤ θ2 = 1

2

(
180 − 1

2
θ

)
≤ 90
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Mesh 2

0 ≤ θ ≤ 60

90 ≤ θ1 = 180 − 1

2
(180 − θ) ≤ 120

60 ≤ θ2 = 360 − 60 − 2θ1 ≤ 120

75 ≤ θ3 = 90 − 1

4
θ ≤ 90

60 ≤ θ4 = 90 − 1

2
θ ≤ 90

90 ≤ θ5 = 360 − 120 − 60 − θ4 ≤ 120

We then have to mesh S so that the mesh vertices on the outer edge are exactly the
ones given above. We do this by applying the illustrated constructions in each part of
the sector. Mesh 1 is used only in the piece adjacent to v and the equations below the
figure show that all the new angles are in the correct range. Mesh 2 (or its reflection)
are used in all the pieces that have one more vertex on their outer edge than on the

Fig. 20 The connecting segments between γ and the outer edge of S lie inside a sector of angle 2φ ≤ 30.
If the S is small enough compared to γ the angle marked ε is as small as we wish, say ε < 10◦ . Then
the angles formed with the chords of the outer edge of S are between 65◦ and 115◦ . The angles with the
chords along γ are slightly smaller/larger since γ is only an approximate circle, but the difference is as
small as wish by taking the parameter δ in our thick/thin decomposition small enough
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Fig. 21 If the vertex has
interior angle between 120◦ and
240◦ then we bisect the angle as
part of the sector partition and
mesh each piece as before

Fig. 22 By adding a bounded
number of circular crosscuts to a
hyperbolic thin part we can
connect any P points on γ1 to
any P points on γ2 with a mesh
using angles near 90◦ . The arcs
look like logarithmic spirals.
Indeed, we can think of this
mesh as approximating the
image of the lower picture under
the complex exponential map

inner edge (we use reflections to make the vertices on the radial edges match up).
Otherwise we simply use chords of circles concentric with v to connect edge vertices
of parts where mesh 2 was used; see the right side of Fig. 19.

If the interior angle at v is 120◦ ≤ θ < 240◦ then we bisect the angle as part of our
partition of the sector. If 240◦ ≤ θ ≤ 360◦, then we trisect the angle; see Fig. 21.

A hyperbolic thin part is bounded by two straight line segments in ∂Ω and two
almost circular crosscuts γ1, γ2. Both crosscuts contain the same number, P , of ver-
tices from the meshes of the corresponding thick pieces. If the two straight sides are
parallel or lie on lines that intersect with small angle, then just connecting each point
on γ1 to the corresponding point on γ2 will give angles in the desired range. In gen-
eral, however, this is not the case, but is easily fixed by adding a bounded number of
circular crosscuts separating γ1, γ2 and using a polygonal chain with vertices on these
crosscuts to connect each vertex on γ1 to the corresponding vertex on γ2. It is easy
to see that this can be done with angles close to 90◦ if the number of intermediate
crosscuts is large enough and δ (the degree if thinness) is small enough; see Fig. 22.
This places an additional constraint on the choice of δ.

In addition to the angle bounds, every quadrilateral in the construction can be
chosen to have bounded geometry (i.e., all four edges of comparable length with
uniform constants) except in two cases. First, when we mesh a parabolic thin part
with angle θ � 1, the piece containing the vertex has two sides with length only
O(θ) as long as the other two. Second, when meshing a hyperbolic thin part we use
long, narrow pieces, but if the long sides have extremal distance δ, we can refine the
mesh by subdividing each such piece into O(1/δ) bounded geometry quadrilaterals.
Thus if the hyperbolic thin parts of Ω have “thinnesses” {δk}, then we can mesh Ω
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by O(n + ∑
k δ−1

k ) quadrilaterals with angles in [60◦,120◦] and bounded geometry,
except for the pieces containing vertices with small angles. If Ω has no small angles,
then this gives the smallest (up to a constant factor), bounded geometry mesh of Ω .

References

1. Beardon, A.F.: The Geometry of Discrete Groups. Springer, New York (1983)
2. Bern, M., Eppstein, D.: Quadrilateral meshing by circle packing. Int. J. Comput. Geom. Appl. 10(4),

347–360 (2000). Selected papers from the Sixth International Meshing Roundtable, Part II (Park City,
UT, 1997)

3. Bishop, C.J.: Divergence groups have the Bowen property. Ann. Math. (2) 154(1), 205–217 (2001)
4. Bishop, C.J.: Quasiconformal Lipschitz maps, Sullivan’s convex hull theorem and Brennan’s conjec-

ture. Ark. Mat. 40(1), 1–26 (2002)
5. Bishop, C.J.: An explicit constant for Sullivan’s convex hull theorem. In: In the Tradition of Ahlfors

and Bers, III. Contemp. Math., vol. 355, pp. 41–69. Am. Math. Soc., Providence (2004)
6. Bishop, C.J.: Conformal mapping in linear time. Discrete Comput. Geom. doi:10.1007/s00454-010-

9269-9 (2010)
7. Christoffel, E.B.: Sul problema della tempurature stazonaire e la rappresetazione di una data superfi-

cie. Ann. Mat. Pura Appl., Ser. II 1, 89–103 (1867)
8. Driscoll, T.A., Trefethen, L.N.: Schwarz–Christoffel Mapping. Cambridge Monographs on Applied

and Computational Mathematics, vol. 8. Cambridge University Press, Cambridge (2002)
9. Epstein, D.B.A., Marden, A.: Convex hulls in hyperbolic space, a theorem of Sullivan, and measured

pleated surfaces. In: Analytical and Geometric Aspects of Hyperbolic Space, Coventry/Durham, 1984.
London Math. Soc. Lecture Note Ser., vol. 111, pp. 113–253. Cambridge University Press, Cambridge
(1987)

10. Garnett, J.B., Marshall, D.E.: Harmonic Measure. New Mathematical Monographs, vol. 2. Cambridge
University Press, Cambridge (2005)

11. Gerver, J.L.: The dissection of a polygon into nearly equilateral triangles. Geom. Dedic. 16(1), 93–106
(1984)

12. Nehari, Z.: Conformal Mapping. Dover, New York (1975). Reprinting of the 1952 edition
13. Schwarz, H.A.: Confome Abbildung der Oberfläche eines Tetraeders auf die Oberfläche einer Kugel.

J. Reine Angew. Math., 121–136 (1869). Also in collected works, [14], pp. 84–101
14. Schwarz, H.A.: Gesammelte Mathematische Abhandlungen. Springer, Berlin (1890)
15. Sullivan, D.: Travaux de Thurston sur les groupes quasi-fuchsiens et les variétés hyperboliques de

dimension 3 fibrées sur S1. In: Bourbaki Seminar, vol. 1979/80, pp. 196–214. Springer, Berlin (1981)
16. Trefethen, L.N., Driscoll, T.A.: Schwarz–Christoffel mapping in the computer era. In: Proceedings

of the International Congress of Mathematicians (Berlin, 1998), Vol. III, pp. 533–542 (electronic)
(1998)

http://dx.doi.org/10.1007/s00454-010-9269-9
http://dx.doi.org/10.1007/s00454-010-9269-9

	Optimal Angle Bounds for Quadrilateral Meshes
	Abstract
	Introduction
	Möbius Transformations and Hyperbolic Geometry
	A Subdivision of the Hyperbolic Disk
	Meshing the Pentagons
	Meshing the Quadrilaterals 
	Meshing the Triangles 
	Meshing the Thick Parts by Conformal Maps 
	Meshing the Thin Parts
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


