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Abstract T.-S. Tay and W. Whiteley independently characterized the multigraphs
which can be realized as an infinitesimally rigid d-dimensional body-and-hinge
framework. In 1984 they jointly conjectured that each graph in this family can be
realized as an infinitesimally rigid framework with the additional property that the
hinges incident to each body lie in a common hyperplane. This conjecture has become
known as the Molecular Conjecture because of its implication for the rigidity of mole-
cules in 3-dimensional space. Whiteley gave a partial solution for the 2-dimensional
form of the conjecture in 1989 by showing that it holds for multigraphs G = (V ,E)

in the family which have the minimum number of edges, i.e. satisfy 2|E| = 3|V | − 3.
In this paper, we give a complete solution for the 2-dimensional version of the Mole-
cular Conjecture. Our proof relies on a new formula for the maximum rank of a pin-
collinear body-and-pin realization of a multigraph as a 2-dimensional bar-and-joint
framework.
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1 Introduction

Informally, a body-and-hinge framework in R
d consists of large rigid bodies artic-

ulated along affine subspaces of dimension d − 2 which act as hinges, i.e. bodies
joined by pin-joints in 2-space, line-hinges in 3-space, plane-hinges in 4-space, etc.
The bodies are free to move continuously in R

d subject to the constraint that the
relative motion of any two bodies joined by a hinge is a rotation about the hinge.
The framework is rigid if every such motion preserves the distances between all pairs
of points belonging to different rigid bodies, i.e. the motion extends to an isometry
of R

d . The incidences can be described by a multigraph G in which vertices cor-
respond to bodies and edges correspond to hinges. The framework is said to be a
realization of G in R

d .
The rigidity of a d-dimensional body-and-hinge framework can be investigated

using an associated rigidity matrix. The framework is infinitesimally rigid if this ma-
trix has rank

(
d+1

2

)
(|V (G)| − 1), and this is known to be a sufficient condition for

the rigidity of the framework. We refer the reader to [5, 14, 16] for formal definitions
and a more detailed account of body-and-hinge frameworks in R

d . We will only be
concerned with the case d = 2 and use a different but equivalent way to model the
body-and-hinge frameworks we are dealing with.

Multigraphs1 which can be realized as infinitesimally rigid body-and-hinge frame-
works are characterized by the following theorem proved independently by Tay and
Whiteley. Given a multigraph G and a positive integer k, we use kG to denote the
multigraph obtained by replacing each edge of G by k parallel edges.

Theorem 1.1 [11, 14] A multigraph G can be realized as an infinitesimally rigid
body-and-hinge framework in R

d if and only if (
(
d+1

2

) − 1)G has
(
d+1

2

)
edge-disjoint

spanning trees.

Tay and Whiteley jointly made the following conjecture which would strengthen
their theorem.

Conjecture 1.2 [12] Let G be a multigraph. Then G can be realized as an infinites-
imally rigid body-and-hinge framework in R

d if and only if G can be realized as an
infinitesimally rigid body-and-hinge framework in which the hinges incident to each
body are contained in a common hyperplane.

The purpose of this paper is to give a complete solution of this conjecture when
d = 2. We will assume henceforth that d = 2, unless stated otherwise, and refer to
hinges as pins and to body-and-hinge frameworks as body-and-pin frameworks. We
say that a body-and-pin framework is pin-collinear if the pins incident to each body
lie on a common line. We shall prove:

1All graphs considered are finite and without loops. We will reserve the term graph for graphs without
multiple edges and refer to graphs which may contain multiple edges as multigraphs.
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Fig. 1 A graph G and its body-pin graph G∗. The vertices of G represent bodies, and the edges of G

represent pins connecting bodies. In G∗ each vertex of G is replaced by a complete graph (body), and
each edge of G becomes a shared vertex (pin) between two complete graphs

Theorem 1.3 Let G be a multigraph. Then G has an infinitesimally rigid pin-
collinear body-and-pin realization if and only if 2G contains three edge-disjoint
spanning trees.

Theorem 1.3 has been verified by Whiteley [15], by using a different approach, in
the special case where 2G is the union of three edge-disjoint spanning trees. In this
special case an infinitesimally rigid realization of G is necessarily “independent” in
the sense that there is no redundancy in the constraints on the infinitesimal motions of
the framework. It is important to note that the general case is far from being an easy
extension of the “independent” result. The existence of three edge-disjoint spanning
trees in 2G does not imply that G has a spanning subgraph H for which 2H is the
union of three edge-disjoint spanning trees. To see this, consider for example a graph
G with an even number of vertices. The existence of redundancy in the constraints
make the general problem substantially more difficult. More remarks on this aspect
of the problem will be given at the end of Sect. 5.

Our proof of Theorem 1.3 uses an equivalent model of body-and-pin structures
as ‘bar-and-joint’ frameworks. The equivalence is based on the fact, which is in-
tuitively clear and not difficult to verify (see [2]), that the “degree of freedom” of
the framework does not change if we replace the rigid bodies by rigid bar-and-joint
frameworks in such a way that each pin becomes a pin-joint. The underlying graph
of this framework can be defined as follows.

Let G = (V ,P ) be a multigraph. For v ∈ V , let EG(v) be the set of all edges of
G incident to v. The body-and-pin graph of G is the graph G∗ with V (G∗) = V ∪ P

and

E(G∗) = {
vp : v ∈ V and p ∈ EG(v)

} ∪ {
p1p2 : v ∈ V and p1,p2 ∈ EG(v)

}
.

Thus G∗ is obtained from G by first subdividing each edge of G and then adding a
complete graph on the new neighbour set of each vertex v ∈ V , see Fig. 1.

A (2-dimensional) bar-and-joint framework (H,q) is a graph H = (V ,E) to-
gether with a map q : V → R

2. We say that (H,q) is a realization of H . We con-
sider each vertex v ∈ V to be represented by a universal joint at q(v) and each edge
e = uv ∈ E to be represented by a rigid bar attached to the joints q(u) and q(v). Let
G = (V ,P ) be a multigraph and G∗ be the body-and-pin graph of G. Given a map
q : V (G∗) → R

2, we say that the bar-and-joint framework (G∗, q) is a body-and-pin
realization of G if q acts injectively on {v} ∪ EG(v) for all v ∈ V and the subframe-
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work of (G∗, q) induced by {v} ∪ EG(v) is infinitesimally rigid.2 The realization
(G∗, q) is said to be pin-collinear if the points q(p), p ∈ EG(v), are collinear for
each v ∈ V . We will deduce Theorem 1.3 from the following equivalent result.

Theorem 1.4 Let G be a multigraph. Then G has an infinitesimally rigid pin-
collinear body-and-pin realization as a bar-and-joint framework if and only if 2G

has three edge-disjoint spanning trees.

In fact, we shall determine the maximum rank (or equivalently, the minimum
degree of freedom) of the pin-collinear body-and-pin realizations of a multigraph
as a bar-and-joint framework. To state and prove this more general result we need
some concepts and results on forest covers of multigraphs, which will be described
in Sect. 3. The proof of our main result will follow in Sect. 5. We conclude the paper
by describing a conjectured characterization of when a general incidence structure
can be realized as an infinitesimally rigid pin-collinear body-and-pin framework in
Sect. 6.

The Molecular Conjecture

The main motivation of our work is to develop new methods which can take us closer
to the solution of the 3-dimensional case of Conjecture 1.2. This special case is known
as the Molecular Conjecture because it has important implications for the rigidity
of molecules. Under projective duality in R

3, lines are mapped to lines. Hence one
may define the dual of a 3-dimensional body-and-hinge framework by replacing the
line associated with each hinge by its projective dual. Crapo and Whiteley [1] show
that the infinitesimal rigidity of a body-and-hinge framework is invariant under this
duality. Since projective duality also interchanges planes and points, the statement
that a graph G can be realized as an infinitesimally rigid body-and-hinge framework
in R

3 with all hinges incident to each body coplanar is equivalent to the statement that
G can be realized as an infinitesimally rigid body-and-hinge framework in R

3 with
all hinges incident to each body concurrent at a point. The application to molecules
constructs a body-and-hinge framework which represents each atom as a body. The
relative motion of two atoms which are linked by a bond is constrained to be a rotation
about the line through the centre of the atoms. This gives rise to a body-and-hinge
framework in which all hinges incident to a body are concurrent [17, 18]. The truth
of the Molecular Conjecture would imply that the results on generic body-and-hinge
frameworks (e.g. the characterization of rigidity, algorithms for computing the degree
of freedom, etc.) extend to such molecular frameworks. For partial results on the
Molecular Conjecture and equivalent versions in terms of bar-and-joint frameworks,
see [3–5, 18].

We remark that Theorem 1.3 also has an implication for the Molecular Conjecture.
Suppose that 2G has three edge-disjoint spanning trees and let us consider an infini-
tesimally rigid pin-collinear body-and-pin realization of G in the plane. One may use
it to construct an infinitesimally rigid 3-dimensional body-and-hinge realization of

2A formal definition of the infinitesimal rigidity of bar-and-joint frameworks will be given in Sect. 2.
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G in which the pins become vertical hinge lines which are concurrent at a projective
point at infinity. In addition all hinges incident to a given body will be contained in
the same vertical plane (containing the corresponding planar pin-line). The projective
dual will then be an infinitesimally rigid 3-dimensional body-and-hinge realization
of G with all hinges incident to each body concurrent, as well as all hinges overall
coplanar. (A partial extension of this result to all dimensions is given in [5], where we
show that if (d − 1)G has d edge-disjoint spanning trees, then G can be realized as
an infinitesimally rigid d-dimensional body-and-hinge framework with all its hinges
contained in the same hyperplane.)

2 Bar-and-Joint Frameworks

For completeness, we state the basic lemmas we need on 2-dimensional frameworks.
Since these lemmas are either well known or easy to prove, we omit the proofs. A
reader familiar with rigidity of frameworks may skip this section.

Let G = (V ,E) be a graph, and let (G,q) be a bar-and-joint framework in R
2. The

rigidity matrix of the framework is the matrix R(G,q) of size |E| × 2|V |, where, for
each edge vivj ∈ E, in the row corresponding to vivj , the entries in the two columns
corresponding to vertices vi and vj are given by the coordinates of q(vi)− q(vj ) and
q(vj ) − q(vi), respectively, and the remaining entries are zeros. See [16] for more
details. We denote the rank of R(G,q) by r(G,q) and refer to it as the rank of the
framework. The degree of freedom of the framework is defined to be 2|V | − r(G,q),
i.e. the dimension of the null space of R(G,q). The following lemma gives an upper
bound on r(G,q).

Lemma 2.1 [16, Lemma 11.1.3] Let (G,q) be a bar-and-joint framework with n ≥ 2
vertices. Then r(G,q) ≤ 2n − 3.

A framework (G,q) is said to be infinitesimally rigid if r(G,q) = 2n − 3. The
following lemma follows from the fact that the entries in R(G,q) are polynomial
(and hence continuous) functions of the components of q(v), v ∈ V .

Lemma 2.2 Let (G,q) be a bar-and-joint framework. Then there exists ε > 0 such
that for all q ′ : V → R

2 with ‖q ′(v) − q(v)‖ ≤ ε for all v ∈ V , we have r(G,q ′) ≥
r(G,q).

Let G = (V ,E) be a multigraph. For X ⊆ V , the degree of X, dG(X), is the
number of edges of G from X to V − X . If X = {v} for some v ∈ V , then we simply
write dG(v) for the degree of v. The set of neighbours of X (i.e. the set of those
vertices v ∈ V − X for which there exists an edge uv ∈ E with u ∈ X) is denoted by
NG(X).

Lemma 2.3 [16, Lemma 2.1.3] Let G1 = (V1,E1) be a graph and v1, v2 be distinct
vertices of G1. Let G be obtained from G1 by adding a new vertex v and edges
vv1, vv2. Let (G1, q1) be a realization of G1 such that q1(v1) �= q1(v2). Choose a
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point Q such that q1(v1), q1(v2),Q are not collinear, and let (G,q) be the realization
of G obtained from (G1, q1) by putting q(v) = Q. Then r(G,q) = r(G1, q1) + 2.

Lemma 2.4 [16, Lemma 2.2.2] Let G1 = (V1,E1) be a graph, v1, v2, v3 be distinct
vertices of G1 and v1v2 be an edge of G1. Let G be obtained from G1 − v1v2 by
adding a new vertex v and edges vv1, vv2, vv3. Let (G1, q1) be a realization of G1

such that q1(v1), q1(v2), q1(v3) are not collinear. Let Q ∈ R
2 be a point on the line

through q1(v1), q1(v2) distinct from q1(v1), q1(v2). Let (G,q) be the realization of
G obtained from (G1, q1) by putting q(v) = Q. Then r(G,q) = r(G1, q1) + 2.

The following result is given without proof in [16, Fig. 2.9].

Lemma 2.5 Let G = (V ,E) be a graph, v ∈ V and EG(v) = {vv1, vv2, . . . , vvk} for
some k ≥ 2. Choose j such that 2 ≤ j ≤ k, and let G′ be the graph obtained from
G − v by adding two new vertices v′, v′′ and edges v′v1, v

′v2, . . . , v
′vj , v′′v1, v

′′v2,
v′′vj+1, . . . , v

′′vk . Suppose that q : V → R
2. Define q ′ : V (G′) → R

2 by q ′(u) =
q(u) for all u ∈ V − v and q(v′) = q(v′′) = q(v). Suppose that q(v) − q(v1) and
q(v) − q(v2) are linearly independent. Then r(G′, q ′) ≥ r(G,q) + 2.

We refer to the operations in Lemmas 2.3, 2.4 and 2.5 as 0-extensions, 1-extensions
and vertex-splits, respectively. See Figs. 2 and 3.

Lemma 2.6 Let G = (V ,E),G1 = (V1,E1),G2 = (V2,E2) be connected graphs
such that G = G1 ∪ G2, and G1 ∩ G2 = K is a complete graph on t vertices for
t ∈ {0,1,2}. Let (G,q) be a realization of G, and let qi be the restriction of q to Vi ,
i ∈ {1,2}. Suppose that the affine hull of qi(Vi) is 2-dimensional for each i ∈ {1,2}
and that q(u) �= q(v) if u,v are distinct vertices of K . Then r(G,q) = r(G1, q1) +
r(G2, q2) − |E(K)|.

Fig. 2 The graphs G2 and G3
are the underlying graphs of the
frameworks obtained from a
realization of G1 by a
0-extension and a 1-extension,
respectively

Fig. 3 The vertex-split
operation
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3 Bricks and Superbricks

A high-level description of our proof of Theorem 1.4 is as follows. We prove a
more general result on the maximum rank of a pin-collinear body-and-pin realiza-
tion (G∗, q) of a graph G. This allows us to use local operations in our inductive
proof, which verifies the rank formula by induction on the size of G. The proof has
a strong graph theoretical flavour but also uses geometric arguments. As we shall
see, the maximum rank of (G∗, q) depends on the ‘deficiency’ of G, which measures
how far 2G is from having three edge-disjoint spanning trees. To work with this de-
ficiency function we need a number of results on forest covers of graphs from [6].
These lemmas will be given in this section. In our inductive argument we shall apply
local or global operations to G (for example edge or vertex deletion, restriction to a
connected component) to obtain smaller graphs. We give bounds on the deficiency of
the smaller graphs by using our lemmas on forest covers. By induction, this will give
us pin-collinear realizations of the smaller graphs of sufficiently high rank. To obtain
the desired maximum rank realization of G∗ we shall apply the geometric lemmas
from the previous section.

We now summarize the structural results on forest covers of multigraphs that we
shall use. Let H = (V ,E) be a multigraph. For a family F of pairwise disjoint subsets
of V , let EH (F ) denote the set, and eH (F ) the number, of edges of H connecting
distinct members of F .

The following theorem of Nash-Williams and Tutte is well known, see also [10,
Chap. 51].

Theorem 3.1 [8, 9, 13] Let H = (V ,E) be a multigraph, and let k be a positive
integer. Then

(a) the maximum size of the union of k forests in H is equal to the minimum value of

eH (P ) + k
(|V | − |P |) (1)

taken over all partitions P of V .
(b) H contains k edge-disjoint spanning trees if and only if

eH (P ) ≥ k
(|P | − 1

)

for all partitions P of V .

In this paper we shall be concerned with the case where H = 2G for some multi-
graph G = (V ,E) and k = 3. For a partition Q of V , let

defG(Q) = 3
(|Q| − 1

) − 2eG(Q)

denote the deficiency of Q in G, and let

def(G) = max
{
defG(Q) : Q is a partition of V

}
.

Note that def(G) ≥ 0 since defG({V }) = 0. We say that a partition Q of V is a tight
partition of G if defG(Q) = def(G).
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We next show that def(G) can be used to obtain an upper bound on the rank of
any bar-and-joint realization r(G∗, q) of the body-and-pin graph of G.

Lemma 3.2 Let G = (V ,P ) be a multigraph with no isolated vertices. Then
r(G∗, q) ≤ 2(|V | + |P |) − 3 − def(G) for all realizations (G∗, q) of G∗.

Proof Since |V (G∗)| = |V | + |P |, we have r(G∗, q) ≤ 2(|V | + |P |) − 3 by
Lemma 2.1. Thus we may assume that def(G) ≥ 1. Let Q = {Q1,Q2, . . . ,Qt } be
a tight partition of V . Since def(G) ≥ 1, we must have t ≥ 2.

For v ∈ V , let B∗(v) = {v} ∪ EG(v) ⊂ V (G∗), and let Xi = ⋃
v∈Qi

B∗(v) for
1 ≤ i ≤ t . Then every edge of G∗ is induced by some Xi , and since G has no isolated
vertices, we have |Xi | ≥ 2 for 1 ≤ i ≤ t . Furthermore,

∑t
i=1 |Xi | = |V | + |P | +

eG(Q). Now we can use Lemma 2.1 to deduce that

r(G∗, q) ≤
t∑

i=1

(
2|Xi | − 3

) = 2
(|V | + |P |) + 2eG(Q) − 3t

= 2
(|V | + |P |) − 3 − def(G). �

We shall see later, as a corollary of our main result, that the equality can be at-
tained in Lemma 3.2. (This corollary could also be proved directly using the charac-
terization of the rank function of the rigidity matroid of a graph given by Lovász and
Yemini [7].)

A multigraph G is strong if 2G has three edge-disjoint spanning trees. Equiva-
lently, by Theorem 3.1(b), G is strong if def(G) = 0, and, by Theorem 1.1, G is
strong if G can be realized as an infinitesimally rigid body-and-pin framework in R

2.
A subgraph H of a multigraph G is said to be a brick of G if H is a maximal
strong subgraph of G. Thus bricks are induced subgraphs. We say that a multigraph
G = (V ,E) is superstrong if 2G − e has three edge-disjoint spanning trees for all
e ∈ E(2G). Equivalently, by Theorem 3.1(b), G is superstrong if def(G) = 0 and the
only tight partition of V is {V } itself. A subgraph H of G is said to be a superbrick
of G if H is a maximal superstrong subgraph of G. Thus superbricks are induced
subgraphs.

The following properties of bricks, superbricks, and tight partitions were verified
in [6] in a more general form.

Lemma 3.3 [6, Corollaries 2.5, 2.8] Let G = (V ,E) be a multigraph. Then the vertex
sets of the bricks (resp. superbricks) of G partition V .

The term brick partition (resp. superbrick partition) of G refers to the partition of
V given by the vertex sets of the bricks (resp. superbricks) of G, see Fig. 4. We will
also refer to the elements of the brick partition as bricks of G. It will be clear from the
context whether we are referring to a subgraph or its vertex set. We shall frequently
use the fact that the brick and superbrick partitions of G are both tight. This follows
from the next lemma.

Lemma 3.4 [6, Theorems 2.6, 2.9] Let G = (V ,E) be a multigraph and P be a tight
partition of V .
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Fig. 4 The brick partition B1 and the superbrick partition B2 of the graph G of Fig. 1. We have
def(G) = defG(B1) = defG(B2) = 1

(a) If P is chosen so that |P | is as small as possible, then P is the brick partition of
G.

(b) If P is chosen so that |P | is as large as possible, then P is the superbrick partition
of G.

We need one further lemma from [6].

Lemma 3.5 [6, Lemma 2.3(a)] Let P be a tight partition of a multigraph G and
X ∈ P . Then the subgraph of G induced by X is strong.

We also need a new lemma which follows from the fact that the brick partition of
G is tight.

Lemma 3.6 Let G = (V ,E) be a multigraph, and suppose that the subgraph of G

induced by X is strong for some X ⊆ V . Then def(G) = def(G/X), where G/X

denotes the multigraph obtained from G by contracting X into a single vertex.

4 Pin-Line-Generic Body-and-Pin Realizations

Let G = (V ,P ) be a multigraph and G∗ be the body-and-pin graph of G. Consider a
pin-collinear body-and-pin realization (G∗, q) of G, and let v ∈ V . The line through
q(p), p ∈ EG(v), is unique when dG(v) ≥ 2, and we denote it by L(G∗,q)(v). We
extend this notation for vertices v ∈ V with dG(v) = 1, say EG(v) = {p}, by putting
L(G∗,q)(v) equal to the line through q(p) which is orthogonal to the line containing
q(v), q(p). We refer to the lines L(G∗,q)(v), v ∈ V , as the pin-lines of (G∗, q). Note
that the infinitesimal rigidity of the subframework of (G∗, q) induced by {v}∪EG(v)

implies that q(v) cannot lie on L(G∗,q)(v) for each v ∈ V . Furthermore, if this con-
dition holds, then r(G∗, q) will be independent of the values chosen for q(v) for all
v ∈ V .

Let (G∗, q) be a pin-collinear body-and-pin realization of a graph G = (V ,P )

such that no pin-line of (G∗, q) passes through the origin. Then, for each v ∈ V ,
there exists av, bv ∈ R such that the pin-line of v is given by

L(G∗,q)(v) = {
(x, y) ∈ R

2 : avx + bvy = 1
}
.

We say that (G∗, q) is pin-line-generic if the (multi)set {av, bv : v ∈ V } is alge-
braically independent over Q. Note that if G contains two vertices u,v which are
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joined by two or more edges in G, then we must necessarily have L(G∗,q)(u) =
L(G∗,q)(v). Thus multigraphs cannot have pin-line-generic pin-collinear body-and-
pin realizations.

On the other hand, we shall see that every graph has a pin-line-generic pin-
collinear body-and-pin realization as a bar-and-joint framework. Furthermore, such a
realization will maximize the rank over all pin-collinear body-and-pin realizations.

Lemma 4.1 Let G = (V ,P ) be a graph. Then r(G∗, q) achieves its maximum
over all pin-collinear body-and-pin realizations of G whenever (G∗, q) is pin-line-
generic.

Proof Let (G∗, q ′) be a pin-collinear body-and-pin realization of G which maxi-
mizes r(G∗, q). We may assume that no pin-line of (G∗, q ′) passes through the ori-
gin. Let L(G∗,q ′)(v) = {(x, y) ∈ R

2 : a′
vx + b′

vy = 1} for each v ∈ V . We show that,
for any given ε > 0, there exists a pin-line-generic pin-collinear body-and-pin re-
alization (G∗, q) of G with ‖q(uv) − q ′(uv)‖ < ε for all uv ∈ P . For any δ > 0
we may choose (av, bv) in R

2 such that ‖(av, bv) − (a′
v, b

′
v)‖ < δ and such that the

set {av, bv : v ∈ V } is algebraically independent over Q. Let Lv = {(x, y) ∈ R
2 :

avx + bvy = 1} for each v ∈ V . Define q : V ∪ P → R
2 by putting q(uv) equal to

the point of intersection of Lu and Lv for each uv ∈ P and putting q(v) = (0,0) for
all v ∈ V . Continuity implies that we will have ‖q(uv) − q ′(uv)‖ < ε if we make δ

small enough. Lemma 2.2 now implies that r(G∗, q) = r(G∗, q ′) for ε small enough,
and hence r(G∗, q) is also maximum.

Furthermore,

q(uv) = d(u, v)−1(bv − bu, au − av),

where

d(u, v) = det

(
au bu

av bv

)
.

It follows that each entry in the rigidity matrix R(G∗, q) is a rational function of
av, bv , v ∈ V . Thus r(G∗, q) will be the same for all pin-line-generic realizations
(G∗, q). �

5 Maximum Rank of Pin-Collinear Body-and-Pin Realizations

We now prove our main result, which determines the maximum rank of a pin-
collinear body-and-pin realization of a graph as a bar-and-joint framework. It will
be extended to multigraphs at the end of this section.

Theorem 5.1 Let G = (V ,P ) be a graph with no isolated vertices. Then the maxi-
mum rank of a pin-collinear body-and-pin realization of G as a bar-and-joint frame-
work is 2(|V | + |P |) − 3 − def(G).

Proof By Lemma 3.2, it suffices to show that there exists a pin-collinear body-and-
pin realization (G∗, q) of G such that r(G∗, q) = 2(|V | + |P |) − 3 − def(G). We
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proceed by contradiction. Suppose that there exists a graph G = (V ,P ) such that, for
all pin-collinear body-and-pin realizations (G∗, q) of G, we have r(G∗, q) < 2(|V |+
|P |) − 3 − def(G). We may suppose that G has been chosen such that |V | + |P | is
as small as possible. It can easily be seen that G has at least four vertices. We denote
the number of vertices and edges of G by n and m, respectively. We will extend this
notation using subscripts, so that for example, the number of vertices and edges in
a graph G1 will be denoted by n1 and m1, respectively. We will frequently use the
fact that if n1 + m1 < n + m, then, by the minimality of G and Lemma 4.1, there
exists a pin-line-generic pin-collinear body-and-pin realization (G∗

1, q) of G1 with
r(G∗

1, q) = 2(n1 +m1)− 3 − def(G1). Since (G∗
1, q) is pin-line-generic, no two pin-

lines of (G∗
1, q) are parallel, and every point q(p), p ∈ P1, belongs to exactly two

pin-lines in (G∗
1, q). We next prove eight claims which establish structural properties

of our minimal counterexample G.

Claim 5.2 G is connected.

Proof Suppose that the claim is false. Then there exist disjoint subgraphs G1,G2 of
G such that G = G1 ∪ G2. Since the brick partition of G is just the union of the
brick partitions of G1 and G2, we may use Lemma 3.4(a) to deduce that def(G) =
def(G1) + def(G2) + 3. By the minimality of G, there exists a pin-collinear body-
and-pin realization (G∗

i , qi) of Gi such that r(G∗
i , qi) = 2(ni +mi)−3−def(Gi) for

each i ∈ {1,2}. Taking the union of (G∗
1, q1) and (G∗

2, q2), we obtain a pin-collinear
body-and-pin realization (G∗, q) of G. By Lemma 2.6

r(G∗, q) = r(G∗
1, q1) + r(G∗

2, q2)

= 2(n1 + m1) − 3 − def(G1) + 2(n2 + m2) − 3 − def(G2)

= 2(n + m) − 3 − def(G).

This contradicts the choice of G. �

Claim 5.3 For each v ∈ V , dG(v) ≥ 2.

Proof Suppose that there exists v1 ∈ V with dG(v1) = 1. Let p1 = u1v1 be the edge
of G incident to v1 and G1 = G− v1. Let Q1 be a tight partition of G1. Put B = {v1}
and let Q = Q1 ∪ {B}. Then def(G) ≥ defG(Q) = defG1(Q1) + 1 = def(G1) + 1.
By the minimality of G and Lemma 4.1, there exists a pin-line-generic pin-collinear
body-and-pin realization (G∗

1, q1) of G1 such that r(G∗
1, q1) = 2(n1 + m1) − 3 −

def(G1). Choose p2 ∈ EG1(u1). Let Q1 be a point on L(G∗
1,q1)(u1) such that Q1 �=

q1(p) for all p ∈ EG1(u1). Choose another point Q2 �= Q1. We may now extend
(G∗

1, q1) to a pin-collinear body-and-pin realization (G∗, q) of G by putting q(p1) =
Q1 and q(v1) = Q2. Since G∗ can be obtained from G∗

1 by performing a 0-extension
(adding the vertex p1 and edges p1u1,p1p2), adding the vertex v1 and edge v1p1
and finally adding the remaining edges of E(G∗), Lemma 2.3 implies that

r(G∗, q) ≥ r(G∗
1, q1)+3 = 2(n1 +m1)−3−def(G1)+3 ≥ 2(n+m)−3−def(G).

This contradicts the choice of G. �
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Claim 5.4 G is 2-edge-connected.

Proof Suppose that the claim is false. Then there exist p0 ∈ P and disjoint sub-
graphs G1,G2 of G0 = G − p0 such that G0 = G1 ∪ G2. By the minimality of G

and Lemma 4.1, there exists a pin-line-generic pin-collinear body-and-pin realiza-
tion (G∗

0, q0) of G0 which satisfies r(G∗
0, q0) = 2(n0 + m0) − 3 − def(G0). Since

the brick partition of G is just the union of the brick partitions of G1 and G2, we
may use Lemma 3.4(a) to deduce that def(G) = def(G0) − 2. Let ui be the vertex of
Gi incident to p0 for each i ∈ {1,2} and Q be the point of intersection of the lines
L(G∗

0,q0)(u1) and L(G∗
0,q0)(u2). We may extend (G∗

0, q0) to a pin-collinear body-and-
pin realization (G∗, q) of G by putting q(p0) = Q. Let Hi be the subgraph of G∗
induced by V (G∗

i ) ∪ {p0}, qi the restriction of q to V (G∗
i ) and q ′

i the restriction of q

to V (Hi) for i ∈ {1,2}. Lemmas 2.3 and 2.6 imply that

r(G∗, q) = r(H1, q
′
1) + r(H2, q

′
2) ≥ r(G∗

1, q1) + 2 + r(G∗
2, q2) + 2

≥ r(G∗
0, q0) + 4 = 2(n0 + m0) − 3 − def(G0) + 4

= 2(n + m) − 3 − def(G).

This contradicts the choice of G. �

Claim 5.5 For each v ∈ V , dG(v) ≥ 3.

Proof Suppose that there exists v1 ∈ V with dG(v1) = 2. Let p1 = u1v1 and p2 =
u2v1 be the edges of G incident to v1 and G1 = G − v1. Let B1 be the brick partition
of G1.

We first consider the case where u1 and u2 both belong to the same brick B1 of G1.
Let B = B1 + v1 and Q = B1 − {B1} ∪ {B}. Then

def(G) ≥ defG(Q) = defG1(B1) = def(G1).

By the minimality of G and Lemma 4.1, there exists a pin-line-generic pin-collinear
body-and-pin realization (G∗

1, q1) of G1 such that

r(G∗
1, q1) = 2(n1 + m1) − 3 − def(G1) ≥ 2(n + m) − 9 − def(G).

For i ∈ {1,2}, let Qi be a point on L(G∗
1,q1)(ui) such that Qi �= q1(p), p ∈ EG1(ui),

and Q1 �= Q2. Choose a point Q which does not lie on the line through Q1,Q2. We
may now extend (G∗

1, q1) to a pin-collinear body-and-pin realization (G∗, q) of G by
putting q(pi) = Qi for i ∈ {1,2} and q(v1) = Q. Lemma 2.3 implies that r(G∗, q) ≥
r(G∗

1, q1) + 6 ≥ 2(n + m) − 3 − def(G). This contradicts the choice of G.
Thus u1 and u2 must belong to distinct bricks of G1. Since the bricks of G1 are

the maximal strong subgraphs of G1, this implies that

no strong subgraph of G1 can contain both u1 and u2. (2)

Let B = {v1} and Q = B1 ∪ {B}. Then

def(G) ≥ defG(Q) = defG1(B1) − 1 = def(G1) − 1.
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Consider the following three cases.

Case 1. u1u2 �∈ P Let p0 = u1u2 and G2 = G1 + p0. If def(G2) = def(G1), then
u1, u2 would belong to the same set in some tight partition of G1. Since each set
in a tight partition induces a strong subgraph of G1 by Lemma 3.5, this would con-
tradict (2). Hence def(G2) ≤ def(G1) − 1. By the minimality of G and Lemma 4.1,
there exists a pin-line-generic pin-collinear body-and-pin realization (G∗

2, q2) of G2
such that

r(G∗
2, q2) = 2(n2 + m2) − 3 − def(G2) ≥ 2(n1 + m1) − 3 − def(G1) + 3. (3)

Let q1 be the restriction of q2 to V (G∗
1). Then (G∗

1, q1) is a pin-line-generic
pin-collinear body-and-pin realization of G1, so, again by the minimality of G and
Lemma 4.1, r(G∗

1, q1) = 2(n1 + m1) − 3 − def(G1). Since G∗
1 + p0 + p0u1 + p0u2

is a 0-extension of G∗
1, Lemma 2.3 implies that r(G∗

1 + p0 + p0u1 + p0u2, q2) =
r(G∗

1, q1) + 2. Since (G∗
1, q1) is a subframework of (G∗

2, q2), we may use (3) to de-
duce that

r(G∗
1 + p0 + p0u1 + p0u2 + p0p4, q2) = 2(n1 + m1) − 3 − def(G1) + 3

for some p4 ∈ EG1(u1)∪EG1(u2). By symmetry we may assume that p4 ∈ EG1(u1).
Let H2 = G∗

1 + p0 + p0u1 + p0u2 + p0p4. By Lemma 2.2, r(H2, q2) does not de-
crease if we move q2(p0) in a small enough neighbourhood to a new position Q1 in
such a way that it remains on L(G∗

2,q2)(u1) but no longer lies on L(G∗
2,q2)(u2) and such

that the line L0 through Q1 and q2(u2) intersects L(G∗
2,q2)(u2) at a point Q2 �= q2(p)

for all p ∈ EG2(u2). Choose a point Q0 such that Q0,Q1,Q2 are not collinear. De-
fine q : V (G∗) → R

2 by putting q(x) = q2(x) for x ∈ V (G∗
2) − p0, q(p1) = Q1,

q(p2) = Q2, and q(v1) = Q0. Then (G∗, q) is a pin-collinear body-and-pin real-
ization of G. Since G∗ can be obtained from H2 by first relabelling p0 as p1, then
performing a 1-extension (deleting p1u2 and adding p2,p2p1,p2u2,p2p3 for some
p3 ∈ EG1(u2)), then performing a 0-extension (adding v1, v1p1, v1p2), and finally
adding the remaining edges of E(G∗), Lemmas 2.3 and 2.4 imply that

r(G∗, q) ≥ r(H2, q2)+ 4 ≥ 2(n1 +m1)− 3 − def(G1)+ 7 ≥ 2(n+m)− 3 − def(G).

This contradicts the choice of G.

Case 2. u1u2 ∈ P and dG(ui) ≥ 3 for all i ∈ {1,2} Let p3 = u1u2, EG1(u1) =
{p3,p4, . . . , pj } and EG1(u2) = {p3,pj+1,pj+2, . . . , pk}. Since dG(u1), dG(u2) ≥ 3,
j ≥ 4 and k ≥ 5. Since u1u2 ∈ P and K3 is strong, we may use (2) to deduce that
no vertex of G1 is adjacent to both u1 and u2. Thus the (multi)graph G3 obtained
from G1 by contracting the edge p3 onto a new vertex z contains no parallel edges.
Since dG1(u1) ≥ 2 and dG1(u2) ≥ 2, we have dG3(z) ≥ 2, and hence G3 contains no
isolated vertices.

Suppose that def(G3) ≥ def(G1). Let B3 be the brick partition of G3 and choose
B3 ∈ B3 with z ∈ B3. Let B ′

3 = (B3 −{z})∪{u1, u2} and Q1 = (B3 −B3)+B ′
3. Then

defG1(Q1) = defG3(B3) = def(G3) ≥ def(G1),
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Fig. 5 The frameworks (G∗
3, q3) and (H1, q4) in the proof of Case 2 of Claim 5.5

and hence Q1 is a tight partition of G1. Each brick of G1 which does not contain
u1 or u2 is contained in a brick of G3. Furthermore, if X1 and X2 are the distinct
bricks of G1 containing u1 and u2 respectively, then X1 − u1, X2 − u2 and z are all
contained in the same brick of G3. Thus the number of bricks of G1 is strictly greater
than |B3| = |Q1|. Now Q1 contradicts the fact that the brick partition of G1 is the
tight partition with the fewest parts. Thus def(G3) ≤ def(G1) − 1.

By the minimality of G and Lemma 4.1, there exists a pin-line-generic pin-
collinear body-and-pin realization (G∗

3, q3) of G3 such that

r(G∗
3, q3) = 2(n3 + m3) − 3 − def(G3).

Each vertex pi , 4 ≤ i ≤ k, lies on exactly two pin-lines of (G∗
3, q3). Let Li be the pin

line of (G∗
3, q3) which contains pi and is distinct from L(G∗

3,q3)(z).
Let S = {pspt : 4 ≤ s ≤ j, j + 1 ≤ t ≤ k, (s, t) �= (4, j + 1)}, H0 = G∗

3 − S,
F be the subgraph of H0 induced by {z} ∪ {pi : 4 ≤ i ≤ k}, and q0 be the restric-
tion of q3 to F . Since (F, q0) is infinitesimally rigid, r(H0, q3) = r(G∗

3, q3). Let H1
be the graph obtained from H0 − p4pj+1 by adding two new vertices, p1,p3, and
edges p1p3,p1p4,p1z,p3pj+1,p3z, see Fig. 5. Choose two distinct points Q1,Q3
on L(G∗

3,q3)(z) such that Qi �= q3(p) for all i ∈ {1,3} and p ∈ EG3(z), and define

q4 : V (H1) → R
2 by q4(x) = q3(x) for x ∈ V (G∗

3), q4(p1) = Q1 and q4(p3) =
Q3. Since (H1, q4) can be obtained from (H0, q3) by applying two 1-extensions,
Lemma 2.4 implies that r(H1, q4) = r(H0, q3) + 4 = r(G∗

3, q3) + 4.
Let H2 be the graph obtained from H1 − z by adding two new vertices, u1, u2,

edges u1pi for i ∈ {1,3,4, . . . , j}, and edges u2pi for i ∈ {1,3, j + 1, j + 2, . . . , k}.
Define q5 : V (H2) → R

2 by q5(x) = q4(x) for x ∈ V (H1)−z and q5(u1) = q5(u2) =
q4(z). Since (H2, q5) can be obtained from (H1, q4) by a vertex-split, Lemma 2.5
implies that r(H2, q5) ≥ r(H1, q4) + 2. By Lemma 2.2, there exists a neighbourhood
Si around each point q5(pi), i ∈ {1,4, . . . , j}, such that r(H2, q5) does not decrease
if we move q5(pi) within Si . Thus we may modify (H2, q5) by moving each point
q5(pi), i ∈ {1,4, . . . , j}, slightly, in such a way that it continues to lie on Li and
belong to Si , and also such that p1,p3,p4, . . . , pj all lie on a line L0 which is not
parallel to L(G∗

3,q3)(z). Let (H2, q̃5) be the modified framework, see Fig. 6. (We may
imagine L0 is obtained by a small rotation of L(G∗

3,q3)(z) about the point q5(p3).)
Let L1 be the line through q̃5(p1) and q̃5(u2). By using Lemma 2.2 to move q̃5(u2)

if necessary, we may suppose that Q2, the point of intersection of L1 and L(G∗
3,q3)(z),

is distinct from q̃5(p) for all p ∈ EG1(u2). Choose a point Q0 which does not lie on
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Fig. 6 The frameworks (H2, q5) and (H2, q̃5) in the proof of Case 2 of Claim 5.5

L1. Define q : V (G∗) → R
2 by q(x) = q̃5(x) for x ∈ V (G∗) − {p2, v1}, q(p2) =

Q2 and q(v1) = Q0. Then (G∗, q) is a pin-collinear body-and-pin realization of G.
Since (G∗, q) can be obtained from (H2, q̃5) by a 1-extension (which deletes u2p1
and adds a new vertex p2 and edges p2p1, u2p2,p2p3), a 0-extension (which adds
v1, v1p1, v1p2) and by adding other edges, we have

r(G∗, q) ≥ r(H2, q̃5) + 4 ≥ r(H1, q4) + 6 = r(G∗
3, q3) + 10

= 2(n3 + m3) − 3 − def(G3) + 10 ≥ 2(n + m) − 3 − def(G),

since def(G) ≥ def(G1) − 1 ≥ def(G3). This contradicts the choice of G.

Case 3. u1u2 ∈ P and dG(ui) = 2 for some i ∈ {1,2} Let p3 = u1u2. Sup-
pose, without loss of generality, that EG(u2) = {p2,p3}. Let G4 = G − {v1, u2}.
Note that G is obtained from G4 by attaching a complete graph on three vertices
(which is strong) at vertex u1, and hence def(G4) = def(G). By Claim 5.4 we have
|EG4(u1)| ≥ 2.

By the minimality of G and Lemma 4.1, there exists a pin-line-generic pin-
collinear body-and-pin realization (G∗

4, q6) of G4 such that

r(G∗
4, q6) = 2(n4 + m4) − 3 − def(G4).

Let p4 ∈ EG4(u1). Let H4 be the graph obtained from G∗
4 by adding new vertices

p1,p2,p3, v1, u2 and edges p1u1 ,p1p4, p3u1, p3p4, p2p1, p2p3, v1p1, v1p2, u2p3
and u2p2. Choose distinct points Q1,Q3 on L(G∗

4,q6)(u1) such that Qi �= q6(p) for
all i ∈ {1,3} and p ∈ EG4(u1). Choose a point Q2 which is not on L(G∗

4,q6)(u1)

and choose points Q5,Q6 such that Q5 is not on the line through Q1,Q2, and Q6
is not on the line through Q3,Q2. Define q7 : V (H4) → R

2 by q7(x) = q6(x) for
x ∈ V (G∗

4), q7(p1) = Q1, q7(p3) = Q3, q7(p2) = Q2, q7(v1) = Q5, and q7(u2) =
Q6, see Fig. 7. Since (H4, q7) can be obtained from (G∗

4, q6) by five 0-extensions,
Lemma 2.3 implies that r(H4, q7) = r(G∗

4, q6) + 10. Since def(G4) = def(G) and
|V (G∗)| = |V (G∗

4)| + 5, we have

r(G∗, q7) ≥ r(H4, q7) = r(G∗
4, q6) + 10 = 2(n + m) − 3 − def(G).

This contradicts the choice of G. �
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Fig. 7 The framework (H4, q7) in the proof of Case 3 of Claim 5.5

Claim 5.6 For each p ∈ P , def(G − p) ≥ def(G) + 1.

Proof Clearly def(G − p) ≥ def(G). Suppose that def(G − p1) = def(G) for some
p1 ∈ P . Let p1 = v1v2 and G1 = G − p1. By the minimality of G and Lemma 4.1,
there exists a pin-line-generic pin-collinear body-and-pin realization (G∗

1, q1) of G1
such that r(G∗

1, q1) = 2(n1 + m1) − 3 − def(G1). Let Q be the point of intersection
of L(G∗

1,q1)(v1) and L(G∗
1,q1)(v2). We may extend (G∗

1, q1) to a pin-collinear body-
and-pin realization (G∗, q) of G by putting q(p1) = Q. Lemma 2.3 implies that

r(G∗, q) ≥ r(G∗
1, q1)+2 = 2(n1 +m1)−3−def(G1)+2 = 2(n+m)−3−def(G).

This contradicts the choice of G. �

Claim 5.7 G is not 3-edge-connected.

Proof Choose p0 ∈ P and let G0 = G−p0. By Claim 5.6, def(G0)≥def(G) + 1 ≥ 1.
Thus G0 is not strong. Let B0 be the brick partition of G0. We have def(G0) =
defG0(B0) = 3(|B0|−1)−2eG0(B0) ≥ 1. Thus 2eG0(B0) ≤ 3|B0|−4 and 2eG(B0) ≤
3|B0| − 2. Hence, there exists B ∈ B0 such that dG(B) ≤ 2. �

Claim 5.8 If S = {p1,p2} is a 2-edge-cut of G, then def(G − p1) = def(G) + 2.

Proof Let p1 = uv and G1 = G − p1. It follows from the definition of def(G)

and Claim 5.6 that def(G) + 1 ≤ def(G1) ≤ def(G) + 2. Suppose that def(G1) =
def(G) + 1. By the minimality of G and Lemma 4.1, there exists a pin-line-generic
pin-collinear body-and-pin realization (G∗

1, q1) of G1 such that r(G∗
1, q1) = 2(n1 +

m1)− 3 − def(G1). Let Q be the point of intersection of L(G∗
1,q1)(u) and L(G∗

1,q1)(v).
We may assume that Q does not lie on the line through q1(p2) and q1(v), since if
it does, then we can use Lemma 2.2 to move q1(v) in a small neighbourhood with-
out decreasing r(G∗

1, q1). Choose p3 ∈ EG1(u) and let H1 be the graph obtained
from G∗

1 by adding the vertex p1 and edges p1u,p1p3. We may extend (G∗
1, q1) to

a bar-and-joint realization (H1, q) of H1 by putting q(p1) = Q. Lemma 2.3 implies
that r(H1, q) = r(G∗

1, q1) + 2. Let H2 be obtained from H1 by adding the edge p1v.
Since Q is not on the line through q1(p2) and q1(v), the infinitesimal motion of
(H1, q) which keeps both p2 and the component of H1 − p2 containing u fixed and
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Fig. 8 The graphs G1 and G2

rotates the other component about p2 is not an infinitesimal motion of (H2, q) (since
it is not orthogonal to q(p1) − q(v)). The degree of freedom of (H2, q) is less than
(H1, q) and r(H2, q) ≥ r(H1, q) + 1. Hence (G∗, q) is a pin-collinear body-and-pin
realization of G for which

r(G∗, q) ≥ r(H2, q) ≥ r(G∗
1, q1) + 3

= 2(n1 + m1) − 3 − def(G1) + 3 = 2(n + m) − 3 − def(G).

This contradicts the choice of G. �

Claim 5.9 G is not superstrong.

Proof Suppose that G is superstrong. Then 2eG(P ) ≥ 3(|P |−1)+1 for all partitions
P of G with |P | ≥ 2. Hence def(G−p) ≤ def(G)+ 1 for all p ∈ P . This contradicts
Claims 5.7 and 5.8. �

We now continue the proof of the theorem. Let B be the superbrick partition of G.
By Claim 5.9, |B| ≥ 2. Since def(G) = 3(|B| − 1) − 2eG(B) ≥ 0 by Lemma 3.4(b),
we may use a similar argument to that given in the proof of Claim 5.7 to deduce that
there exists B1 ∈ B with dG(B1) = 2. By Claim 5.5, we have

3 ≤ |B1| ≤ n − 3. (4)

Let p1 = u1v1 and p2 = u2v2 be the edges in G from B1 to V − B1, where u1, u2 ∈
B1. Let H1,H2 be the components of G − {p1,p2} where V (H1) = B1. Let G1 be
the graph obtained from H1 by adding two new vertices w0,w1 and edges p3 =
u1w0,p4 = w1u2,p5 = w0w1. Let G2 be the graph obtained from H2 by adding a
new vertex w2 and edges p6 = v1w2,p7 = v2w2, see Fig. 8.

Claim 5.10

(a) G1 is strong.
(b) def(G) ≥ def(G2).
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Proof (a) Suppose that G1 is not a brick. Let B1 be the brick partition of G1. Then
|B1| ≥ 2. Since G[B1] is strong by Lemma 3.5 and since strong graphs with at least
two vertices have minimum degree at least two, we must have B1 = {B1, {w0}, {w1}}.
But then def(G1) = defG1(B1) = 0, contradicting the assumption that G1 is not a
brick.

(b) Consider the brick partition B2 of G2. Let B2 be the brick of G2 which contains
w2 and Q = B2 − {B2} ∪ {B2 ∪ B1}. Then

def(G) ≥ defG(Q) = defG2(B2) = def(G2). �

We have |V (Gi)| < |V (G)| for i ∈ {1,2}, by (4). Thus, by the minimality of
G and Lemma 4.1, there exists a pin-line-generic pin-collinear body-and-pin real-
ization (G∗

i , qi) of Gi such that r(G∗
i , qi) = 2(ni + mi) − 3 − def(Gi) for each

i ∈ {1,2}. Since r(G∗
2, q2) is preserved by translations, rotations, and dilations, we

may assume that q1(p3) = q2(p6) and q1(p4) = q2(p7). Define q : V (G∗) → R
2

by putting q(x) = q1(x) for x ∈ V (G∗
1) − {w0,w1,p3,p4,p5}, q(x) = q2(x) for

x ∈ V (G∗
2) − {w2,p6,p7}, q(p1) = q1(p3) = q2(p6), and q(p2) = q1(p4) = q2(p7).

Then (G∗, q) is a pin-collinear body-and-pin realization of G.
By Claim 5.10(a), def(G1) = 0. Thus r(G∗

1, q1) = 2(n1 + m1) − 3, and (G∗
1, q1)

is infinitesimally rigid. Hence r(G∗
1 + p3p4, q1) = r(G∗

1, q1). Let F1 = G∗
1 −

{w0,w1,p4} and F2 = G∗
2 − {w2}. For i = 1,2, let ti be the restriction of qi to

V (Fi). Using Lemma 2.3, we may deduce that r(F1, t1) = 2(n1 + m1) − 3 − 6 =
r(F1 + p3p4, t1) and r(F2, t2) = 2(n2 + m2) − 3 − def(G2) − 2. Now Lemma 2.6
implies that

r(G∗ + p1p2, q) = r(F1 + p3p4, t1) + r(F2, t2) − 1

= 2(n1 + m1) + 2(n2 + m2) − def(G2) − 15.

Since r(F1, t1) = r(F1 + p3p5, t1), we have r(G∗, q) = r(G∗ + p1p2, q). Since n =
n1 + n2 − 3 and m = m1 + m2 − 3, this gives

r(G∗, q) = 2(n + m) − 3 − def(G2) ≥ 2(n + m) − 3 − def(G),

by Claim 5.10(b). This contradicts the choice of G and completes the proof of the
theorem. �

We next extend Theorem 5.1 to multigraphs. A multigraph H is reducible if it can
be reduced to a single vertex by repeatedly contracting parallel edges, i.e. pairs of
vertices u,v with d(u, v) ≥ 2. Since these pairs induce strong subgraphs, it follows
from Lemma 3.6 that reducible graphs are strong. The next lemma is not difficult to
verify by induction on the number of contractions.

Lemma 5.11 Let G be a reducible multigraph. Then G has an infinitesimally rigid
body-and-pin realization (G∗, q) in which all pins are collinear.

Theorem 5.12 Let G = (V ,P ) be a connected multigraph on at least two vertices.
Then there exists a pin-collinear body-and-pin realization (G∗, q) of G as a bar-and-
joint framework such that r(G∗, q) = 2(|V | + |P |) − 3 − def(G).
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Proof By Lemma 5.11 we may assume that G is not reducible. Observe that the max-
imal reducible subgraphs G1,G2, . . . ,Gz of G are pairwise vertex-disjoint induced
subgraphs. Let H be the multigraph obtained from G by contracting each subgraph
Gi into a vertex gi , 1 ≤ i ≤ z. Then H is a graph, without multiple edges and iso-
lated vertices, which satisfies def(H) = def(G) by Lemma 3.6. Theorem 5.1 implies
that there is a pin-collinear body-and-pin realization (H ∗, q ′) of H as a bar-and-joint
framework with r(H ∗, q ′) = 2|V (H ∗)| − 3 − def(G). Let L′

i denote the pin-line of
gi in (H ∗, q ′), 1 ≤ i ≤ z.

It follows from Lemma 5.11 that each subgraph Gi has an infinitesimally rigid
body-and-pin realization (G∗

i , qi) in which all pins are on the same line Li , 1 ≤ i ≤ z.
Note that no vertex v ∈ V (Gi) can have qi(v) on Li . By translating and rotating the
frameworks (G∗

i , qi), if necessary, we may suppose that L′
i = Li for 1 ≤ i ≤ z. Let

p ∈ EH (gi) for some 1 ≤ i ≤ z. Then p corresponds to an edge joining some vertex
u ∈ V (Gi) to a vertex v ∈ V (Gj ) for some j �= i. We may add the pin-vertex p to
(G∗

i , qi) by performing a 0-extension which places p at the point q ′(p) on the line
Li and adds edges up and pup for some pu ∈ NG∗

i
(u). We repeat this operation

for all p ∈ EH (gi) and all 1 ≤ i ≤ z and denote the resulting extended frameworks
by (Hi, q

′
i ). Note that each of the extended frameworks is infinitesimally rigid by

Lemma 2.3.
We can now obtain the desired realization (G∗, q) of G from (H ∗, q ′) by glueing

each of the frameworks (Hi, q
′
i ) to (H ∗, q ′) along their common pins, then delet-

ing the vertices gi , 1 ≤ i ≤ z, and then adding some extra edges. Since the first
two operations replace the infinitesimally rigid subframework induced by gi and its
neighbours in H ∗ by the infinitesimally rigid subframework (Hi, q

′
i ), it is not dif-

ficult to see that the degree of freedom of the resulting framework (G∗, q) is not
bigger than that of (H ∗, q ′). Thus we have r(G∗, q) ≥ 2|V (G∗)| − 3 − def(G) =
2(|V | + |P |) − 3 − def(G). The theorem now follows by applying Lemma 3.2. �

Theorem 1.4 follows from Theorem 5.12 by putting def(G) = 0. Note that Theo-
rem 5.12 also implies that equality can be attained in Lemma 3.2. Thus the “generic
rank” of the body-pin graph G∗ of G = (V ,P ) is equal to 2(|V |+ |P |)−3−def(G).

Maximum Rank Body-and-Pin Frameworks

A 2-dimensional body-and-pin framework is a pair (G,q) where G = (V ,P ) is a
multigraph and q is a map which associates a point in R

2 with each edge p ∈ P . For-
mal definitions for a 2|P | × 3|V | rigidity matrix RBP(G,q) and for the infinitesimal
rigidity of the body-and-pin framework (G,q) are given in [2, 5]. The rank of (G,q),
rBP(G,q), is defined to be the rank of its rigidity matrix RBP(G,q). We show in [2]
that if (G∗, q) is a body-and-pin realization of G as a bar-and-joint framework and if
q|P is the restriction of q to P , then the null space of R(G∗, q) is isomorphic to the
null space of RBP(G,q|P ). This allows us to use Theorem 1.4 to deduce Theorem 1.3.
We may also use Theorem 5.12 to deduce:

Theorem 5.13 Let G = (V ,P ) be a multigraph with no isolated vertices. Then there
exists a body-and-pin framework (G,q) such that rBP(G,q) = 3|V | − 3 − def(G)

and, for each v ∈ V , the points q(p), p ∈ EG(v), are collinear.
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A body-and-pin framework (G,q) is independent if the rows of RBP(G,q) are
linearly independent, i.e. rBP(G,q) = 2|P |. By Theorem 3.1(a), 2|P | = 3|V | − 3 −
def(G) if and only if 2G can be covered by three forests. Thus Theorem 5.13 implies
the result of Whiteley [15, Theorem 5.4] that, if 2G can be covered by three forests,
then G has a realization as an independent body-and-pin framework (G,q) in R

2

with the points q(p), p ∈ EG(v), collinear for each v ∈ V .

6 Concluding Remarks

In the body-and-hinge frameworks investigated so far in this paper, each hinge is
shared by exactly two bodies. We can obtain more general structures by relaxing this
condition.

An identified body-and-hinge framework in R
d is an ordered pair (H,q) where

H = (V ∪ P, I) is a bipartite graph and q is a map which associates a (d − 2)-
dimensional affine subspace q(p) with each p ∈ P . Infinitesimal motions and infin-
itesimal rigidity of (H,q) are defined in an analogous way as for body-and-hinge
frameworks. Tay and Whiteley [12, Conjecture 2, Theorem 3] give a conjectured
characterization of when a bipartite graph has an infinitesimally rigid realization as a
d-dimensional identified body-and-hinge framework and point out that their conjec-
ture holds when d = 2. Indeed we may use the rank formula for the 2-dimensional
generic (bar-and-joint) rigidity matroid given by Lovász and Yemini in [7] to de-
termine the maximum rank of a realization of a bipartite graph as a 2-dimensional
identified body-and-hinge framework. To see this we extend the definition of a body-
and-pin graph.

Let H = (V ∪ P, I) be a bipartite graph without isolated vertices. The identified
body-and-pin graph of H is the graph HBP with V (HBP) = V ∪ P and

E
(
HBP) = {

vp : v ∈ V,p ∈ P,vp ∈ I
} ∪ {

p1p2 : v ∈ V and p1,p2 ∈ EH (v)
}
.

(This definition extends the earlier definition for a graph G by taking H to be the
bipartite graph obtained by subdividing each edge of G. We then have G∗ = HBP.)
Let F be a partition of V . For each p ∈ P , let wF (p) be the number of sets F ∈ F
for which NH (p) ∩ F �= ∅. Put defH (F ) = 3(|F | − 1) − 2(

∑
p∈P (wF (p) − 1)) and

let def(H) = maxF {defH (F )}. By using the above mentioned rank formula for the 2-
dimensional generic rigidity matroid it is not difficult to show that r(HBP) = 2(|V |+
|P |) − 3 − def(H).

We believe that Theorem 5.12 can be extended to identified body-and-pin graphs.

Conjecture 6.1 Let H be a bipartite graph. Then there exists a pin-collinear real-
ization (HBP, q) of HBP such that r(HBP, q) = r(HBP).

Note that every identified body-and-pin graph has a pin-collinear realization,
which can be obtained for example by putting all pins on the same pin-line.

An affirmative answer to Conjecture 6.1 for the special case where H has a realiza-
tion as an independent body-and-pin framework follows from the above mentioned
result of Whiteley [15, Theorem 5.4]. Whiteley also formulated a similar conjecture
to Conjecture 6.1 for 3-dimensional frameworks in [15, p. 93].



278 Discrete Comput Geom (2008) 40: 258–278

Acknowledgements We would like to thank Walter Whiteley and Zoltán Szabadka for helpful conver-
sations regarding the relationship between body-and-hinge and bar-and-joint frameworks and the referees
for their helpful comments.

References

1. Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures, a projective geometric
introduction. Topol. Struct. 6, 43–82 (1982)

2. Jackson, B., Jordán, T.: Pin-collinear body-and-pin frameworks and the molecular conjecture. EGRES
TR-2006-06. www.cs.elte.hu/egres/

3. Jackson, B., Jordán, T.: Rigid components in molecular graphs. Algorithmica 48(4), 399–412 (2007)
4. Jackson, B., Jordán, T.: On the rigidity of molecular graphs. Combinatorica (to appear). See also:

EGRES TR-2006-02. www.cs.elte.hu/egres/
5. Jackson, B., Jordán, T.: The generic rank of body-bar-and-hinge frameworks. Eur. J. Comb. (to ap-

pear). See also: EGRES TR-2007-06. www.cs.elte.hu/egres/
6. Jackson, B., Jordán, T.: Brick partitions of graphs. Discrete Math. (to appear). See also: EGRES TR-

2007-05. www.cs.elte.hu/egres/
7. Lovász, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebr. Discrete Methods 3, 91–98

(1982)
8. Nash-Williams, C.St.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–

450 (1961)
9. Nash-Williams, C.St.J.A.: Decomposition of finite graphs into forests. J. Lond. Math. Soc. 39, 12

(1964)
10. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)
11. Tay, T.S.: Rigidity of multi-graphs I Linking Bodies in n-space. J. Comb. Theory B 26, 95–112 (1984)
12. Tay, T.S., Whiteley, W.: Recent advances in the generic rigidity of structures. Topol. Struct. 9, 31–38

(1984)
13. Tutte, W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc.

36, 221–230 (1961)
14. Whiteley, W.: The union of matroids and the rigidity of frameworks. SIAM J. Discrete Math. 1(2),

237–255 (1988)
15. Whiteley, W.: A matroid on hypergraphs, with applications in scene analysis and geometry. Discrete

Comput. Geom. 4, 75–95 (1989)
16. Whiteley, W.: Some matroids from discrete applied geometry. In: Bonin, J.E., Oxley, J.G., Servatius,

B. (eds.) Matroid Theory, Seattle, WA, 1995. Contemp. Math., vol. 197, pp. 171–311. Am. Math.
Soc., Providence (1996)

17. Whiteley, W.: Rigidity of molecular structures: geometric and generic analysis. In: Thorpe, M.F.,
Duxbury, P.M. (eds.) Rigidity Theory and Applications, pp. 21–46. Kluwer Academic, Dordrecht
(1999)

18. Whiteley, W.: Counting out to the flexibility of molecules. Physical Biology 2, S116–S126 (2005)

http://www.cs.elte.hu/egres/
http://www.cs.elte.hu/egres/
http://www.cs.elte.hu/egres/
http://www.cs.elte.hu/egres/

	Pin-Collinear Body-and-Pin Frameworks and the Molecular Conjecture
	Abstract
	Introduction
	The Molecular Conjecture

	Bar-and-Joint Frameworks
	Bricks and Superbricks
	Pin-Line-Generic Body-and-Pin Realizations
	Maximum Rank of Pin-Collinear Body-and-Pin Realizations
	Case 1. u1u2P
	Case 2. u1u2P and dG(ui)>=3 for all i{1,2}
	Case 3. u1u2P and dG(ui)=2 for some i{1,2}
	Maximum Rank Body-and-Pin Frameworks

	Concluding Remarks
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


