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Abstract We give a variational proof of the existence and uniqueness of a convex
cap with the given metric on the boundary. The proof uses the concavity of the total
scalar curvature functional (also called Hilbert-Einstein functional) on the space of
generalized convex caps. As a by-product, we prove that generalized convex caps
with the fixed metric on the boundary are globally rigid, that is uniquely determined
by their curvatures.

Keywords Convex cap · Discrete Hilbert–Einstein functional · Euclidean cone
metric

1 Introduction

In this paper we present a new proof of the following theorem by A.D. Alexandrov
[1, Sect. 5.1, Theorem 2].

Main Theorem Let D be a disk with a convex Euclidean polyhedral metric. Then
there exists a convex cap C ⊂ R

3 with the upper boundary isometric to D. Besides,
C is unique up to a rigid motion.

Informally speaking, a convex cap is a convex polytope that lies on a plane and
does not throw a shadow when the sun is in the zenith. The sun is meant to be infi-
nitely distant, so that its rays meet the plane orthogonally; thus a cube is an example
of a convex cap. The upper boundary ∂+C of a convex cap C is the boundary of C
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minus the interior of the lower face. Topologically ∂+C is a disk. The intrinsic met-
ric of ∂+C is locally Euclidean, except at the points which are vertices of C. The
vertices are cone singularities with angles less than 2π . Near the boundary ∂+C is
locally modeled on the half-plane and angular regions with angles less than π . Any
metric that has these properties is called a convex Euclidean polyhedral metric. Thus
the upper boundary of any convex cap is a disk with a convex Euclidean polyhedral
metric. The Main Theorem states the converse: any metric of this kind can be realized
as the upper boundary of a convex cap, and in an essentially unique way.

1.1 Idea of the Proof and Organization of the Paper

In Sect. 2, we give formal definitions and make some preliminary remarks.
Our proof uses the variational method. In this method the object whose existence

is to be proved is identified with a critical point of a functional on some domain. If
the functional achieves its maximum in the interior of the domain, then the maximum
point is a critical point and yields a desired object. If, moreover, the functional is
concave and the domain convex, then there is only one critical point. This implies the
uniqueness of the object.

The domain of our functional is the space C(D) of generalized convex caps with
the upper boundary D; it is studied in Sect. 3. The functional on C(D) is the total
scalar curvature S which is studied in Sect. 4. Details of the proof are given in Sect. 5.

Section 3.1 introduces generalized convex caps. Roughly speaking, a generalized
convex cap is a convex cap that has cone singularities along the heights. Heights are
the segments that join the vertices of the upper boundary with the base and are or-
thogonal to the base. If the curvatures around heights vanish, then the generalized
convex cap becomes a usual convex cap. To determine a generalized cap, we need to
specify a triangulation T of D and a collection h of heights. However, in Sect. 3.2 we
show that the heights already suffice. This makes the space C(D) naturally a subset
of R

Σ , where Σ is the singular set of D. In Sect. 3.3 we show that C(D) is in fact a
convex polytope in R

Σ .
In Sect. 4.1 we define the total scalar curvature of a generalized convex cap. It is

similar to the definition
∑

e

�e(π − θe)

of the total mean curvature of a convex polytope, where �e is the length of the edge e

and θe is the value of the dihedral angle at e. For generalized caps we take additionally
the sum of the heights multiplied with their curvatures. In Sect. 4.2 we prove that the
function S is strictly concave. This allows us to prove two rigidity Theorems 4.9
and 4.14 in the next section. Moreover, following a remark by Jean-Marc Schlenker,
the Darboux–Sauer theorem yields then a new proof of the infinitesimal rigidity of
convex polytopes.

Most of Sect. 5.1 deals with the case when S achieves its maximum on the bound-
ary of C(D). This happens when some faces of the resulting convex cap are vertical.
In Sect. 5.2 we sketch the proof of the Main Theorem given by Volkov in [16].
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1.2 Related Work

The variational method was extensively used in the study of circle packings and pat-
terns, see [3] and the references therein. The functionals that appear there can often
be interpreted as volumes of certain hyperbolic polyhedra.

Our primary goal was to find a variational proof of Alexandrov’s theorem on the
existence and uniqueness of a polytope with the given metric on the boundary, see
Sect. 1.3. A similar approach, via generalized convex polytopes and the total scalar
curvature, meets with an obstacle there: the functional is neither concave nor convex.
In return, a rather unexpected relation arises between the total scalar curvature and
the volume of the dual. This allows us to prove the nondegeneracy of the Hessian
of the total scalar curvature by extending the Alexandrov–Fenchel inequalities for
mixed volumes. This variation on the variational method leads to a proof presented
in [2].

Alexandrov’s theorems are, in fact, special cases of a very general statement about
realization of a Euclidean, spherical, or hyperbolic metric with cone singularities of
positive or negative curvature on a surface of an arbitrary genus. Each time, such a
metric can be realized in a unique way as the boundary of a certain polyhedral ob-
ject. The case of a sphere with the singularities of positive curvature is Alexandrov’s
theorem on Euclidean, hyperbolic, and spherical polytopes. Spherical metrics on the
sphere with singularities of negative curvature were considered in [11]. For the for-
mulation of the general statement and the proof of the case of genus greater than one,
see [8]. The case of metrics on the torus is the subject of the papers [9, 10].

1.3 Proofs by Alexandrov and Volkov

The Main Theorem looks similar to another, more renowned theorem of Alexandrov:
let S be a sphere with a convex Euclidean polyhedral metric; then there exists a
unique convex polytope P ⊂ R

3 with the boundary isometric to S. In his book [1],
Alexandrov derives the cap theorem from the polytope theorem. Indeed, by identi-
fying two copies of D along the boundary we obtain a convex polyhedral metric on
the sphere. Because of the uniqueness, the polytope that realizes this metric must
have a plane of symmetry. Thus it can be cut into two convex caps. This proves
the existence of a cap with the upper boundary D. The uniqueness follows from the
uniqueness of the polytope with the boundary the doubled D.

To prove his polytope theorem, Alexandrov used a method sometimes referred to
as the deformation method or the invariance of domain method. Consider the space
P of all convex polytopes and the space M of all convex polyhedral metrics on the
sphere. There is an obvious map P → M that associates to a polytope the metric
of its boundary. The existence and uniqueness of a polytope with a given metric is
translated as the bijectivity of this map. Alexandrov shows that the map is a local
homeomorphism, which is equivalent to the local rigidity of convex polytopes. Then
he proves certain topological properties of the spaces and of the map which imply
that the map is in fact a bijection.

Alexandrov applied the deformation method to several existence and uniqueness
statements for polyhedral objects, see [1]. Recently it was used in [8, 11] to prove
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parts of the general statement mentioned at the end of Sect. 1.2. A drawback of this
method is that it is not constructive: it provides no algorithm to construct the poly-
tope with a given development. Alexandrov pointed this out in [1, pp. 320–321] after
he proved by deformation Minkowski’s theorem on the existence and uniqueness of
a convex polytope with given face normals and face areas. Alexandrov noted that
Minkowski’s own proof is by the variational method, and poses the problem to find a
similar proof for his polytope theorem.

Yu.A. Volkov, a student of Alexandrov, found constructive proofs both for the
polytope and for the cap theorem. He considered generalized convex caps with pos-
itive curvatures around the heights and showed that the curvatures vanish when the
sum of heights is maximized. This proof is published in [16], for the English transla-
tion see [1, Sect. 12.2]. Volkov’s proof of the polytope theorem is similar and is the
subject of Volkov’s 1955 PhD, see also [18]. Volkov’s approach is not variational in
the above sense. The functional is linear, so the maximum point always lies on the
boundary of the domain and is not a critical point of the functional. But his proof is
elementary and, in the case of the cap, quite short.

Our proof is to a large extent inspired by the works of Volkov. In [17], reprinted as
[1, Sect. 12.1], Volkov studied the local behavior of the function S and proved claims
that are very close to the concavity of S. Completely new in our paper are the explicit
description of the space C(D) as a compact convex subset of a Euclidean space and
the global rigidity statement for generalized convex caps.

2 Preliminaries

Here we give the formal definitions of what was sketched in the Introduction and
reduce the Main Theorem to the case when the polyhedral disk D has at least one
interior and at least one boundary singularity.

Definition 2.1 A convex cap is a convex polytope C in R
3 with the following prop-

erties:

1. C is contained in the upper half-space R
3+, and C ∩ ∂R

3+ �= ∅. The face C ∩ ∂R
3

of C is called the base of the cap C;
2. The orthogonal projection R

3 → R
2 = ∂R

3+ maps C to its base; and
3. The dimension of the polytope C is 2 or 3.

Definition 2.2 Let C be a convex cap. If dimC = 3, then the upper boundary of
C is ∂C minus the interior of the base. If dimC = 2 and C ⊂ ∂R

3+, then the upper
boundary of C is C. Finally, if dimC = 2 and the base of C is an edge of the polygon
C, then the upper boundary consists of two copies of C identified along the edges
except the base edge.

Definition 2.3 Let M be a surface, possibly with boundary. A metric structure on M

is called a Euclidean polyhedral metric if there is a finite set Σ ⊂ M of points called
singular points, such that:
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Fig. 1 The number of the interior and boundary singularities in the upper boundaries of the pictured caps:
one and three for the first cap, one and two for the second cap, and two and zero for the third cap. (The
first and the second caps are triangular pyramids, the third cap is a polygon standing vertically on one of
its sides)

1. Any regular interior point x has a neighborhood isometric to an open subset of the
Euclidean plane; any regular boundary point x has a neighborhood isometric to an
open subset of the half-plane.

2. Any singular interior point x has a neighborhood isometric to an open subset of a
cone, with x at the apex of the cone; any singular boundary point x has a neigh-
borhood isometric to an open subset of an angular region, with x at the angle’s
vertex.

A Euclidean polyhedral metric is called convex, if all of the angles at the interior
singularities are less that 2π , and all of the angles at the boundary singularities are
less that π .

For brevity, we often omit the word “Euclidean” when speaking of polyhedral
metrics.

Figure 1 illustrates the above definitions.
Let D be the upper boundary of a convex cap C. It is not hard to show that D is

a disk with a convex polyhedral metric. Any vertex of C that does not lie in the base
is an interior singularity of D. For a vertex v of C that lies in the base there are two
possibilities: if v belongs to a vertical edge of C, then v is regular, otherwise it is
singular.

Lemma 2.4 The Main Theorem is true when D has no interior singularities. The
case where D has no boundary singularities follows from the case where there is at
least one boundary singularity.

Proof If D has no interior singularities, then D is isometric to a convex polygon.
Clearly, any convex cap with the upper boundary D is obtained by isometrically
embedding D in ∂R

3+.
Let D have no boundary singularities. It follows that the ε-neighborhood of ∂D

is isometric to ∂D × [0, ε) for some ε > 0. Take the maximum ε with this property.
The locally isometric embedding ∂D × [0, ε) → D extends to a map

ι : ∂D × [0, ε] → D.

Assume that the map ι is injective. Then the complement

D′ = D \ ι
(
∂D × [0, ε)

)
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is a disk with a convex polyhedral metric and the boundary ι(∂D × {ε}). Due to the
choice of ε, ∂D′ contains a singularity. By the Main Theorem applied to the disk
D′, there is a convex cap C′ with the upper boundary D′. Lifting the cap C′ to the
height ε, we obtain a convex cap C with the upper boundary D. Conversely, if C is
any convex cap with the upper boundary D, then C ∩ (∂R

3+ × [0, ε]) is a right prism.
Therefore the uniqueness of C follows from the uniqueness of C′.

Assume that the map ι is not injective. The convexity of D implies that the map ι

folds the circle ∂D ×{ε}, so that D is isometric to two copies of a rectangle identified
along three sides. The corresponding convex cap is this rectangle standing on its
fourth side. The uniqueness is not hard to prove. �

Definition 2.5 For a set A ⊂ R
3+, its lower hull is the convex hull of the union A ∪

pr(A), where pr : R
3+ → R

2 = ∂R
3+ is the orthogonal projection.

From the discussion after Definition 2.3 it follows that a convex cap is the lower hull
of the singularities of its upper boundary.

3 Generalized Convex Caps

3.1 Definitions

Let D be a convex polyhedral disk such that Σ ∩ ∂D �= ∅, where Σ is the singular set
of D. We denote the elements of Σ by the letters i, j, . . . . A geodesic triangulation
T of D is a decomposition of D into triangles by geodesics with the endpoints in Σ .
By E (T ) and F (T ) we denote the sets of edges and triangles of T , respectively.

Note that we allow multiple edges as well as loops. In particular, triangles of T

may have identifications on the boundary. An edge with endpoints i and j is denoted
by ij , and a triangle with vertices i, j , k by ijk. This notation may be ambiguous,
but it should not lead to confusion.

An edge ij of T is called a boundary edge, if it is contained in the boundary of D;
otherwise it is called an interior edge.

Example Consider the convex cap which is the lower hull of the points (1,0,0),
(0,1,0), and (0,0,1), see Fig. 1b. Its upper boundary D has one interior singularity
(0,0,1) and two boundary singularities (1,0,0) and (0,1,0). Disk D has a unique
geodesic triangulation. It consists of two triangles: an equilateral one with side length√

2 and an isosceles right one with leg length
√

2. The triangles have two edges in
common.

Any convex polyhedral disk can be geodesically triangulated. This can be proved
in several different ways. For example, draw the shortest geodesics from a boundary
singularity to all interior singularities. After cutting along them we have a (possi-
bly nonconvex, possibly self-overlapping) polygon. It is a classical result that every
polygon can be triangulated by diagonals.

Proposition 3.1 The number of geodesic triangulations of D is finite.
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Fig. 2 Three types of degenerate prisms

Proof By [4, Sect. 4.5], the lengths of geodesics in D are bounded from above. On the
other hand, the lengths of geodesics joining two singular points of D form a discrete
set. It follows that the set of geodesics between singular points is finite. Therefore,
the number of geodesic triangulations is also finite. �

Definition 3.2 A prism is a convex polytope isometric to the lower hull of three
noncollinear points in R

3+.

We use the term “prism” not in its usual meaning: the lateral edges of our prism are
necessarily orthogonal to the lower base, but the upper base need not be parallel to it.
Up to isometry, a prism is uniquely determined by a Euclidean triangle ijk isometric
to its upper base, and by three nonnegative heights, hi, hj , hk , which are the lengths
of the lateral edges. Note that a height may equal 0.

If the upper base of a prism is orthogonal to the lower base, the prism degenerates
to a polygon. In this polygon we still distinguish the triangle that is the upper base of
the prism. A degeneration can occur in three different ways shown in Fig. 2. In cases
(a) and (b) we can assign values 0 or π to the dihedral angles at the lateral edges and
at the edges of the upper base. In case (c) some of these angles are not defined.

Definition 3.3 A generalized convex cap C with the upper boundary D is a poly-
hedron glued from prisms (in the sense of Definition 3.2) whose upper bases are the
triangles of a geodesic triangulation T of D. The identification pattern of the prisms
corresponds to the combinatorics of the triangulation. Besides, the following proper-
ties should hold:

1. The heights of the boundary vertices are 0, i.e., in a prism that contains a boundary
edge ij this edge is shared by the upper and the lower base.

2. For every interior edge ij ∈ E (T ), the dihedral angle θij is either not defined or
does not exceed π . Here θij is the sum of the two dihedral angles of the prisms at
the edge ij .

In Fig. 5 two prisms are shown that share an interior edge ij .
Lemma 3.7 in the next subsection ensures that in a generalized convex cap the

angles θij are always defined.
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Clearly, a generalized convex cap can be given by a couple (T ,h), where T is
a geodesic triangulation of D, and h : Σ → R is an assignment of heights to the
vertices of T . A couple (T ,h) produces a convex cap if and only if the following
conditions are satisfied. First, hi = 0 if i ∈ ∂D. Second, for any triangle ijk ∈ F (T )

there are restrictions on hi, hj , hk ensuring that a prism with the upper base ijk and
heights hi, hj , hk exist. And third, the angles θij must be less than or equal to π , if
defined.

Two different couples (T ,h) and (T ′, h′) can produce the same generalized con-
vex cap. For example, if θij = π for some edge ij ∈ E (T ), and the edge ij is shared
by two triangles that form a convex quadrilateral, then the triangulation T can be
changed by replacing the edge ij through another diagonal of the quadrilateral. On
the other hand, (T ,h) ∼ (T ′, h′) implies h = h′ and ij ∈ E (T ′) for all ij ∈ E (T ) such
that θij < π . Therefore every generalized convex cap defines a tesselation of the disk
D obtained by erasing in any associated triangulation T the edges ij with θij = π .
In Sect. 3.2 we show that the collection of heigths h defines the cap uniquely.

Example Take any triangulation T and put hi = 0 for all i. The result is a generalized
convex cap with θij = π for all ij .

It is easy to see that the following quantity is well defined.

Definition 3.4 Let (T ,h) be a generalized convex cap. For any interior singularity
i ∈ Σ \ ∂D denote by ωi the sum of the dihedral angles of the prisms at the edge
under the vertex i. The angle defect

κi = 2π − ωi

is called the curvature at the ith height.

In the above example with all of hi = 0 the curvature κi equals the angle defect of
the singularity i in the metric of D.

We refer to a convex cap in the sense of Definition 2.1 as a classical convex cap.
Let C be a classical convex cap with at least one singularity on the boundary.

If C has no vertical faces, it is easy to represent it as a generalized convex cap:
it suffices to triangulate nontriangular faces of C and then cut C into nondegener-
ate prisms. If C has vertical faces, then we first remove all of the vertical edges,
if there are any. The remaining edges subdivide D into polygons with vertices in Σ .
Since any polygon can be triangulated by diagonals, we can complete this subdivision
to a geodesic triangulation T . Thus we obtain a set of prisms where some prisms are
degenerate. If dimC = 3, then the cap C is isometric to the union of the nondegen-
erate prisms, and the degenerate prisms cover the vertical faces of C “from outside.”
If dimC = 2, then we have to distinguish two cases: when C has no vertical edges,
and when C has one. In the latter case the triangulation T contains a triangle “bent
along” the vertical edge of C.

As an example, consider Fig. 1(b). Here we have a nondegenerate prism and a
degenerate one. The degenerate prism is formed by the two vertical faces of the cap.
The curvature κi under the unique interior singularity equals π

2 .
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3.2 Heights Define a Cap

Here and later on we use the word “cap” to refer to a generalized convex cap.
Let us denote

C(D) = {generalized convex caps with the upper boundary D}.

The main result of this section is Proposition 3.9 which is implied by Lemmas 3.6
and 3.8.

Definition 3.5 A function f : D → R is called a PL function if it is linear on every
triangle of some geodesic triangulation of D.

A function f : D → R is called concave if its restriction to any geodesic segment
in D is concave as the function of the arc length.

Lemma 3.6 The space C(D) is in a one-to-one correspondence with the space of
concave PL functions h̃ : D → R such that

h̃|∂D = 0, (1)

and
∣∣grad h̃(x)

∣∣ ≤ 1 (2)

at every point x ∈ D such that grad h̃(x) is defined.
If C ∈ C(D) is a cap represented by (T ,h), then the corresponding function h̃

assigns to the point x ∈ D the distance from x to the lower base of a prism that
contains x. In particular,

h̃(i) = hi

for every i ∈ Σ .

Proof Take any C ∈ C(D). Let h̃ : D → R be the distance function from the upper
boundary to the base of the cap C, as described in the proposition. It is easy to see
that h̃ is a concave PL function that satisfies conditions (1) and (2).

Conversely, let h̃ : D → R be any concave PL function that satisfies (1) and (2).
Concavity and property (1) imply that h̃ is nonnegative inside D. Let T be a geo-
desic triangulation of D such that h̃ is linear on the triangles of T . Take any triangle
ijk ∈ F (T ). Property (2) implies that there exists a prism with the upper base ijk

such that h̃ is the distance function from the upper to the lower base. If ij l is another
triangle in T , then the sum of the dihedral angles of the prisms at the edge ij , if
defined, is less than or equal to π due to the concavity of h̃.

It is not hard to see that two caps with equal distance functions h̃ are equal. �

Lemma 3.7 A cap cannot contain degenerate prisms of types shown in Fig. 2b and c.
In particular, the angles θij and κi are defined for any cap.
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Proof Assume that the cap contains a prism of the type shown in Fig. 2c. Let ij be
the vertical edge of the upper base so that i lies above j . Then |grad h̃| = 1 inside
both triangles adjacent to the edge ij , and the direction of the gradient is parallel to
the edge ij . Note that the vertex j cannot lie on the boundary of D, because then it
would not be a singular point. Consider two geodesics on both sides of the edge ij

and parallel to ij . Follow them in the direction of decrease of the function h̃. If the
geodesics are sufficiently close to the edge ij , then they intersect at a point x ∈ D.
Then the directional derivatives of h̃ in two different directions at x are equal to 1.
Therefore |grad h̃(x)| > 1 that contradicts (2).

The proof that a degenerate prism of the type shown in Fig. 2b cannot occur is
similar. �

Lemma 3.8 The extension of a map h : Σ → R to a concave PL function h̃ : D → R

is unique, if exists.

Proof Assume that there are two different extensions h̃ and h̃′. Without loss of gen-
erality, there is a point x ∈ D such that

h̃(x) > h̃′(x).

Let T be a geodesic triangulation such that h̃ is linear on the triangles of T . Let ijk ∈
F (T ) be a triangle that contains x. Then h̃(x) is the linear interpolation from the
values hi, hj , hk at the vertices i, j, k. Consider the function h̃′ on the triangle ijk.
At the vertices i, j, k it takes the same values as the function h̃. Besides, h̃′ is concave.
This implies h̃′(x) ≥ h̃(x) that contradicts our assumption. �

Proposition 3.9 The map (T ,h) �→ h defines a bijection between the space C(D)

and the space of maps h : Σ → R such that

1. h admits an extension to a concave PL function h̃ : D → R; and
2. the map h̃ has the properties (1) and (2).

3.3 The Space of Generalized Convex Caps

By Proposition 3.9, the space C(D) is identified with a subset of the Euclidean space
R

Σ . Here we show that C(D) is a bounded convex polyhedron in R
Σ .

We start by studying a larger space C′(D) which is obtained from C(D) by ignor-
ing conditions (1) and (2).

Definition 3.10 The space C′(D) ⊂ R
Σ consists of the maps h : Σ → R that admit

a concave PL extension to D.

To state the next proposition, we need to introduce some notions. A Euclidean
quadrilateral ikj l in D is a region that is bounded by simple geodesic segments
ik, kj, j l, li, and that contains no singularities in the interior. Vertices and segments
are allowed to coincide. A Euclidean quadrilateral can be developed onto the plane,
after resolving possible identifications on the boundary. A Euclidean triangle jij
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Fig. 3 Every concave
quadrilateral ikj l gives rise to an
inequality (3); every triangle jij

gives rise to an inequality (4)

arises when there is a geodesic loop based at j that encloses a unique singularity i.
See Fig. 3.

Define the function extjkl on the quadrilateral ikj l as the linear function that takes
values hj , hk, hl at the respective vertices.

Lemma 3.11 The space C′(D) is a convex polyhedron in R
Σ . Namely, it is the solu-

tion set of a system of linear inequalities of the form:

hi ≥ extjkl(i), (3)

hi ≥ hj . (4)

There is one equation of the form (3) for each Euclidean quadrilateral ikj l with the
angle at i greater or equal π , and one equation of the form (4) for each Euclidean
triangle jij , see Fig. 3.

Proof Assume that h admits a concave PL extension h̃. Then the concavity of h̃

easily implies inequalities (3) and (4).
Let us prove the sufficiency of conditions (3) and (4). Let T be any geodesic

triangulation. Denote by h̃T the PL function that is linear on the triangles of T and
takes value hi at every i ∈ Σ . Call an edge of T good, if the function h̃T is concave
across this edge, otherwise call an edge bad. Our aim is to find a triangulation with
good edges only.

Apply the flip algorithm to the triangulation T . Let ij be an interior edge of T .
If it belongs to two different triangles ijk and ij l, and if the quadrilateral ikj l is
strictly convex, then the edge ij can be flipped. To flip means to replace the edge ij

through the diagonal kl of the quadrilateral ikj l. In the flip algorithm we start with
an arbitrary triangulation, pick up a bad edge, flip it, look for a bad edge in the new
triangulation, flip it and so on. The flip algorithm terminates when there are no bad
edges.

Conditions (3) and (4) ensure that if ij is a bad edge, then it can be flipped.
Let us show that the flip algorithm terminates. Note that when a bad edge is flipped,
the function h̃T increases pointwise. By Proposition 3.1, the polyhedral disk D has
only finitely many geodesic triangulations. Therefore, the flip algorithm cannot run
infinitely. �
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Theorem 3.12 The space C(D) is a nonempty bounded convex polyhedron in R
Σ .

Namely, it is the set of points that satisfy conditions (3), (4), and

hi = 0 for all i ∈ ∂D, (5)

hi ≤ di for all i, (6)

where di is the distance in D from i to ∂D.

Proof The necessity of (5) is obvious. To show the necessity of (6), draw a shortest
geodesic ix joining i to ∂D. The segment ix has length di . The restriction of h̃ to
ix is a PL function with the absolute value of derivative less than or equal to 1.
Since h̃(x) = 0, we have hi = h̃(i) ≤ di .

It remains to show that conditions (1) and (2) are fulfilled for any concave PL
function h̃ whose values at the points of Σ satisfy (5) and (6). Property (1) follows
from (5) and the piecewise linearity of h̃. To show (2), assume the converse: there is
an x ∈ D with |grad h̃(x)| = c > 1. Since the gradient is constant inside every triangle
of T , we can choose the point x arbitrarily close to some singular point i. Draw
a geodesic that starts at x and goes in the direction of the fastest decrease of h̃ at x.
This geodesic ends either at a boundary point y of D or at a singularity. By perturbing
the point x we can assume that the former is the case. Then the restriction of h̃ to the
segment xy is a concave function that vanishes at y. Since its slope at x equals −c,
we have

h̃(x) ≥ c · |xy|.
By taking the limit when x tends to i, we obtain

hi ≥ c · di > di,

which contradicts (6).
The polyhedron C(D) is bounded because it is contained in the box

∏
i∈Σ [0, di].

The inequality 0 ≤ hi for every i follows from (5) and from the concavity of the
function h̃.

Finally, C(D) is nonempty because it contains the point h = 0. �

There is a natural decomposition

C(D) =
⋃

T

CT (D), (7)

where CT (D) consists of the caps that have a representative of the form (T ,h).

Proposition 3.13 For every geodesic triangulation T , the space CT (D) is a bounded
convex polyhedron in R

Σ .

Proof Let h : Σ → R be a point of C(D). It belongs to CT (D) if and only if the
PL extension h̃T of h with respect to T is concave. Let ij be an interior edge of T .
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Fig. 4 Angles and lengths in a generalized convex cap

If it belongs to two different triangles ijk and ij l, then h̃T is concave across the edge
ij if and only if

extijk(l) ≥ hl. (8)

If ij is incident to one triangle only, then we have the situation on the right of Fig. 3,
up to exchanging i and j . In this case the concavity of h̃T across ij is equivalent to

hi ≥ hj . (9)

Therefore CT (D) is the set of points h ∈ C(D) that satisfy the system of linear
inequalities of the type (8) and (9), one inequality for every edge of T . �

4 Total Scalar Curvature and Rigidity

4.1 The Total Scalar Curvature of a Generalized Convex Cap

Definition 4.1 Let C be a generalized convex cap represented by (T ,h). The total
scalar curvature of C is defined as

S(C) =
∑

Σ\∂D

hiκi +
∑

intD

�ij (π − θij ) +
∑

∂D

�ij

(
π

2
− ηij

)
.

Here κi = 2π − ωi is the curvature at the ith height of the cap C, �ij is the length of
the edge ij ∈ E (T ), θij is the total dihedral angle at an interior edge ij , and ηij is the
dihedral angle at a boundary edge ij . See Fig. 4.

By Lemma 3.7, the angles κi and θij are defined for any polyhedral complex (T ,h)

that represents a generalized convex cap.
Let (T ′, h) be another representative of the same cap C. If ij is an edge of T but

not of T ′, then we have θij = π and thus �ij (π − θij ) = 0. The curvature κi does
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Fig. 5 More angles

not depend on the choice of a representative of C. Therefore the function S is well
defined and continuous on C(D).

Definition 4.2 Let C be a generalized convex cap represented by (T ,h). For any
i �= j ∈ Σ put

aij =
{ cotαij +cotαji

�ij sin2 ρij
if ij is an interior edge of T ;

0 otherwise.

Here αij and αji are the dihedral angles of the prisms at the edge ij , thus αij +
αji = θij ; ρij is the angle between the edge ij and the ith height. See Fig. 5.

If hi = 0, then the angle ρij is defined as the angle between the edge ij and the
vector (0,0,−1) at the vertex i.

If there are several interior edges in T that join i and j , then aij is the sum of the
corresponding expressions over all such edges.

If θij = π , then cotαij + cotαji = 0. Therefore aij does not depend on the choice
of a triangulation T . Besides, due to ρij + ρji = π we have aij = aji .

The quantities aij will appear in the expressions for the second partial derivatives
of the function S, see Proposition 4.4. Since the domain C(D) of f is a polyhedron,
the notion of a smooth function needs to be suitably generalized.

Definition 4.3 Let f : X → R be a continuous function on a polyhedron X ⊂ R
n.

We say that f is of class C1 on X and write f ∈ C1(X), iff the directional derivatives
∂f
∂ξ

exist for all admissible directions ξ , and depend on ξ linearly.
More exactly, we require the existence of continuous functions fi : X → R for

i = 1, . . . , n such that for any x ∈ X and any ξ ∈ R
n such that x + εξ ∈ X for all

sufficiently small positive ε, we have

∂f

∂ξ
(x) =

n∑

i=1

fiξi .

We say that the function f is of class C2 iff f ∈ C1(X) and fi ∈ C1(X) for all i.
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We call functions fi partial derivatives of f even if they do not make sense as
directional derivatives. This is the case exactly when x + εei /∈ X for all positive ε,
where ei denotes the ith basis vector.

Definition 4.3 is equivalent to saying that f ∈ C1(X) iff

f (x + dx) = f (x) +
n∑

i=1

fidxi + o
(‖dx‖).

Assume that the polyhedron X is represented as a union X = ⋃
α Xα of polyhedra.

Assume further that f α ∈ C1(Xα) for all α, where f α = f |Xα , and also f α
i = f

β
i on

Xα ∩Xβ for all i, α,β . Then, clearly, f ∈ C1(X) with partial derivatives fi |Xα = f α
i .

In Sect. 3.3, we identified the space C(D) with a convex polyhedron in R
Σ , where

the coordinates are the heights (hi)i∈Σ of the cap. Since hi = 0 for all i ∈ ∂D, we
can consider C(D) as a polyhedron in R

Σ\∂D .

Proposition 4.4 The function S is of class C2 on C(D). Its partial derivatives are:

∂S

∂hi

= κi, (10)

∂2S

∂hi∂hj

= aij , (11)

∂2S

∂h2
i

= −
∑

j∈Σ

aij . (12)

We assume i, j ∈ Σ \ ∂D and i �= j .

Proof First, let us show that S is of class C2 on every CT (D) in the decomposi-
tion (7). Schläfli’s formula [13] for a Euclidean 3-polytope says that

∑

e

�edαe = 0,

where the sum extends over all edges of the polytope, �e is the length of the edge e,
and αe is the dihedral angle at e. By applying this to the prisms that constitute a
generalized convex cap C, we obtain

dS =
∑

i∈Σ\∂D

κidhi

which implies (10).
For simplicity, assume that the triangulation T has no loops and no multiple edges.

Note that the angle ωi can be viewed as a function of the angles ρij , ij ∈ E (T ), as
long as h ∈ CT (D). Thus we have

dωi =
∑

ij∈E (T )

∂ωi

∂ρij

dρij , (13)
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dρij = ∂ρij

∂hi

dhi + ∂ρij

∂hj

dhj . (14)

From the trapezoid formed by the heights hi and hj it is easy to compute

∂ρij

∂hi

= − 1

�ij sinρij

= −∂ρij

∂hj

. (15)

Let ωijk be the dihedral angle at the ith height in the prism ijk. Then we have

∂ωi

∂ρij

= ∂ωijk

∂ρij

+ ∂ωijl

∂ρij

.

The spherical section of the prism ijk at the vertex i is a spherical triangle that has
a side of length ρij with adjacent angles ωijk and αij . With the help of the spherical
Sine and Cosine theorems it is not hard to show

∂ωijk

∂ρij

= −cotαij

sinρij

. (16)

By substituting (15) and (16) into (14) and (13), we obtain

dωi =
∑

ij∈E (T )

cotαij + cotαji

�ij sin2 ρij

(dhi − dhj ) =
∑

j∈Σ

aij (dhi − dhj ).

Formulas (11) and (12) follow from κi = 2π − ωi .
More generally, let T contain loops and multiple edges. Let us denote by e an

oriented edge of T , by a(e) and by b(e) its initial and terminal vertex, respectively.
Then formula (13) becomes

dωi =
∑

a(e)=i

∂ωi

∂ρe

dρe.

If e is a loop, then dρe = 0. Formulas (15) and (16) with an obvious change of nota-
tion remain valid. Thus we again have dωi = ∑

j �=i aij (dhi − dhj ), where this time

aij =
∑

e

cotαe + cotα−e

�e sin2 ρe

,

with the sum ranges over all edges joining i and j .
Let a cap C belong to several polyhedra CT (D). Formulas (10), (11), and (12)

yield the same result when computed for different geodesic triangulations associated
with the cap C. Thus the partial derivatives up to order two of the function S at C are
well defined. This implies that the function S is of class C2 on the whole C(D). �

4.2 Concavity of the Total Scalar Curvature

Theorem 4.5 The function S is strictly concave.
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To prove this theorem, we use the information on the Hessian of S obtained in the
previous section.

Definition 4.6 Let C be a generalized convex cap with an associated triangulation T .
The graph Γ (C) is defined as follows. The vertex set of Γ (C) is Σ ; the edge set of
Γ (C) consists of the boundary edges of T and of those interior edges ij for which
θij < π .

Lemma 4.7 The Hessian ( ∂2S
∂hi∂hj

) is negatively semidefinite. The null space of

( ∂2S
∂hi∂hj

) is spanned by the vectors vK = (hK
i )i∈Σ\∂D defined as

hK
i =

{
1, for i ∈ K;
0, for i /∈ K,

where K ⊂ Σ \ ∂D is a connected component of Γ (C) disjoint with the boundary.

Proof Consider the quadratic form
∑

∂2S
∂hi∂hj

xixj . For simplicity, extend the summa-
tion over all i, j ∈ Σ by putting xi = 0 if i ∈ ∂D. By Proposition 4.4 we have

∑

i,j∈Σ

∂2S

∂hi∂hj

xixj =
∑

i �=j

aij xixj −
∑

i �=j

aij x
2
i

=
∑

i<j

(
2aij xixj − aij x

2
i − aij x

2
j

)

= −
∑

i<j

aij (xi − xj )
2.

Note that aij ≥ 0, and aij = 0 if and only if in Γ (C) there are no edges joining i

and j . Hence
∑

∂2S
∂hi∂hj

xixj is always nonpositive. It vanishes if and only if xi = xj

for i and j lying in one connected component of Γ (C). Since xi = 0 on the boundary
component, the result follows. �

Proof of Theorem 4.5 By Lemma 4.7, the function S is concave. Assume that it is not
strictly concave. Then there are two different generalized convex caps C,C′ ∈ C(D)

such that S is linear on the segment joining C and C′. Without loss of generality we
can assume that C,C′ ∈ CT (D) for some geodesic triangulation T . This implies that
the graph Γ = Γ (C) ∪ Γ (C′) is embedded in D.

Let h,h′ ∈ R
Σ be the height vectors of C,C′, respectively. Then the vec-

tor (h′
i − hi)i∈Σ\∂D belongs to the null space of both ∂2S

∂hi∂hj
(C) and ∂2S

∂hi∂hj
(C′).

By Lemma 4.7, this means that on every connected component of the graph Γ the
heights difference h′

i − hi is constant. If Γ is connected, then we arrive to C′ = C

since h′
i = hi = 0 for i ∈ ∂D.

Let Γ be disconnected. Graph Γ cuts the disk D in a number of pieces which
we call the faces of Γ . A face may be adjacent to a single component of Γ or to
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several ones. In the former case the face is necessarily simply connected, in the latter
case it is multiply connected. Let us call two components of Γ neighboring if they
are adjacent to the same face. We show that the difference h′

i − hi is the same for
any two neighboring components. This will imply h′ = h which contradicts to the
assumption that C′ is different from C.

Let K1 and K2 be two neighboring components of Γ , and let F be the face adja-
cent to both K1 and K2. Consider the PL extensions h̃ and h̃′ of h and h′, respectively
(see Lemma 3.6). Function h̃ is linear on the face of F . Thus the gradient of h̃ defines
a parallel vector field on F . Since F is multiply connected, it contains a simple loop
that is noncontractible in D \ Σ . The parallel transport along this loop is the rotation
by the angle equal to the sum of the curvatures of the singularities enclosed by the
loop. This sum is less than 2π , because of Σ ∩ ∂D �= ∅. It follows that F cannot
carry a nonzero parallel vector field. Thus h̃ is constant on F . For the same reason,
h̃′ is constant on F . Therefore, h′ − h is constant on the vertices of F . Since F has a
vertex in K1 and a vertex in K2, we conclude that h′ − h is constant on the vertices
of K1 ∪ K2. �

Remark Consider the generalized cap with all heights zero. Then aij = 0 for all i, j

and the Hessian vanishes identically. If we put hi = ε for all i /∈ ∂D, where ε ≤ di

for all i, then h ∈ C(D) and thus defines a cap Cε . It is easy to find a polyhedral disk
D such that the graph Γ (Cε) is disconnected. This example shows that the points of
degeneration of the Hessian might be nonisolated.

4.3 Applications to Infinitesimal and Global Rigidity

Let n = |Σ \ ∂D| be the number of interior singularities of disk D. There is a map

KD : C(D) → R
n,

r �→ κ,

where r = (r1, . . . , rn) and κ = (κ1, . . . , κn). Different kinds of rigidity for caps with
the given boundary are defined by the extent to which a cap is determined by its
curvatures, that is whether KD is locally or globally injective or not.

Definition 4.8 We say that generalized convex caps with the upper boundary D are
globally rigid iff the map KD is injective.

Theorem 4.9 For any convex polyhedral disk D, generalized convex caps with the
upper boundary D are globally rigid.

Proof By (10),

KD = gradS,

and by Theorem 4.5 the function S is strictly concave. Its domain C(D) is compact
and convex by Theorem 3.12. Thus Proposition 4.10 implies that the map KD is a
homeomorphism onto the image. �
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Proposition 4.10 Let f ∈ C1(X) be a strictly convex or strictly concave function on
a compact convex set X ⊂ R

n. Then the map gradf : X → R
n is a homeomorphism

onto the image.

The same technique was recently used by Feng Luo in [12] to prove a collection
of rigidity theorems in dimension 2.

Proof Since X is compact and gradf is continuous, it suffices to show that gradf is
injective. Let x and y be two different points in X. The restriction of f to the segment
xy is a convex C1-function. Thus the directional derivative

∂f

∂ξ

(
λx + (1 − λ)y

)
,

where ξ = (y − x)/‖y − x‖, is a monotone function of λ ∈ [0,1]. In particular,

∂f

∂ξ
(x) �= ∂f

∂ξ
(y).

Since ∂f
∂ξ

= 〈gradf, ξ 〉, it follows that gradf (x) �= gradf (y). �

Definition 4.11 Let C ∈ C(D) be a generalized convex cap. We say that C is infini-
tesimally rigid iff the Jacobian of the map KD at C has full rank.

Since the Jacobian of KD equals the Hessian of S, Lemma 4.7 provides a neces-
sary and sufficient condition for C to be infinitesimally rigid. Namely, it is the case iff
the graph Γ (C) is connected. The remark at the end of Sect. 4.2 provides examples
of generalized convex caps which are not infinitesimally rigid. On the other hand, the
argument in the proof of Theorem 4.5 shows that every infinitesimally flexible cap
has a multiply connected face, and this face is parallel to the base of the cap. It is not
hard to show that infinitesimally flexible caps lie on the boundary of the space C(D).

Now let us turn to classical convex caps and convex polytopes. If C is a classical
convex cap with the upper boundary D, then the graph Γ (C) is clearly connected.
Thus C is infinitesimally rigid in the sense of Definition 4.11. Let us show that for
classical caps Definition 4.11 is equivalent to the following standard definition of the
infinitesimal rigidity.

Definition 4.12 Let C be a classical convex cap without vertical faces. Triangulate
its faces by diagonals. An infinitesimal flex of C is a collection of vectors p′

1, . . . , p
′
m

such that

1. (p′
i − p′

j ) · (pi − pj ) = 0 if ij is an edge of C or one of the added diagonals,
where · denotes the scalar multiplication; and

2. pi belongs to the horizontal plane if i is a boundary singularity.

The cap C is called infinitesimally rigid if for any triangulation of its faces every
infinitesimal flex is a restriction of an infinitesimal rigid motion in R

3.
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Lemma 4.13 Let C be a classical convex cap without vertical faces and with the
upper boundary D. Then C is infinitesimally rigid as a generalized convex cap, see
Definition 4.11, iff C is infinitesimally rigid in the sense of Definition 4.12.

Proof Let (p′
i ) be an infinitesimal flex of C for some triangulation of the faces. Let h′

i

be the vertical component of the vector p′
i . If (p′

i ) is not a restriction of a rigid motion,
then it can be shown that h′ = (h′

1, . . . , h
′
n) is a nonzero vector in R

Σ\∂D . But clearly,
h′ ∈ ker( ∂κi

∂hj
). Thus the classical flexibility implies the generalized flexibility.

Assume h′ ∈ ker( ∂κi

∂hj
) is a nonzero vector. Choose a triangulation of the faces

of C. We claim that there is an infinitesimal flex (p′
i ) that has (h′

i ) as its vertical
components. Note that the horizontal components for the endpoints of an edge deter-
mine the horizontal component for the vertex opposite to this edge. This allows us to
determine the horizontal components for all vertices starting with an arbitrary edge.
Despite many possible ways to arrive at the vertex i starting from the given edge, the
vector p′

i is well defined due to h′ ∈ ker( ∂κi

∂hj
). Thus the generalized flexibility implies

the classical flexibility. �

Theorem 4.14 Classical convex caps that have dimension 3 are infinitesimally rigid
in the sense of Definition 4.12.

If the cap is a polygon orthogonal to the base plane, then this polygon can be bent
along a diagonal. If we want the infinitesimal rigidity to hold in this case, Defini-
tion 4.12 must be appropriately modified.

Proof Let C be a classical convex cap. The graph Γ (C) is connected, therefore C is
infinitesimally rigid as a generalized cap. By Lemma 4.13, if C has no vertical faces,
then it is infinitesimally rigid in the sense of Definition 4.12.

Let C be a cap that has vertical faces and is three-dimensional. Denote by D∧
the upper boundary of C minus the vertical faces. For any infinitesimal flex of C the
vertical components of the vectors p′

i for i ∈ ∂D∧ vanish. Let ai be the height of i

in C for i ∈ ∂D∧. Consider the intersection of the space C(D) with the affine plane
{hi = ai for all i ∈ ∂D∧}, and consider only the coordinates {κi | i /∈ ∂D∧} of the map
KD . Because the Jacobian of KD at C is a negative definite symmetric matrix, the
Jacobian of the restricted KD is also negative definite, in particular nondegenerate.
Hence by the first part of the proof of Lemma 4.13 the cap C is infinitesimally rigid
in the sense of Definition 4.12. �

For polytopes in R
3 with triangular or triangulated faces, infinitesimal flexes are

defined exactly as in Definition 4.12, except that now we have no condition 2. Infini-
tesimal rigidity of convex polytopes was proved by Dehn in [7], but the argument of
Cauchy used to prove the global rigidity in [5] works also in the infinitesimal context.
We present here a new proof based on Theorem 4.14 and on the projective invariance
of the infinitesimal rigidity.

Theorem 4.15 (Cauchy–Dehn) Convex 3-polytopes are infinitesimally rigid.
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Proof Let P ⊂ R
3 be a convex polytope. The infinitesimal rigidity is a projectively

invariant property, as shown by Darboux [6] for smooth surfaces and by Sauer [14]
for polyhedral surfaces. (For polyhedral objects, geometers were aware of that as
early as middle of nineteenth century.)

So let us consider a projective transformation ϕ of R
3 that maps a vertex p0 of P to

the point with the homogeneous coordinates [0,0,1,0], where R
3 is identified with

the affine part of RP 3 via (x, y, z) = [x, y, z,1]. Then the faces of P that contain
p0 become vertical. The map ϕ can be chosen so that ϕ(pi) ∈ R

3+ for all vertices
of P except p0 and C = ϕ(P ) ∩ R

3+ is a convex cap. By Lemma 5.1 in [15], with
every infinitesimal flex of P that fixes p0 we can associate an infinitesimal flex of C.
Besides, the trivial flexes of P go exactly to the trivial flexes of C. Thus Theorem 4.14
implies that P is infinitesimally rigid. �

Remarks This proof of Theorem 4.15 is due to Jean-Marc Schlenker. In [15], he went
further by proving that the Hessian of S is negative definite also for weakly convex
caps, that is caps that are not necessarily convex, but whose vertices are extremal
points of a convex polytope. As in this section, this implies that weakly convex caps
are infinitesimally rigid. From the Darboux–Sauer theorem Schlenker deduces that
weakly convex polytopes that are star-shaped with respect to a vertex are infinitesi-
mally rigid.

In [2], a proof of Dehn’s theorem was given that uses the total scalar curvature S

for generalized convex polytopes. There the function S is not concave, but has one
positive direction. The rigidity follows from the fact that the corank of the Hessian
of S equals 3, that is the dimension of the space of infinitesimal rigid motions. The
signature of S is computed using the connection of the total scalar curvature to the
volume of the dual as established in [2] and from the Alexandrov–Fenchel inequali-
ties.

5 Proof of Main Theorem

Here is the idea of the proof. We have a strictly concave function S on the space C(D)

of convex generalized caps. A cap C that lies in the interior of C(D) is a classical
convex cap if and only if it has curvatures κi = 0 for all i. On the other hand, we
have gradS = κ . Thus, in the interior of C(D) the critical points of S correspond to
the classical convex caps. Due to the concavity of the function S, any interior critical
point is a point of local maximum of S. And due to the convexity of C(D), a local
maximum is the global maximum and is therefore unique.

The problem is that S may attain its maximum at a boundary point of C(D).
Thus we need to characterize those boundary points that may maximize S as well
as those that may produce a classical cap. Section 5.1 deals mostly with this problem.
In Sect. 5.2 we give an account of Volkov’s proof.

5.1 Classical Caps Maximize the Total Scalar Curvature

Definition 5.1 Let C be a generalized convex cap. The degenerate part C| of C is
defined as the union of the degenerate prisms of C. The nondegenerate part C∧ of C

is the union of the nondegenerate prisms.
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Fig. 6 A polygon Ps from the
decomposition (19).
Corresponding degenerate
prisms are also shown

Lemma 5.2 A generalized convex cap C is a classical convex cap if and only if its
curvatures satisfy the following conditions:

κi = 0 if hi < di; (17)

κi ≥ 0 if hi = di. (18)

Here di is the distance from the singularity i to ∂D in the metric of D.

Proof For a generalized convex cap C, consider the intersection D| = C| ∩ D. It
consists of the upper bases of the degenerate prisms of C. Equivalently, D| is the
closure of the set of x ∈ D such that |grad h̃(x)| = 1. Therefore if x ∈ D|, then also
y ∈ D| for all y on the shortest geodesic joining x with ∂D. It follows that D| can be
represented as a union of polygons

D| =
⋃

s

Ps, (19)

where every Ps has exactly one side Ls in ∂D, and the orthogonal projection to Ls

maps the upper ridge ∂Ps \ Ls injectively into Ls . See Fig. 6.
Clearly, every Ps is isometric to the union of the degenerate prisms whose upper

bases lie in Ps . These prisms contribute π to the angles ωi around the vertical edges
from the singularities i in the upper ridge ∂Ps \ Ls .

Note that the polygons in (19) can have points in common, moreover a polygon can
have identifications on the boundary, that is it may be immersed and not embedded
in D. However, if the curvatures of C satisfy the condition (18), then there are only
the following three possibilities:

(1) Every polygon is embedded, and no two polygons have a point in common, ex-
cept maybe points in ∂D.

(2) In (19) there are only two polygons, they are equal, and D is obtained by identi-
fying their upper ridges. In particular, all prisms are degenerate.

(3) There is only one polygon P , it has a vertical axis of symmetry, and D is obtained
from P by identifying the corresponding points of the upper ridge. Again, all
prisms are degenerate.

Now, let the curvatures of C satisfy both conditions (17) and (18). If C∧ �= ∅, then
we have the situation (1). Hence C∧ is isometric to a polytope in R

3+ that projects to
its lower base and is convex except maybe at the vertical edges. The polygons Ps are
glued to the vertical faces of the polytope. Since they contribute π to the angles at the
vertical edges, the polytope is a convex cap.
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If we have the situation (2) or (3), then C is isometric to a two-dimensional clas-
sical cap, where in (3) the cap has a vertical edge.

Thus conditions (17) and (18) are sufficient for a cap C to be classical. Proof of
the necessity is not hard, and we omit it. �

Proof of Main Theorem
Existence. Let C ∈ C(D) be a maximum point of the function S. We claim that C

is a classical convex cap.
If C lies in the interior of C(D), then we have κ(C) = gradS(C) = 0. Therefore

C is a classical convex cap with no vertical faces. If C lies on the boundary of C(D),
then we need to show that C satisfies the properties (17) and (18).

Assume that (17) or (18) is violated. First, consider the case when there is an i

such that κi < 0. Let us show that the height hi can be decreased by a small amount
so that h does not leave the set C(D). Since ∂S

∂hi
= κi < 0, the function S grows during

this deformation, and this contradicts the choice of the cap C. We have to show that
the inequalities (3), (4), and (6) remain valid when hi decreases. For (6) it is obvious.
A small decrease of i violates the inequality (3) only if the equality hi = extjkl(i)

holds at the beginning. This means that θij = π , and thus there is a face with the
angle at i greater or equal π . But this contradicts Lemma 5.3. Similarly, if we violate
(4), then at the beginning we have an equality there. But clearly, hi = hj implies that
the curvature κi is equal to the angle defect of the singularity i in the metric of D.
This contradicts the assumption κi < 0. Finally, a decrease of hi does not violate the
inequalities of type (3) and (4), if the singularity i plays the role of j , k or l there.

Thus we may assume that κi ≥ 0 for all i, and that there is an i such that κi > 0
and hi < di . Increase by the same small amount all of those hi that are smaller than
di . If h does not leave C(D), then this deformation increases S, and this contradicts
the choice of the cap C. So assume that one of the inequalities (3), (4), and (6) is
violated. The inequality (6) remains valid if the deformation is sufficiently small. The
inequality (4) is violated only if it is an equality at the beginning, and hj increases but
hi remains constant. The equality hi = hj implies that h̃ is constant on the triangle
jij . Thus i lies in the nondegenerate part of D, and we have hi < di . This contradicts
the assumption that hi remains constant during the deformation.

Now suppose that (3) is violated. Then at the initial moment we have hi =
extjkl(i), and hi remains constant during the deformation, but some of the other
heights grow. Since hi remains constant, we have hi = di . Thus i lies in the de-
generate part D| of D. On the other hand, the quadrilateral ikj l is not contained in
D|, otherwise all of the vertices j , k, l lie in the degenerate part, and the correspond-
ing heights remain constant during the deformation. Thus both the degenerate and
nondegenerate prisms contribute π to the angle ωi . So we have κi ≤ 0. Since the
face containing the quadrilateral ikj l has the angle at least π at i, this contradicts
Lemma 5.3.

Uniqueness. Let C ∈ C(D) be isometric to a classical convex cap. Let us show
that C is a point of local maximum for the function S. The curvatures of C satisfy
conditions (17) and (18). If hi < di for all interior singularities i, then κi = 0 implies
that C is a critical point of S, and thus a point of local maximum due to the concavity
of S. If hi = di for some i, then we have ∂S

∂hi
= κi ≥ 0. On the other hand, hi ≤ di on
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Fig. 7 The spherical section of a cap at a vertex, and its development after cutting out the lune OAB

C(D). Therefore directional derivatives of S at C in directions pointing inside C(D)

are nonpositive. Again, the concavity of S implies that C is a point of local maximum.
By Theorem 4.5, the function S is strictly concave. Therefore it has only one local

maximum on the convex space C(D), and the uniqueness follows.
Actually, instead of Theorem 4.5 a more simple Lemma 4.7 can be applied. As-

sume that C1,C2 ∈ C(D) are two different caps isometric to classical ones. In a clas-
sical convex cap the graph Γ (Ci) is connected. Thus the Hessian of S is positively
defined at both C1 and at C2. Join the points C1 and C2 by a straight segment in
C(D) ⊂ R

Σ\∂D . Since C1 and C2 are points of local maximum for S, the function S

must be constant on the segment C1C2. But this contradicts to the positivity of the
second derivative at the segment endpoints. �

Now we prove the lemma used in the proof of the existence of a convex cap. Recall
that we defined faces of C as the connected components of D \ Γ (C), where Γ (C)

is the graph obtained from the skeleton of an associated triangulation by removing all
of the interior edges ij with θij = π . In general, a face may be nonconvex.

Lemma 5.3 Let C be a generalized convex cap. Assume that κi ≤ 0 for some interior
singularity i. Then all of the faces of C incident to the vertex i have angles at i less
than π .

Proof Consider the spherical section Ci of the cap C at the vertex i. It is glued
from spherical triangles with a common vertex O . The total angle at O equals 2π −
κi ≥ 2π . Maximal geodesic arcs on the boundary of Ci correspond to the face angles
of C at i. Assume that there is a geodesic arc AB ⊂ ∂Ci of length π . Then the arcs
OA and OB bound a spherical lune in Ci , see the left part of the Fig. 7.

Denote by BA the complement to the arc AB in the boundary of Ci . Remove
from Ci the spherical lune OAB and develop the rest onto the sphere. BA becomes a
piecewise geodesic of positive turn. Due to κi ≤ 0, the angle under which BA is seen
from O is greater or equal π (note that it may be even greater than 2π ). This implies
|BA| ≥ |OA|+ |OB| = π . Since we have |AB| = π , the boundary of Ci has the total
length at least 2π . But this length equals the total angle around the singularity i in the
metric of D. This contradicts the assumption that D is a convex polyhedral disk. �

5.2 Volkov’s Proof

Here we give a short account of Volkov’s proof [16] of the existence part of the Main
Theorem. Its main ingredients are incorporated in our proof.



Discrete Comput Geom (2008) 40: 561–585 585

Volkov considered the set of all generalized convex caps with nonnegative curva-
tures κi , see Definitions 3.3 and 3.4. He took the cap that maximizes the sum

∑
i hi

of the heights and proved that it has zero curvatures in its degenerate part, see De-
finition 5.1. Hence it is a classical convex cap. The claim that for the cap with the
maximum sum of heights all curvatures vanish is proved by contradiction: let C be a
generalized convex cap that maximizes

∑
i hi and assume that κi > 0 for some i in

the nondegenerate part. Then we increase by a small amount all of the heights hi for
which κi > 0 and i is not in the nondegenerate part, and obtain a generalized convex
cup of nonpositive curvature with a greater sum of heights. This is exactly what we
do in the second part of our existence proof. To show that the heights with positive
curvatures may be increased, Volkov proved Lemma 5.3 and gave a subtle geometric
argument that shows how the upper boundary of the cap must be retriangulated.
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