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Abstract
We show that the eccentricities, diameter, radius, and Wiener index of an undirected 
n-vertex graph with nonnegative edge lengths can be computed in time 

O(n ⋅

�
k + ⌈log n⌉

k

�
⋅ 2k log n) , where k is linear in the treewidth of the graph. For 

every 𝜖 > 0 , this bound is n1+� expO(k) , which matches a hardness result of Abboud 
et al. (in: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on 
Discrete Algorithms, 2016. https​://doi.org/10.1137/1.97816​11974​331.ch28) and 
closes an open problem in the multivariate analysis of polynomial-time computa-
tion. To this end, we show that the analysis of an algorithm of Cabello and Knauer 
(Comput Geom 42:815–824, 2009. https​://doi.org/10.1016/j.comge​o.2009.02.001) 
in the regime of non-constant treewidth can be improved by revisiting the analysis 
of orthogonal range searching, improving bounds of the form logd n to �
d + ⌈log n⌉

d

�
 , as originally observed by Monier (J Algorithms 1:60–74, 1980. 

https​://doi.org/10.1016/0196-6774(80)90005​-X). We also investigate the parameter-
ization by vertex cover number.
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1  Introduction

Pairwise distances in an undirected, unweighted graph can be computed by per-
forming a graph exploration, such as breadth-first search, from every vertex. This 
straightforward procedure determines the diameter of a given graph with n vertices 
and m edges in time O(nm). It is surprisingly difficult to improve upon this idea in 
general. In fact, Roditty and Vassilevska Williams [17] have shown that an algo-
rithm that can distinguish between diameter 2 and 3 in an undirected sparse graph in 
subquadratic time would refute the Orthogonal Vectors conjecture.

However, for very sparse graphs, the running time becomes linear even for 
weighted graphs. For instance, the diameter of a star can be computed by finding the 
two largest edge weights. The diameter of a tree can be computed in linear time O(n) 
by a folklore result that traverses the graph twice. In other words, for graphs with 
vertex cover number 1 or treewidth 1, the running time is O(n).

The present paper investigates how these structural parameters influence the 
complexity of computing several graph distance measures. These measures are the 
eccentricity of every vertex (its maximum distance to any other vertex), the diameter 
and radius of the graph (the maximum and minimum eccentricities), and the Wiener 
index (the sum of the distances between all pairs of vertices); precise definitions are 
in Sect. 4.1. Throughout this paper we will write

Theorem 1  The eccentricities, diameter, radius, and Wiener index of a given undi-
rected n-vertex graph G with nonnegative integer weights can be computed in time 

1.	 O(n ⋅ B(n, k) ⋅ 2k) with k = vc(G) , where vc(G) is the vertex cover number of G,
2.	 O(n ⋅ B(n, k) ⋅ 2k log n) with k = 5tw(G) + 4 , where tw(G) is the treewidth of G.

For every 𝜖 > 0 , the bounds in both cases are

Since tw(G) ≤ vc(G) , the treewidth result is in some sense stronger. However, the 
vertex cover result is slightly faster, already contains the core algorithmic idea, and 
avoids many distracting technicalities.

Theorem 1 improves the dependency on the treewidth over the running time

of Abboud, Vassilevska Williams, and Wang [1]. Previously, Cabello and Knauer [7] 
had shown that for constant treewidth k ≥ 3 , the diameter (and other distance param-
eters) can be computed in time O(n logk−1 n) , where the Landau symbol absorbs 
the exponential dependency on k as well as the time required for computing a tree 

B(n, d) =

�
d + ⌈log n⌉

d

�
.

n1+� expO(k) .

n1+� expO
(
tw(G) log tw(G)

)
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decomposition. The bound in Theorem  1 is tight in the following sense. Abboud 
et al. [1] also showed that under the Strong Exponential Time Hypothesis of Impa-
gliazzo, Paturi, and Zane [13], there can be no algorithm that computes the diameter 
with running time

for k = vc(G) and (therefore also) k = tw(G) . In fact, this holds under the potentially 
weaker Orthogonal Vectors conjecture, see [20] for an introduction to these argu-
ments. Thus, under this assumption, the dependency on k in Theorem 1 cannot be 
significantly improved, even if the dependency on n is relaxed from just above linear 
to just below quadratic. This closes an open question raised in [1].

Our analysis encompasses the Wiener index, an important structural graph 
parameter left unexplored by [1].

Perhaps surprisingly, the main insight needed to establish Theorem 1 has noth-
ing to do with graph distances or treewidth. Instead, we make—or re-discover—
the following observation about the running time of d-dimensional range trees:

Lemma 2  ([16]) A d-dimensional range tree over n points supporting orthogonal 
range queries for the aggregate value over a commutative monoid has query time 
O(2dB(n, d)) and can be built in time O(nd2B(n, d)).

This is a more careful statement than the standard textbook analysis, which 
gives the query time as O(logd n) and the construction time as O(n logd n) . For 
many values of d, the asymptotic complexities of these bounds agree—in particu-
lar, this is true for constant d and for very large d, which are the main regimes of 
interest in computational geometry. But crucially, B(n, d) is always n� expO(d) for 
any 𝜖 > 0 , while logd n is not.

Using known reductions, this implies that the following multivariate lower 
bound on orthogonal range searching is tight:

Theorem 3  (Implicit in [1]) A data structure for the orthogonal range query prob-
lem in d dimensions for the monoid (�, max) with construction time n ⋅ q�(n, d) and 
query time q�(n, d) , where

for some 𝜖 > 0 , refutes the Strong Exponential Time hypothesis.

We observe in the appendix that for unweighted graphs, the vertex cover result 
can be improved without using the techniques advertised in the present paper.

Theorem  4  The eccentricities, diameter and radius of a given undirected, 
unweighted n-vertex graph G with vertex cover number k can be computed in time 
O(nk + 2kk2) . The Wiener index can be computed in time O(nk2k).

(1)n2−𝛿 exp o(k) for any 𝛿 > 0 ,

q�(n, d) = n1−� exp o(d)
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Both of these bounds are n expO(k) , matching (1). We do not know of a simi-
lar simplification for treewidth; the bound in Theorem 1.2, and the full construction 
behind it, seem to be the best we can do even for unit lengths.

1.1 � Related Work

Abboud et  al. [1] show that given a graph and a tree decomposition of width k, 
various graph distances can be computed in time O(k2n logk−1 n) . This bound is 
n1+� expO(k log k) for any 𝜖 > 0 . It is known how to compute an approximate tree 
decomposition with k = O(tw(G)) from the input graph G in time n expO(tw(G)) 
[6], so from a given graph (without a tree decomposition) the algorithm from [1] 
works in time n1+� expO(tw(G) log tw(G)) , extending the construction of Cabello 
and Knauer [7] to superconstant treewidth. According to [7], the idea of expressing 
graph distances as coordinates was first mentioned by Shi [18].

If the diameter in the input graph is constant, the diameter can be computed in 
time n expO(tw(G)) [12]. This is tight in both parameters in the sense that [1] rules 
out the running time (1) even for distinguishing diameter 2 from 3, and every algo-
rithm needs to inspect Ω(n) vertices even for treewidth 1. For non-constant diameter 
Δ , the bound from [12] deteriorates as n expO(tw(G) logΔ) . However, the construc-
tion cannot be used to compute the Wiener index.

The literature on algorithms for graph distance parameters such as diameter or 
Wiener index is very rich, and we refer to the introduction of [1] for an overview of 
results directly relating to the present work. A recent paper by Bentert and Nichter-
lein [2] gives a comprehensive overview of many other parameterisations.

Orthogonal range searching using a multidimensional range tree was first 
described by Bentley [3], Lueker [15], Willard [19], and Lee and Wong [14], who 
showed that this data structure supports query time O(logd n) and construction time 
O(n logd−1 n) . Several papers have improved this in various ways by factors logarith-
mic in n; for instance, Chazelle’s construction [9] achieves query time O(logd−1 n) . 
In general, queries that report the points Q within a given range, instead of (like in 
the present paper) computing sums or maxima, incur an additional O(|Q|) term in 
the query time.

1.2 � Discussion

In hindsight, the present result is a somewhat undramatic resolution of an open 
problem that has been viewed as potentially fruitful by many people [1], includ-
ing the second author of this paper [12]. In particular, the resolution has led nei-
ther to an exciting new technique for showing conditional lower bounds of the form 
n2−� exp�(k) , nor a clever new algorithm for graph diameter. Instead, our solution 
follows the ideas of Cabello and Knauer [7] for constant treewidth, much like in 
[1]. All that was needed was a better understanding of the asymptotics of bivariate 
functions, rediscovering a 40-year old analysis of spatial data structures [16] (see the 
discussion in Sect. 3.3), and using a recent algorithm for approximate tree decompo-
sitions [6].
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Of course, we can derive some satisfaction from the presentation of asymptoti-
cally tight bounds for fundamental graph parameters under a well-studied param-
eterization. In particular, the surprisingly elegant reductions in [1] cannot be 
improved. However, as we show in the appendix, when we parameterize by vertex 
cover number instead of treewidth, we can establish even cleaner and tight bounds 
without much effort.

Instead, the conceptual value of the present work may be in applying the multi-
variate perspective on high-dimensional computational geometry, reviving an over-
looked analysis for non-constant dimension. To see the difference in perspective, 
Chazelle’s improvement [9] of d-dimensional range queries from logd n to logd−1 n 
makes a lot of sense for small d, but from the multivariate point of view, both 
bounds are n� expΩ(d log d) . The range of relationships between d and n where the 
multivariate perspective on range trees gives some new insight is when d is asymp-
totically just shy of log n , see Sect. 2.1.

Table  1 summaries the known bounds for computing the diameter. It remains 
open to find an algorithm for diameter with running time n expO(tw(G)) even for 
unweighted graphs, or an argument that such an algorithm is unlikely to exist under 
standard hypotheses. This requires better understanding of the regime d = o(log n).

2 � Preliminaries

2.1 � Asymptotics

We summarise the asymptotic relationships between various functions appearing in 
the present paper:

Lemma 5 
For any 𝜖 > 0,

(2)B(n, d) = O(logd n) .

(3)B(n, d) =n� expO(d) ,

(4)logd n =n� expΩ(d log d) ,

Table 1   Bounds on algorithms 
for computing the diameter of 
a graph

Recall that tw(G) ≤ vc(G) , which implies some more bounds not 
given here

Running time Comment Where

O(n) If tw(G) = 1 Folklore
n1+� expO(tw(G)) Theorem 1
n expO(vc(G)) If G is unweighted † Theorem 4
n expO(tw(G)) If G has constant diameter ‡ [12]
n exp o(vc(G)) Impossible under SETH, even 

given † and ‡
[1]
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The first expression shows that B(n, d) is always at least as good a bound as 
O(logd n) . The next two expressions show that from the perspective of param-
eterised complexity, the two bounds differ asymptotically: B(n,  d) depends sin-
gle-exponentially on d (no matter how small 𝜖 > 0 is chosen), while logd n does 
not (no matter how large � is chosen). Our proof in fact establishes the stronger 
bound B(n, d) ≤ n� + expO(d) . Expression  (5) just shows that (4) is maximally 
pessimistic.

Proof  Write h = ⌈log n⌉ . To see (2), consider first the case where d < h . Using (
a

b

)
≤ ab∕b! we see that

Next, if d ≥ h then

provided h ≥ 4 . It remains to observe that dh ≤ hd = O(logd n) . Indeed, since the 
function � ↦ �∕ ln � is increasing for � ≥ e , we have h∕ ln h ≤ d∕ ln d , which 
implies exp(h ln d) ≤ exp(d ln h) as needed.

For (3), we let � = d∕h and consider two cases: � = o(1) or not. First, from Stir-

ling’s formula we know 
(
a

b

)
≤
(
ea

b

)b , so

Using that � ↦ 2� log(e(1 + �)�−1) is positive in the interval 
(
0,

1

2

]
 and tends to 0 for 

� → 0 , we obtain 
(
d + h

d

)
≤ n� for any sufficiently small �.

It remains to consider the case that � ≥ c for some positive constant c depending 
only on � . In this case, we have

We turn to (4). Let 𝜖 > 0 and consider any function g such that for all n ≥ 1,

Then log g(d) ≥ d log log n − � log n . In particular, for n = 2d , we have 
log g(d) ≥ d log d − �d = Ω(d log d) , so g(d) = expΩ(d log d).

Finally for (5), we repeat the argument from [1]. If d ≤ � log n∕ log log n 
then logd n = 2d log log n ≤ n� . In particular, if d = o(log n∕ log log n) then 

(5)logd n =n� expO(d log d) .

(6)
(
d + h

d

)
≤

(
2h

d

)
≤

(2h)d

d!
=

2d

d!
hd = O(logd n) .

(
d + h

d

)
=

(
d + h

h

)
≤

(
2d

h

)
=

2h

h!
dh ≤ dh ,

(
d + h

d

)
=

(
(1 + �)h

�h

)
≤

(e(1 + �)h

�h

)
�h

≤

(e(1 + �)

�

)2� log n

= n2� log(e(1+�)�
−1) .

(
d + h

d

)
≤

(
(1 + 1∕c)d

d

)
< 2(1+1∕c)d = expO(d) .

logd n ≤ n�g(d) .
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logd n = no(1) . Moreover, for d ≥ log1∕2 n we have log log n ≤ 2 log d and thus 
logd n = 2d log log n ≤ 4d log d. 	�  ◻

These calculations also show the regimes in which these considerations are at all 
interesting. For d = o(log n∕ log log n) both functions are bounded by no(1) , and the 
multivariate perspective gives no insight. For d ≥ log n , both bounds exceed n, and we 
are better off running n BFSs for computing diameters, or passing through the entire 
point set for range searching.

2.2 � Model of Computation

We operate in the word RAM, assuming constant-time arithmetic operations on coordi-
nates and edge lengths, as well as constant-time operations in the monoid supported by 
our range queries. For ease of presentation, edge lengths are assumed to be nonnegative 
integers; we could work with nonnegative weights instead [7].

3 � Orthogonal Range Queries

3.1 � Preliminaries

Let P be a set of d-dimensional points. We will view every point p ∈ P as a vector 
p = (p1,… , pd).

A commutative monoid is a set M with an associative and commutative binary oper-
ator ⊕ with identity. The reader is invited to think of M as the integers with −∞ as iden-
tity and a⊕ b = max{a, b}.

Let f ∶ P → M be a function and define for each subset Q ⊆ P

with the understanding that f (�) is the identity in M. See Fig. 1 for a small example.

f (Q) =
⨁

{ f (q) ∶ q ∈ Q}

Fig. 1   Four points in three dimensions. With the monoid (�, max) we have f ({p, r, s}) = 8
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3.2 � Range Trees

Consider dimension i ∈ {1,… , d} and enumerate the points in Q as q(1),… , q(r) 
such that q(j)

i
≤ q

(j+1)

i
 , for instance by ordering after the ith coordinate and break-

ing ties lexicographically. Define medi(Q) to be the median point q(⌈r∕2⌉) , and sim-
ilarly mini(Q) = q(1) and maxi(Q) = q(r) . Set

For i ∈ {1,… , d} , the range tree Ri(Q) for Q is a node x with the following associ-
ated values:

•	 L[x], a reference to range tree Ti(QL) , called the left child of x. Only exists if 
|Q| > 1.

•	 R[x], a reference to range tree Ti(QR) , called the right child of x. Only exists if 
|Q| > 1.

•	 D[x], a reference to range tree Ti+1(Q) , called the secondary, associate, or 
higher-dimensional structure. Only exists for i < d.

•	 l[x] = mini(Q).
•	 r[x] = maxi(Q).
•	 f [x] = f (Q) . Only exists for i = d.

Construction
Constructing a range tree for Q is a straightforward recursive procedure:

Algorithm C (Construction). Given integer i ∈ {1,… , d} and a list Q of points, 
this algorithm constructs the range tree Ri(Q) with root x. 

C1	� [Base case Q = {q} .] Recursively construct D[x] = Ti+1(Q) if i < d , otherwise 
set f [x] = f (q) . Set l[x] = r[x] = qi . Return x.

C2	� [Find median.] Determine q = mediQ , l[x] = mini(Q) , r[x] = maxi(Q).
C3	� [Split Q.] Let QL and QR as given by (7), note that both are nonempty.
C4	� [Recurse.] Recursively construct L[x] = Ri(QL) from QL . Recursively construct 

R[x] = Ri(QR) from QR . If i < d then recursively construct D[x] = Ti+1(Q) . If 
i = d then set f [x] = f [L[x]]⊕ f [R[x]].

The data structure can be viewed as a collection of binary trees whose nodes x 
represent various subsets Px of the original point set P. In the interest of analysis, 
we now introduce a scheme for naming the individual nodes x, and thereby also 
the subsets Px . Each node x is identified by a string of letters from {L, R,D} as 
follows. Associate with x a set of points, often called the canonical subset of x, as 
follows. For the empty string � we set P

�
= P . In general, if Q = Px then PxL = QL , 

PxR = QR and PxD = Q . The strings over {L, R,D} can be understood as uniquely 
describing a path through in the data structure; for instance, L means ‘go left, i.e., 
to the left subtree, the one stored at L[x]’ and D means ‘go to the next dimension, 

(7)QL =
�
q(1),… , q(⌈r∕2⌉)

�
, QR =

�
q(1+⌈r∕2⌉),… , q(r)

�
.
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i.e., to the subtree stored at D[x].’ The name of a node now describes the unique 
path that reaches it. Figure 2 shows (part of) the range tree for the points in Fig. 1.

Lemma 6  Let n = |P| . Algorithm C computes the d-dimensional range tree for P in 
time linear in nd2B(n, d).

Proof  We run Algorithm C on input P and i = 1.
Disregarding the recursive calls, the running time of algorithm C on input i and 

Q is dominated by Steps C2 and C3, i.e., splitting Q into two sets of equal size. It 
is known that this task can be performed using O(|Q|) many comparisons [5]. Each 
(lexicographic) comparison can take d steps. Thus, the running time for constructing 
Ri(Q) is linear in d|Q| plus the time spent in recursive calls.

This means that we can bound the running time for constructing T1(P) by bound-
ing the sizes of the sets Px associated with every node x in the data structure. If X 
denotes the set of nodes in the data structure, then we want to bound

Thus, we need to determine, for given p ∈ P , the number of subsets Px in which p 
appears. By construction, there are fewer than d occurrences of D in x. Set 
h = ⌈log n⌉ . Every L or R corresponds to cutting the current points set in half, so if x 
contains more than h occurrences that are either L or R then Px is empty. Thus, x has 
at most h + d letters. For two different strings x and x′ that agree on the positions of 
D, the sets Px and Px′ are disjoint, so p appears in at most one of them. We conclude 

∑

x∈X

|Px| =
∑

x∈X

|{ p ∈ P ∶ p ∈ Px }| =
∑

p∈P

|{ x ∈ X ∶ p ∈ Px }| .

Fig. 2   Part of the range tree for the points from Fig. 1. The label of node x appears in red on the arrow 
pointing to x. Nodes contain l[x]∶r[x] . The references L[x] and R[x] appear as children in a binary tree 
using usual drawing conventions. The reference D[x] appears as a dashed arrow (possibly interrupted); 
the placement on the page follows no other logic than economy of layout and readability. References 
D[x] from leaf nodes, such as D[LL] leading to node LLD, are not shown; this conceals 12 single-node 
trees. The ‘3rd-dimensional nodes,’ whose names contain two Ds, show the values f[x] next to the node. 
To ease comprehension, leaf nodes are decorated with their canonical subset, which is a singleton from 
{p, q, r, s} . The reader can infer the canonical subset for an internal node as the union of leaves of the 
subtree; for instance, P

DR
= {r, s} . However, note that these point sets are not explicitly stored in the data 

structure
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that the number of sets Px such that p ∈ Px is bounded by the number of ways to 
arrange fewer than d many Ds and at most h non-Ds. Using the identity (
a + 0

0

)
+⋯ +

(
a + b

b

)
=

(
a + b + 1

b

)
 repeatedly, we compute this number as

The bound follows from aggregating this contribution over all p ∈ P . In summary, 
the running time becomes

	�  ◻

The running time in the above lemma can be improved with some effort to 
O(d2n log n + dnB(n, d)) , but this would not affect our overall results.

Search.
In this section, we fix two sequences of integers l1,… , ld and r1,… , rd describing 

the query box B given by

Algorithm Q(Query). Given integer i ∈ {1,… , d} , a query box B as above and a 
range tree Ri(Q) with root x for a set of points Q such that every point q ∈ Q satisfies 
lj ≤ qj ≤ rj for j ∈ {1,… , i − 1} , this algorithm returns 

⨁
{ f (q) ∶ q ∈ Q ∩ B } . 

Q1	� [Empty?] If the data structure is empty, or li > r[x] , or l[x] > ri , then return the 
identity in the underlying monoid M.

Q2	� [Done?] If i = d and ld ≤ mind[x] and maxd[x] ≤ rd then return f[x].
Q3	� [Next dimension?] If i < d and li ≤ l[x] and r[x] ≤ ri then query the range tree 

at D[x] for dimension i + 1 . Return the resulting value.
Q4	� [Split.] Query the range tree L[x] for dimension i; the result is a value fL . 

Query the range tree R[x] for dimension i; the result is a value fR . Return 
fL ⊕ fR . 	�  ◻

To prove correctness, we show that this algorithm is correct for each point set 
Q = Px.

Lemma 7  Let i = D(x) + 1 , where D(x) is the number of Ds in x. Assume that Px is 
such that lj ≤ pi ≤ rj for all j ∈ {1,… , i − 1} for each p ∈ Px . Then the query algo-
rithm on input x and i returns f (B ∩ Px).

Proof  We use backwards induction in |x|.

d−1∑

i=0

h∑

j=0

(
i + j

j

)
=

d−1∑

i=0

(
i + h + 1

h

)
=

d−1∑

i=0

(
i + h + 1

i + 1

)

= (−1) +

d∑

i=0

(
i + h

i

)
=

(
h + d + 1

d

)
− 1 =

h + d + 1

h + 1

(
h + d

d

)
− 1 ≤ d

(
d + h

d

)
.

∑

x∈X

d|Px| ≤ d
∑

p∈P

d

(
d + h

d

)
≤ nd2B(n, d) .

B = [l1, r1] ×⋯ × [ld, rd] .
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If |x| = h + d then Px is the empty set, in which case the algorithm correctly 
returns the identity in M.

If the algorithm executes Step Q2 then B is satisfied for all q ∈ Px , in which case 
the algorithm correctly returns f [x] = f (Px).

If the algorithm executes Step Q3 then B satisfies the condition in the lemma for 
i + 1 , and the number of Ds in PxD is i + 1 , and D[x] store the (i + 1) th range tree for 
PxD . Thus, by induction the algorithm returns f (PxD ∩ B) , which equals f (Px ∩ B) 
because PxD = Px.

Otherwise, by induction, fL = f (PxL ∩ B) and fR = f (PxR ∩ B) . Since 
PxL ∪ PxR = Px , we have f (Px ∩ B) = f ((PxL ∩ B) ∪ (PxR ∩ P)) = fL ⊕ fR . 	�  ◻

Lemma 8  If x is the root of the range tree for P, then on input i = 1 , x, and B, the 
query algorithm returns f (P ∩ B) in time linear in 2dB(n, d).

Proof  Correctness follows from the previous lemma.
For the running time, we first observe that the query algorithm does constant 

work in each visited node. Thus it suffices to bound the number of visited nodes as

We will show by induction in d that (8) is the correct bound for every call to a 
d-dimensional range tree for a point set Px , where h = ⌈log �Px�⌉ . In the base case, 
for d = 1 , we need to show that the number of visited nodes is at most 

21
(
h + 1

1

)
= 2(h + 1) for any height h. But this is just the standard observation 

that interval searching amounts to traversing two root–leaf paths, each of which con-
tains at most h non-root nodes, and that the height of balanced binary search tree on 
n values is at most 1 + ⌈log n⌉.

We now carefully consider the case for d ≥ 2 . The two easy cases are Q1 and Q2, 
which incur no additional nodes to be visited, so the number of visited nodes is 1, 
which is bounded by (8). Step Q3 leads to a recursive call for a (d − 1)-dimensional 
range tree over the same point set PxD = Px , and we verify for h ≥ 1:

The case h = 0 (i.e., Px is a singleton) is immediate. The interesting case is Step Q4. 
We need to follow two paths from x to the leaves of the binary tree of x. Consider 
the leaves l and r in the subtree rooted at x associated with the points mini(Px) and 
maxi(Px) as defined in Sect. 3.2. We describe the situation of the path Y from l to x; 
the other case is symmetrical. At each internal node y ∈ Y  , the algorithm chooses 
Step Q4 (because li ≥ l[y] ). There are two cases for what happens at yL and yR . If 
li ≤ medi(Py) then PyR satisfies li ≤ mini(PyR) ≤ ri , so the call to yR will choose Step 

(8)2d
(
h + d

d

)
(d ≥ 1, h ≥ 0) .

1 + 2d−1
(
h + d − 1

d − 1

)
≤ 2d−1

(
h + d − 1

d

)
+ 2d−1

(
h + d − 1

d − 1

)

= 2d−1
(
h + d

d

)
< 2d

(
h + d

d

)
.



2303

1 3

Algorithmica (2020) 82:2292–2315	

Q3. By induction, this incurs 2d−1
(
d − 1 + i

d − 1

)
 visits, where i is the height of y. In 

the other case, the call to yL will choose Step Q1, which incurs no extra visits. Thus, 
the number of nodes visited on the left path is at most

where the inequality uses the bound h ≤ 2d−1
(
d − 1 + h

d − 1

)
 , which is immediate for 

d ≥ 2 and h ≥ 0 . The total number of nodes visited is at most twice that value, and 
therefore bounded by (8). 	�  ◻

3.3 � Discussion

The textbook analysis of range trees, and similar d-dimensional spatial algorithms 
and data structures sets up a recurrence relation like

for the construction and

for the query time. One then observes that n logd n and logd n are the solutions to 
these recurrences. This analysis goes back to Bentley’s original paper [3].

Along the lines of the previous section, one can show that the functions n ⋅ B(n, d) 
and B(n, d) solve these recurrences as well. A detailed derivation can be found in 
[16], which also contains combinatorial arguments of how to interpret the binomial 
coefficients in the context of spatial data structures. A later paper of Chan [8] also 
takes the recurrences as a starting point, and observes asymptotically improved solu-
tion for the related question of dominance queries.

4 � Graph Distances

4.1 � Preliminaries

We consider an undirected graph G whose edges have nonnegative integer weights. 
The set of vertices is V(G) and has size n. For a vertex subset U we write G[U] for 
the induced subgraph. The neighbourhood N(v) of v are the vertices that share an 
edge with v.

h +

h−1∑

i=0

2d−1
(
d − 1 + i

d − 1

)
≤ 2d−1

h∑

i=0

(
d − 1 + i

d − 1

)
= 2d−1

h∑

i=0

(
d − 1 + i

i

)

= 2d−1
(
d + h

h

)
,

r(n, d) = 2r(n∕2, d) + r(n, d − 1) ,

r(n, d) = max{ r(n∕2, d), r(n, d − 1) } ,
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A path from u to v is called a u, v-path and denoted P. The length of a path, 
denoted l(P), is the sum of its edge lengths.

The distance from vertex u to vertex v, denoted d(u,  v), is the length of a 
shortest u,  v-path, i.e., the minumum of l(P) over all u,  v-paths P. The Wiener 
index of G, denoted wien(G) is 

∑
u,v∈V(G) d(u, v) . The eccentricity of a vertex u, 

denoted e(u) is given by e(u) = max{ d(u, v) ∶ v ∈ V(G) } . The diameter of G, 
denoted diam(G) is max{ e(u) ∶ u ∈ V(G) } . The radius of G, denoted rad(G) is 
min{ e(u) ∶ u ∈ V(G) }.

4.2 � Separated Eccentricities

We follow the construction of [7].
Given a graph G, let Sx,w denote the set of shortest x, w-paths. We refine the 

notion of eccentricity to a subset W of vertices. Formally,

In particular, e(u) = e(u,V(G)) and e(u) = max{e(u,X), e(u,Y)} if X ∪ Y = V(G).
A vertex subset Z separates X and Y if every x, y-path with x ∈ X and y ∈ Y  

and x ≠ y contains a vertex from Z.
Enumerate Z = {z1,… , zk} . For i ∈ {1,… , k} define the ith eccentricity ei(x, Y) 

as the maximum distance from x to any vertex in Y ‘via zi .’ Formally,

See Fig. 3 for a small example.

Lemma 9  If Z separates X and Y then e(x, Y) = maxk
i=1

ei(x, Y) for x ∈ X.

e(u,W) = max
w∈W

{ l(P) ∶ P ∈ Su,w } .

ei(x, Y) =max
y∈Y

{ l(P) ∶ P ∈ Sx,y, zi ∈ V(P) } .

Fig. 3   Left: Example with Z = {z
1
, z

2
, z

3
} and Y = Z ∪ {y, y�, y��} . We have e(x,Y) = 5 (along xz

1
y ) and 

e(x�,Y) = 3 . For the case i = 3 we see e
3
(x,Y) = 4 along xz

3
y′′ , because there are no shortest paths from 

x via z
3
 to y or y′ , and the one-edge path xz

3
 itself is shorter. Similarly, e

3
(x�,Y) = 3 (along x′z

3
y′ ). Mid-

dle: The corresponding points in �2 , only the first two coordinates are shown, and only for the points 
in Y ⧵ Z . The points corresponding to y′ and y′′ both belong to the rectangle for x′ , certifying that there 
are shortest x′, y′ - and x′, y′′-paths through z

3
 . Right: Over Rx′ , the point py′ maximises f. We have 

e
3
(x�,Y) = l(x�z

3
y�) = d(x�, z

3
) + f (py� ) = 1 + 2 = 3
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Proof  A shortest x, y-path with y ∈ Y  must contain a vertex from Z, say zi . Thus, 
e(x, Y) ≤ ei(x, Y) . Conversely, e(x, Y) ≥ ej(x, Y) for all j ∈ {1,… , k} from the defini-
tion. 	�  ◻

Now we can write the eccentricity via zi as the distance to zi plus a range query:

Lemma 10  Let i ∈ {1,… , k} and assume {z1,… , zk} separates X and Y. We will 
define a set of points { py ∶ y ∈ Y } and a function f on this set as follows. Define for 
each y ∈ Y  the k-dimensional point

Define for each x ∈ X the rectangle

Then

Proof  Consider a shortest x, y-path P containing zi ∈ Z . No other x, y-path is shorter 
than P, so in particular we have

equivalently,

which means py ∈ Rx . Moreover, if y is chosen so that P attains the eccentricity 
ei(x, Y) then ei(x, Y) = l(P) = d(x, zi) + d(zi, y) and py maximises f (py) = d(zi, y) 
over the points in Rx . 	�  ◻

We note that the ith coordinate of py is always 0 and of Ry is always [−∞, 0] , so 
the reduction is actually to a (k − 1)-dimensional range query instance. However, 
we are mainly interested in the asymptotic dependency on k, so we avoid the pos-
sible (but tedious) improvement that arises from this observation.

We have arrived at the following algorithm:

Algorithm S (Separated Eccentricities). Given an undirected, connected 
graph G with nonnegative integer weights and vertex subsets X and Y such that 
V(G) = X ∪ Y  and a separator Z of size k, this algorithm computes the eccentricity 
e(x, Y) of every vertex x ∈ X ∪ Z . 

(9)py =

⎛
⎜
⎜⎝

d(zi, y) − d(z1, y)

⋮

d(zi, y) − d(zk, y)

⎞
⎟
⎟⎠

with f (py) = d(zi, y) .

(10)Rx = I1 ×⋯ × Ik , where Ij = [−∞, d(x, zj) − d(x, zi)] .

ei(x, Y) = d(x, zi) + max
y∶py∈Rx

f (py) .

d(x, zi) + d(zi, y) ≤ d(x, zj) + d(zj, y) , for all j ∈ {1,… , k} ,

(11)d(zi, y) − d(zj, y) ≤ d(x, zj) − d(x, zi) , for all j ∈ {1,… , k} .
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S1	� [Distances from separator.] Compute d(z, v) for each z ∈ Z, v ∈ V(G) using k 
applications of Dijkstra’s algorithm. Compute e(z,Y) = maxy∈Y d(z, y) for each 
z ∈ Z.

S2	� [Build range trees.] For each i ∈ {1,… , k} , construct a k-dimensional range 
tree for the points { py ∶ y ∈ Y } given by (9) using the monoid (�, max).

S3	� [Query range trees.] For each x ∈ X and for each i ∈ {1,… , k} query the ith 
range tree for the rectangle Rx given by (10) and add d(x, zi) . The result is 
ei(x, Y) by Lemma 10. Set e(x, Y) = maxk

i=1
ei(x, Y).

Algorithm S is correct by the observation in Step S3 (based on Lemma 10) and 
Lemma 9.

Lemma 11  Algorithm S runs in time O
(
km log n + n2kB(n, k)

)
.

Proof  The first term accounts for Step S1. Using Lemma 2, we see that Steps S2 
and S3 take time O(|Y|k2 ⋅ B(|Y|, k)) and O(|X|2k ⋅ B(|Y|, k)) for each i ∈ {1,… , k} . 
Since k2 = O(2k) and both |Y| and |X| are at most n, both expressions are asymptoti-
cally dominated by the second term. 	�  ◻

4.3 � Parameterization by Vertex Cover Number

Graphs with small vertex cover number allow for a particularly simple application 
of the construction from Sect. 4.2, because the same small separator (namely, the 
vertex cover itself) separates every vertex from the rest of the graph.

A vertex cover is a vertex subset C of V(G) such that every edge in G has at least 
one endpoint in C. The smallest k for which a vertex cover of size k exists is the ver-
tex cover number of a graph, denoted vc(G) . The number of edges in such a graph is 
at most n ⋅ vc(G).

Proof of Theorem  1.1, distances  Set X = V(G) − C , Y = V(G) , and Z = C . Clearly, 
every vertex x is separated from all vertices by its neighbourhood N(x). Since C is a 
vertex cover, N(x) ⊆ C for all x ∉ C . Thus, Z separates X and Y. Note that we have 
e(x) = e(x, Y) , so it suffices to run algorithm S to compute all eccentricities. The run-
ning time is immediate from Lemma 11 with Z of size k ≤ vc(G) and m ≤ kn . From 
the eccentricities, the radius and diameter can be computed in linear time using their 
definition. 	�  ◻

4.4 � Parameterization by Treewidth

In the more general case, not all paths from x need to pass through the separator 
Z. Therefore we cannot determine e(x) from e(x, Y) alone, as we did in Sect. 4.3. 
Instead, since e(x) = max{e(x,X), e(x, Y)} , it remains to compute e(x, X). However, 
e(x, X) is entirely determined by the subgraph G[X] (once we add shortcuts inside 
Z), so we can handle this recursively. The necessary recursive decomposition is 
provided by a tree decomposition. We need the approximate treewidth construction 
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of Bodlaender et al. [6]. The analysis of the resulting recurrence for superconstant 
dimension follows from Abboud et al. [1].

We need a decomposition from [7]. Let k + 1 < n . A skew k-separator tree T of 
an n-vertex graph G is a binary tree such that each node t of T is associated with a 
vertex set Zt ⊆ V(G) such that

•	 |Zt| ≤ k,
•	 If Lt and Rt denote the vertices of G associated with the left and right subtrees of 

t, respectively, then Zt separates Lt and Rt and 

•	 T remains a skew k-separator even if edges between vertices of Zt are added.

It is known that such a tree can be found from a tree decomposition, and an approxi-
mate tree decomposition can be found in single-exponential time. We summarise 
these results in the following lemma:

Lemma 12  ([7, Lemma 3] with [6, Theorem 1]) For a given n-vertex input graph G, 
a skew (5tw(G) + 4)-separator tree can be computed in time n expO(tw(G)).

We are ready for the algorithm.

Algorithm E (Eccentricities). Given an undirected, connected graph G with non-
negative integer weights and a skew k-separator tree with root t, this algorithm com-
putes the eccentricity e(v) of every vertex v ∈ V(G) . We write Z = Zt , X = Lt ∪ Zt , 
and Y = Rt ∪ Zt . 

E1	� [Base case.] If n∕ ln n < 3k(k + 1) find all distances using Dijkstra’s algorithm. 
Terminate.

E2	� [Find e(x, Y)] Compute e(x, Y) for all x ∈ X using algorithm S.
E3	� [Add shortcuts.] For each pair z, z� ∈ Z , add the edge zz′ to G, weighted by 

d(z, z�) . Remove duplicate edges, retaining the shortest.
E4	� [Recurse on G[X] and combine.] Recursively compute the distances in G[X] 

using the left subtree of t as a skew k-separator tree. The result are eccentrici-
ties e(x, X) for each x ∈ X . Set e(x) = max{e(x,X), e(x, Y)}.

E5	� [Flip.] Repeat Steps E2–4 with the roles of X and Y exchanged.

Lemma 13  The running time of Algorithm E is O(n ⋅ B(n, k) ⋅ 2k log n).

Proof  Assume n ≥ 8 . Let T(n, d) denote the running time of Algorithm E.
The graph G has treewidth O(k), so it has O(nk) edges. Step E1 consists of n 

executions of Dijkstra’s algorithm with n bounded by O(k2 log k) . This takes time 
O(k5 log2 k) , which is bounded by O(2k) . Step E3 was analysed in Lemma 11 and 

(12)
n

k + 1
≤ |Lt ∪ Zt| ≤

nk

k + 1
,
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takes time O(n2kB(n, k)) . Accounting for the recursive calls in Step E4 for both X 
and Y using |Y| ≤ n − |X| + k , we arrive at the divide-and-conquer recurrence

for some non-decreasing function S satisfying S(n, k) = O
(
2kB(n, k)

)
. We would 

expect this recurrence to solve to roughly S(n, k) ⋅ n log n if the partition were per-
fectly balanced and k were constant, but the dependence on k is not clear, so we give 
a careful analysis.

The lemma is implied by the bound

which we will show by strong induction in n for all k. Write s = |X| and 
r = n − s + k . By induction, we can bound

From the bounds (12) on s we have s ≤ nk∕(k + 1) and 
r ≤ n − n∕(k + 1) + k = (nk∕(k + 1)) + k , so if we set

then both s ≤ t and r ≤ t . Thus, we can get rid of s and r in the last term of (14) as

Step E1 ensures k(k + 1) ≤ n∕(3 ln n) ≤
1

3
n , so we get

Using the bound ln y ≤ y − 1 for y > 0 , we have

Using this in (15), and then going back to (14), we have

where the last step uses k ln n ≤ n∕(3(k + 1)) , which is ensured by Step E1. Return-
ing to the recurrence, we can now verify

T(n, k) =

{
O(k5 log2 k) , if n∕ ln n < 4k(k + 1) ;

n ⋅ S(n, k) + T(|X|, k) + T(n − |X| + k, k) , otherwise,

(13)T(n, k) ≤ 3(k + 1) ⋅ S(n, k) ⋅ n ln n ,

(14)

T(s, k) + T(r, k)

3(k + 1)
≤ S(s, k) ⋅ s ln s + S(r, k) ⋅ r ln r ≤ S(n, k) ⋅ (s ln s + r ln r) .

t =
nk

k + 1
+ k ,

(15)
s ln s + r ln r ≤ s ln t + r ln t = s ln t + (n − s + k) ln t = n ln t + k ln t ≤ n ln t + k ln n .

t =
nk

k + 1
+

k(k + 1)

k + 1
≤ n ⋅

k +
1

3

k + 1
.

(16)ln t ≤ ln n + ln

(k +
1

3

k + 1

)
≤ ln n +

(k +
1

3

k + 1
− 1

)
= ln n −

2

3(k + 1)
.

T(s, k) + T(r, k)

3(k + 1) ⋅ S(n, k)
≤ n ln t + k ln n ≤ n ln n −

2n

3(k + 1)
+ k ln n ≤ n ln n −

n

3(k + 1)
,

T(n, k) = n ⋅ S(n, k) + T(r, k) + T(s, k) ≤ n ⋅ S(n, k) + n ⋅ S(n, k) ⋅ (3(k + 1) ln n − 1) ,
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which simplifies to (13). 	�  ◻

We can now establish Theorem 1:

Proof of Thm. 1.2, distances  To compute all eccentricities for a given graph, we find 
a k-skew separator for k = 5tw(G) + 4 using Lemma 12 in time n expO(tw(G)) . We 
then run Algorithm E, using Lemma 13 to bound the running time. From the eccen-
tricities, the radius and diameter can be computed in linear time using their defini-
tion. 	�  ◻

4.5 � Extension to Wiener Index

Algorithm E can be modified to compute the Wiener index, as described in [7, Sec. 4], 
completing the proof of Theorem 1. Instead of repeating those arguments, we content 
ourselves here with pointing out the necessary modifications in our presentation.

The orthogonal range queries for vertex x ∈ X now need to report the sum of dis-
tances to every y ∈ Y , rather than just the value of the maximum distance e(x,  Y). 
Such a query can be handled with our data structure and a more careful choice of 
monoid, but another technical issue appears. While the distance maxima satisfied 
e(x, Y) = max{e1(x, Y),… , ek(x, Y)} according to Lemma  9, no similar expression 
holds for distance sums. This is simply because there can be shortest x, y-paths via two 
different zi , and their contribution would lead to overcounting. The solution is to associ-
ate the distance d(x, y) with exactly one i ∈ {1,… , k} , namely the smallest i for which 
a shortest x, y-path passes through zi.

This leads to the following (somewhat laborious) construction. For x ∈ X , partition 
Y = Y1 ∪⋯ ∪ Yk into disjoint sets such that y ∈ Yi if and only if (i) there is a shortest 
x, y-path through zi and (ii) there is none through zj for j < i . Then define si(x, Y) as the 
sum of distances from x to Yi:

We observe that s1(x, Y) +⋯ + sk(x, Y) is the sum of distances from x to all vertices 
in Y.

To compute si(x, Y) , we modify the construction from Lemma 10 slightly. The coor-
dinates of py are as before. The rectangle Rx associated with x for i ∈ {1,… , k} now 
becomes [−∞, r1] ×⋯ × [−∞, rk] where

Following the proof of Lemma 10, the ‘ −1 ’ above for j < i ensures that py ∈ Rx now 
also requires

si(x, Y) =
∑

y∈Yi

d(x, yi) .

rj =

{
d(x, zj) − d(x, zi) − 1 , j < i ;

d(x, zj) − d(x, zi) , j ≥ i .

d(x, zi) + d(zi, y) < d(x, zj) + d(zj, y) (i < j) .
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In other words, x, y-paths through zj for j < i cannot be shortest paths, so we have 
avoided overcounting. The domain of the function f in (9) is changed to the monoid 
of positive integer tuples (a, b) with the operation (a, b)⊕ (a�, b�) = (a + a�, b + b�) 
with identity element (0,  0). The value associated with vertex py is changed to 
f (p(y)) = (1, d(zi, y)).

It then holds that the query for Rx will return a tuple (N, S) where

so that si(x, Y) can be computed as

These changes suffice to establish the Wiener index part of Theorem 1.1, finishing 
the argument for vertex cover.

To extend these results to the recursive construction for treewidth from Sect. 4.4 
now only requires some delicacy regarding how sums of distances cross the separa-
tor. This part is carefully argued in [7, Lemma 8], and there is no reason to repeat it 
here. With the these changes, Theorem 1.2 is established.
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Unweighted Graphs with Small Vertex Cover

Eccentricities and Wiener Index

In a graph with vertex cover C, all paths from v ∉ C have their second vertex in C. 
If the graph is unweighted, two vertices v,w ∉ C with N(v) = N(w) have the same 
distances to the rest of the graph. Since N(v) ⊆ C it suffices to consider all 2k many 
subsets of C. The details are given in Algorithm U.

Algorithm U (Unweighted graph). Given a connected, unweighted, undirected 
graph G and a vertex cover C, this algorithm computes the eccentricity of each ver-
tex and the Wiener index.

(17)N = |Yi| and S =
∑

y∈Yi

d(zi, y)

si(x, Y) = N ⋅ d(x, zi) + S .

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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U1	� [Initialise.] Set wien(G) = 0 . Insert each v ∉ C into a dictionary D indexed by 
N(v).

U2	� [Distances from C.] For each v ∈ C , perform a breadth-first search from v in 
G, computing d(v,  u) for all u ∈ V(G) . Let e(v) = maxu d(v, u) and increase 
wien(G) by 1

2

∑
u d(v, u).

U3	� [Distances from V(G) − C. ] Choose any v ∈ D . Perform a breadth-first 
search from v in G, computing d(v, u) for all u ∈ V(G) . For each w ∈ D with 
N(w) = N(v) (including v itself), let e(w) = maxu d(v, u) , increase wien(G) by 
1

2

∑
u d(v, u) , and remove w from D. Repeat step U3 until D is empty.

Theorem 14  The eccentricities and Wiener index of an unweighted, undirected, con-
nected n-vertex graph and vertex cover number k can be computed in time O(nk2k).

Proof  It is well known that a minimum vertex cover can be computed in the given 
time bound [11].

For the running time of Algorithm U, we already observed that for each v ∉ C 
the neighbourhood N(v) is entirely contained in C. Thus, there are only 2k different 
neighbourhoods used as an index to D and we can bound the number of BFS com-
putations in Step U3 by 2k . (Step U2 incurs another k such computations.) The num-
ber of edges in a graph with vertex cover number k is O(nk). Assuming constant-
time dictionary operations, the running time of the algorithm is therefore O(nk2k).

To see correctness, we need to argue that the distances computed for w ∈ D in 
Step 4 are correct. First, to argue d(v, z) = d(w, z) for all z ∉ {v,w} consider short-
est paths P = vv2 ⋯ z and Q = ww2 ⋯ z , possibly with v2 = z or w2 = z . The suffix 
P� = v2 ⋯ z is itself a shortest path, of length l(P) − 1 . Since N(v) = N(w) , the path 
wP′ exists and is a shortest w, z-path as well, and therefore of length l(Q). We con-
clude that l(Q) = 1 + l(P�) = 1 + l(P) − 1 = l(P).

It is not true that d(v, z) = d(w, z) for z ∈ {v,w} . Instead, we have d(v,w) = d(w, v) 
(both equal 2) and d(v, v) = d(w,w) (both equal 0). Thus, the contributions from v 
and w to W are the same, and the sets d(v, ⋅) and d(w, ⋅) have the same maxima. 	�  ◻

One way of implementing the neighbourhood-indexed dictionary within the 
required time bounds (and without using randomised hashing) is as trie of height k 
whose 01-labelled root-leaf paths describe (the binary representation of) subsets of 
C; at the leaves we store vertices in a linked list. Insertion requires k operations and 
happens n times in U1. The iteration over all vertices in U3 can be performed by tra-
versing all the lists at all the leaves, in constant time per vertex. This establishes the 
second part of Theorem 4.

Faster Eccentricities

Vertex cover number is an extremely well studied parameter, so it makes sense to 
look for further algorithmic improvements. The best current algorithm for find-
ing a vertex cover runs in time O(nk + 1.274k) [10], so the bound in Theorem 14 
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is dominated by the distance computation. Thus it may make sense to look for dis-
tance computation algorithms with running times of the form nk + g(k) rather than 
m ⋅ g(k) . We now present such an algorithm for eccentricities. (It does not work for 
the Wiener index.)

First, we observe that if C is a vertex cover, then no path can contain consecutive 
vertices from V(G) − C . Thus, we can modify the graph by inserting length-2 short-
cuts between nonadjacent vertices in C that share a neighbour without changing the 
pairwise distances in the graph. We can now run Dijkstra restricted to the subgraph 
G[C ∪ {v}] , noting that the second layer of the shortest path tree is contained in N(v), 
which is contained in C. Thus, the number of such computations that are different is 
bounded by 2k , the number of neighbourhoods. The eccentricity e(v) can be derived 
from the shortest path tree as follows. Let E(v) denote the eccentric vertices from v in 
C, i.e., the vertices belonging to C at distance maxu∈C d(v, u) . Note that E(v) contains 
exactly the vertices at the deepest layer of the shortest path tree from v in G[C ∪ {v}] . 
The only vertices u in G that can be farther away from v than E(v) must have their entire 
neighbourhood N(u) contained in E(v). See Fig. 4.

The only confusion arises if the only such vertex is v itself. To handle these details 
we need to determine, for each cover subset S ⊆ C , if the number of u with N(u) ⊆ S is 
0, 1, or more. This can be solved by a fast zeta transform in time 2kk , see [4], or more 
directly as follows. For each S ⊆ C , let

(The third value is an arbitrary placeholder.) Then h(S) can be computed for all 
S ⊆ C in a bottom-up fashion.

The details are given in the following algorithm.

Algorithm F (Faster Eccentricities Parameterized by Vertex Cover). Given 
a connected, unweighted, undirected graph G and a vertex cover C, this algorithm 
computes the eccentricity of each vertex. 

F1	� [Initialise.] Insert each v ∈ V(G) − C into a dictionary D indexed by N(v). Set 
h(S) = � for all S ⊆ C.

F2	� [Compute h.] For each u ∉ C , set h(N(u)) = {u} if h(N(u)) = � , otherwise 
h(N(u)) = C . For each nonempty subset S ⊆ C in increasing order of size, 

h(S) =

⎧
⎪
⎨
⎪⎩

{w} , if N(w) ⊆ S for exactly one w ∉ C ;

� , if there is no w ∉ C with N(w) ⊆ S ;

C , otherwise .

Fig. 4   The distance from v to u 
is 3 and N(u) ⊆ E(v)
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compute W = h(S) ∪
⋃

w∈S h(S − {w}) . If |W| > 1 then set h(S) = C . Else set 
h(S) = W.

F3	� [Shortcuts.] For each pair of covering vertices u, v ∈ C , if uv ∉ E(G) but u and 
v share a neighbour outside C, add the edge uv to E(G) with length 2.

F4	� [Eccentricities from C.] For each v ∈ C , compute shortest distances in G[C] 
from v. Set d = maxu∈C d(v, u) and let E(v) denote the vertices in C at distance 
d. Let 

F5	� [Eccentricities from V(G) − C .] For each v ∈ D , compute shortest distances in 
G[C ∪ {v}] from v. Set d = maxw∈C d(v,w) and let E(v) denote the vertices in C 
at distance d. For each u ∈ D (including v itself) with N(u) = N(v) [and there-
fore E(u) = E(v) ] let 

 and remove u from D.

Theorem 15  The eccentricities of an unweighted, undirected, connected graph with 
n vertices and vertex cover number k can be computed in time O(nk + 2kk2).

Proof  If G has only one or two vertices, we calculate all distances naïvely. Other-
wise, we run Algorithm F.

Step F1 needs to visit every of the nk edges. The first part of Step F2 visits at 
most n − k vertices and spends time O(k) at each. There are 2k subsets of C, bound-
ing the running time of the second part of Step F2 to O(2kk) . Step F3 can be per-
formed in time O(2kk2) (instead of the obvious O(nk2) ) by iterating over w ∈ D and 
all pairs u, v ∈ N(w) . The shortest path computations in Steps F4 and F5 take time 
O(k2) each using Dijkstra’s algorithm, for a total of O(2kk2) . The dictionary contains 
at most n values, so the total time of Step F4 and F5 is O(n + 2kk2) , assuming that 
the dictionary allows iteration over the vertices u ∈ D with N(u) = N(v) with con-
stant overhead.

To see correctness, assume that we already performed the shortcut operation in 
Step F3. We argue for correctness of Step F5, Step F4 is similar. Let u ∈ V(G) and 
consider an eccentric vertex z and a shortest u, z-path P. We want to show that the 
algorithm sets e(u) to the length of P.

First assume there exists such an eccentric vertex z belonging to C. Then 
z ∈ E(u) . Moreover, there can be no vertex w ≠ u with N(w) ⊆ E(u) , because other-
wise w would have a shortest path from u through E(u) and therefore be farther away 
than z. Thus, Step F5 picks the second branch and correctly sets e(u) to d = d(u, z).

Otherwise, none of the eccentric vertices z belong to C. There are a number of 
cases. If P is just the edge uz then every vertex in G has distance at most 1 to u. If G 
is a star then C = N(z) = E(u) = {u} and d = 0 . Moreover, some third vertex w has 
its neighbourhood (namely, {u} ) completely contained in E(u) so Step F5 correctly 

e(v) =

{
d + 1 , if h(E(v)) − {v} ≠ � , [equivalently,E(v) ⊇ N(w) for some w ≠ v] ;

d , otherwise .

e(u) =

{
d + 1 , if h(E(u)) − {u} ≠ � , [equivalently,E(u) ⊇ N(w) for some w ≠ u] ;

d , otherwise ,
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sets e(u) = d + 1 = 1 . If P = uz and G is not a star then it must contain a triangle, so 
|C| > 1 (possibly containing u) and the vertices in E(u) (which could be many) are 
all at distance 1. Moreover, there cannot exist w ≠ u with N(w) ⊆ E(u) because then 
there would be a shortest u, w-path of length 2. Thus, Step F5 correctly sets e(u) to 
d = 1.

The remaining case is when the u, z-path P with z ∉ C contains at least 3 ver-
tices. Let w denote the penultimate vertex, so the P is of the form u⋯wz . Since 
z ∉ C , we have w ∈ C . The distance from u to w is therefore d = maxw∈C d(u,w) . 
It remains to argue that the assignment to e(u) in Step F5 picks the second 
branch. Consider the neighbourhood N(z). Every neighbour x of z must belong to 
C. Moreover, its distance d(u, x) is d, because if it were longer then w would not 
belong to E(u), if it where shorter then there would be a shorter path u⋯ xz than 
P. Therefore x ∈ E(u) . Thus, we have established that N(z) ⊆ E(u) , so we con-
clude that Step F5 correctly sets e(u) to d + 1 . 	�  ◻

This establishes the first part of Theorem 4.
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