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Abstract
We investigate the problem #������(�) of counting all induced subgraphs of size k 
in a graph G that satisfy a given property � . This continues the work of Jerrum and 
Meeks who proved the problem to be #W[1]-hard for some families of properties 
which include (dis)connectedness  [JCSS  15] and even- or oddness of the number 
of edges  [Combinatorica  17]. Using the recent framework of graph motif param-
eters due to Curticapean, Dell and Marx [STOC 17], we discover that for monotone 
properties � , the problem #������(�) is hard for #W[1] if the reduced Euler char-
acteristic of the associated simplicial (graph) complex of � is non-zero. This obser-
vation links #������(�) to Karp’s famous Evasiveness Conjecture, as every graph 
complex with non-vanishing reduced Euler characteristic is known to be evasive. 
Applying tools from the “topological approach to evasiveness” which was intro-
duced in the seminal paper of Khan, Saks and Sturtevant [FOCS 83], we prove that 
#������(�) is #W[1]-hard for every monotone property � that does not hold on the 
Hamilton cycle as well as for some monotone properties that hold on the Hamilton 
cycle such as being triangle-free or not k-edge-connected for k > 2 . Moreover, we 
show that for those properties #������(�) can not be solved in time f (k) ⋅ no(k) for 
any computable function f unless the Exponential Time Hypothesis (ETH) fails. In 
the final part of the paper, we investigate non-monotone properties and prove that 
#������(�) is #W[1]-hard if � is any non-trivial modularity constraint on the num-
ber of edges with respect to some prime q or if � enforces the presence of a fixed 
isolated subgraph.
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1  Introduction

In their work about the parameterized complexity of counting problems [11] Flum 
and Grohe introduced the parameterized analogue of the theory of computational 
counting as layed out by Valiant in his seminal paper about the complexity of com-
puting the permanent [29]. Since then parameterized counting has evolved into a 
well-studied subfield of parameterized complexity theory. In particular, there has 
been remarkable progress in the classification of problems that require to count 
small structures in large graphs. It turned out that many families of such counting 
problems allow so-called dichotomy results, that is, every problem in the family is 
either fixed-parameter tractable or hard for the class #W[1]—the counting equiva-
lent of W[1] . One result of that kind is the dichotomy for counting homomorphisms 
[10, 13]. Here one is given a graph H from a class of graphs H and an arbitrary 
graph G and the task is to compute the number of homomorphisms from H to G. 
When parameterized by |H| this problem is fixed-parameter tractable if there exists 
a constant upper bound on the treewidth of graphs in H and #W[1]-hard otherwise. 
Similar results have been shown for the problems of counting subgraph embeddings 
[9], induced subgraphs [6] and locally injective homomorphisms [26]. As results 
like Ladner’s theorem (see e.g. [1, 19]) rule out such dichotomies in the general case 
one might ask why all of the above problems indeed do allow such complexity clas-
sifications. The answer to that question was given very recently by Curticapean, Dell 
and Marx [8] who proved that, in some sense, all of those problems are the same. To 
this end, they defined the problem of computing linear combinations of homomor-
phisms which they called graph motif parameters. Here one is given a graph G and 
a function a of finite support that maps graphs to rational numbers and the task is to 
compute

where the sum is over all (unlabeled) simple graphs and #���(H,G) denotes the 
number of homomorphisms from H to G. A result of Lovász (see Chapt. 5 in [20]) 
implies that the number of subgraph embeddings #���(H,G) as well as the number 
of induced subgraphs #������(H,G) can be expressed as a linear combination of 
homomorphisms. In case of embeddings the result states that

where the sum is over the partition lattice of the vertices of H, � is the Möbius func-
tion over that lattice and H∕� is obtained from H by identifying vertices along � . 
Now, intuitively, the main result of Curticapean, Dell and Marx states that comput-
ing a linear combination of homomorphisms is precisely as hard as computing the 
hardest term in the linear combination. Together with the dichotomy for counting 
homomorphisms this implies that every problem expressible as a linear combination 
of homomorphisms is either fixed-parameter tractable or #W[1]-hard.

(1)
∑
H

a(H) ⋅ #���(H,G),

(2)#���(H,G) =
∑
�≥�

�(�, �) ⋅ #���(H∕�,G),



2269

1 3

Algorithmica (2020) 82:2267–2291	

The purpose of this work is a thorough investigation of the problem of counting 
induced subgraphs through the lense of the framework of graph motif parameters. 
Chen, Thurley and Weyer [6] proved that the problem #������(H) of, given a graph 
H ∈ H and an arbitrary graph G, computing #������(H,G) is fixed-parameter trac-
table when parameterized by |H| if and only if H is finite and #W[1]-hard otherwise. 
While this result resolves the parameterized complexity of problems such as com-
puting the number of induced cycles of length k,1 it is not applicable to problems 
such as computing the number of connected induced subgraphs of size k. For this 
reason, Jerrum and Meeks [14–16, 22] introduced and studied the following prob-
lem: Let � be a (computable) graph property, then the problem #������(�) asks, 
given a graph G and a natural number k, to count all induced subgraphs of size k in 
G that satisfy �.2 In other words, the goal is to compute

where �k is the set of all (unlabeled) graphs with k vertices that satisfy � . The gen-
erality of #������(�) allows to count almost arbitrary substructures in graphs, sub-
suming lots of parameterized counting problems that have been studied before, and 
hence the problem deserves a thorough complexity analysis with respect to the prop-
erty � . Jerrum and Meeks proved it to be #W[1]-hard for the property of connectiv-
ity [14], for the property of having an even (or odd) number of edges [16] as well as 
for some other properties (see Sect. 1.2). As noted in [8], the theory of graph motif 
parameters immediately implies that for every property � , the problem #������(�) 
is either fixed-parameter tractable or #W[1]-hard. However, for a concrete � it might 
be highly non-trivial to prove for which graphs H the term #���(H,G) is contained 
with a non-zero coefficient in the equivalent expression as linear combination of 
homomorphisms. Unfortunately, this is precisely what needs to be done to find out 
whether #������(�) is fixed-parameter tractable or #W[1]-hard. In our investigation 
we will focus on the coefficient of #���(Kk,G) , where Kk is the complete graph on 
k vertices. We will see that for monotone properties, non-zeroness of this coefficient 
is sufficient for the property to be evasive.

1.1 � Results and Techniques

The framework of graph motif parameters [8] implies that for every property � and 
natural number k, there exists a function a from graphs to rationals with finite sup-
port such that for all graphs G it holds that

(3)
∑
H∈�k

#������(H,G),

1  This problem can be equivalently expressed as #������(C) , where C is the class of all cycles.
2  Strictly speaking, #������(�) is the unlabeled version of p-#INDUCED SUBGRAPH WITH 
PROPERTY(�) , both of which have been introduced in [14]. However, as Jerrum and Meeks point out, 
those problems are equivalent for graph properties that are invariant under relabeling of vertices (see 
Section 1.3.1 in [14]), which is true for all properties we are concerned with in this work.
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Our most important observation is concerned with the coefficient of the complete 
graph.

Theorem  1  (Intuitive version) Let � , k and a be as above. Then it holds that 
a(Kk) = 0 if and only if 

∑
A∈��

k

(−1)#A = 0 , where ��

k
 is the set of all edge-subsets A 

of the labeled complete graph with k vertices such that � holds for the graph induced 
by A.

It turns out that for monotone properties, i.e., properties that are closed under the 
removal of edges, the term 

∑
A∈��

k

(−1)#A is equal to the reduced Euler characteristic 
𝜒̂ of the simplicial graph complex of �k . Recall that a simplicial complex is a set of 
sets that is closed under taking non-empty subsets and a simplicial graph complex is 
a simplicial complex whose elements are subsets of the edges of the labeled com-
plete graph. We will make this formal in Sect. 2. Applying Theorem 1 to monotone 
properties we hence obtain the following.

Corollary 2  (Intuitive version) Let � , k and a be as above and assume furthermore 
that � is monotone. Then |k! ⋅ a(Kk)| = ||𝜒̂(𝛥(𝛷k))

|| where �(�k) is the associated 
simplical graph complex of �k.

As computing the number of cliques of size k is #W[1]-complete [11] and com-
puting a linear combination of homomorphisms is precisely as hard as computing its 
hardest term [8], Corollary 2 immediately resolves the complexity of #������(�) 
whenever � is monotone and the reduced Euler characteristic of �(�k) is known to 
be non-zero for infinitely many k. Moreover, as the reduction in [8] is tight, we also 
obtain a matching lower bound assuming the Exponential Time Hypothesis (ETH) if 
the set of such k is dense. Here an infinite set K of natural numbers is dense if there 
exists a constant c > 0 such that for all but finitely many k ∈ ℕ there exists k� ∈ K 
such that k ≤ k′ ≤ c ⋅ k.

Corollary 3  (Intuitive version) Let � be a monotone graph property such that 
𝜒̂(𝛥(𝛷k)) ≠ 0 for infinitely many k. Then the problem #������(�) is #W[1]-hard. If 
additionally the set of all k such that 𝜒̂(𝛥(𝛷k)) ≠ 0 is dense, it can not be solved in 
time f (k) ⋅ no(k) for any computable function f unless ETH fails.

The (reduced) Euler characteristic is well-understood for many graph complexes. 
For example, Chapt. 10.5 in the book of Jonsson [17] provides a large list of graph 
properties, each of whose reduced Euler characteristics are non-zero infinitely often. 
For those properties Corollary 3 is hence applicable.

The study of the (reduced) Euler characteristic is, among others, motivated by 
Karp’s famous evasiveness conjecture, stating that every non-trivial monotone graph 
property is evasive. A property �k on graphs with k vertices is evasive if every 

(4)
∑
H∈�k

#������(H,G) =
∑
H

a(H) ⋅ #���(H,G).
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decision-tree algorithm that branches on the presence or absence of edges of a given 
graph G needs to perform 

(
k

2

)
 branches in the worst case to correctly decide whether 

�k holds on G. We refer the reader to Miller’s survey [23] for a detailed introduc-
tion. While the conjecture is still unresolved, there has been a major breakthrough 
due to Khan, Saks and Sturtevant [18] who proved the conjecture to be true when-
ever k is a prime power. Their paper “A Topological Approach to Evasiveness” was, 
as the name suggests, the first one to use topological tools such as fixed-point com-
plexes under group operations to prove evasiveness of a given graph complex. One 
of their results reads as follows.3

Theorem 4  ([18]) A non-trivial monotone graph property �k is evasive if

Unfortunately, the converse of this theorem does not hold. A counterexample is 
given in Chapt. 10.6 in Jonsson’s book [17]. Nevertheless it turns out that some tools 
of the topological approach to evasiveness suit as well for a topological approach to 
#W[1]-hardness of #������(�) . The most important ingredient in our proofs is a 
theorem that goes back to Smith [28] (see also [24] and Chapt. 3 in [2]), intuitively 
stating that, given a simplicial complex � and a p-power group �  for some prime p 
that operates on the ground set of � in a way that leaves the complex stable, it holds 
that

where �� is the fixed-point complex of � with respect to �  . Again, this will be made 
formal in Sect. 2. Applying this theorem to a rather simple group, we will be able to 
prove our main result which reads as follows:

Theorem  5  Let � be a non-trivial monotone graph property. Then the problem 
#������(�) is #W[1]-hard and, assuming ETH, can not be solved in time f (k) ⋅ no(k) 
for any computable function f if at least one of the following conditions is true

1.	 � is false for odd cycles.
2.	 � is true for odd anti-holes.
3.	 There exists c ∈ ℕ such that for all H it holds that �(H) = 1 if and only if H is not 

c-edge-connected.
4.	 There exists a graph F such that for all H it holds that �(H) = 1 if and only if 

there is no homomorphism from F to H.

𝜒̂(𝛥(𝛷k)) ≠ 0.

(5)𝜒̂(𝛥) ≡ 𝜒̂(𝛥𝛤 ) mod p,

3  In fact, Khan, Saks and Sturtevant show that any non-evasive complex is collapsible. However, every 
collapsible complex has a reduced Euler characteristic of zero (see e.g. [21]). Hence the contraposition 
implies the theorem as stated.
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We remark that Rivest and Vuillemin [25] implicitly proved that the reduced 
Euler characteristic of a graph complex does not vanish if the first condition is true. 
Furthermore we note that (non-)triviality of a monotone property needs to be defined 
with some care to exclude properties that depend only on the number of vertices of a 
graph. Details are given in Sect. 4. Examples of properties that satisfy the first con-
dition are the ones of being bipartite, cycle-free, disconnected and non-hamiltonian. 
One example for the second condition is the property of having a chromatic number 
smaller or equal than half of the size of the graph (rounded up) and the fourth condi-
tion includes the properties of exclusion of a fixed complete graph as a subgraph.

Finally, we investigate #������(�) for two families of non-monotone properties. 
For the first one, let q be a prime and Q be a subset of {0,… , q − 1} . Then the prop-
erty ���[q,Q] holds on a graph H if and only if (#E(H) ��� q) is contained in Q . 
For the second one, let F be a connected graph. Then the property ���[F] holds on a 
graph H if and only if H contains an isolated subgraph that is isomorphic to F.

Theorem 6  For all primes q, non-trivial subsets Q of {0,… , q − 1} and connected 
graphs F, the problems #������(���[q,Q]) and #������(���[F]) are #W[1]-hard 
and can not be solved in time f (k) ⋅ no(k) for any computable function f, unless ETH 
fails.

1.2 � Related Work

Jerrum and Meeks introduced and studied the problem #������(�) for the following 
properties. In [14] they prove the problem to be #W[1]-hard if � is the property of 
being connected, which immediately follows from Theorem 5 as #������(�) and 
#������(¬�) are equivalent4 and the property of being disconnected is monotone 
and false for every cycle. In [16] hardness is established for the property of having 
an even (or odd) number of edges, which is subsumed by Theorem 6. Indeed, the 
case of q = 2 follows already from Theorem 1 as every term in the sum 

∑
A∈��

k

(−1)#A 
will have the same sign. In [15] Jerrum and Meeks prove the problem to be #W[1]-
hard whenever the edge-density of graphs in �k grows asymptotically slower than k2 
and in [22] Meeks shows that whenever � is co-monotone, i.e., ¬� is monotone, and 
the set of (edge-)minimal elements of � has unbounded treewidth, the problem is 
hard as well.

Those latter results are independent from ours in the sense that ours do not imply 
theirs and vice versa. One example of a property whose hardness does not follow 
from the results of Jerrum and Meeks is bipartiteness: The edge-densities of both, 
the properties of being bipartite and not bipartite grow asymptotically as fast as k2 
and the edge-minimal non-bipartite graphs are odd cycles, hence having treewidth 
2. However hardness for the property of being bipartite follows from the first condi-
tion of Theorem 5 as odd cycles are not bipartite. Moreover, we remark that Meek’s 

4  We just need to substract one from 
(
n

k

)
 to get the other.
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reduction in [22] uses the Excluded Grid Theorem and hence does not imply a tight 
lower bound under ETH.

The remainder of the paper is structured as follows. In Sect. 2 we introduce the 
necessary background in parameterized (counting) complexity, graph theory as well 
as in the theory of transformation groups and simplicial complexes. In Sect. 3 we 
give a formal introduction to graph motif parameters and prove Theorem  1. This 
is followed by the analysis of monotone properties and the proof of Theorem 5 in 
Sect. 4. In particular, we will take a close look at the fixed-point set of the group 
operation on labeled graphs that induces a cyclic shift on the vertices. Finally we 
discuss non-monotone properties and prove Theorem 6 in Sect. 5.

2 � Preliminaries

First we will introduce some basic notions. Given a finite set S, we write #S for the 
cardinality of S. We say that an infinite set K of natural numbers is dense if there 
exists a constant c > 0 such that for all but finitely many k ∈ ℕ there exists k� ∈ K 
such that k ≤ k′ ≤ c ⋅ k . Given a function a from a (not necessarily finite) set S to 
rational numbers, the support of a is the set of elements s ∈ S such that a(s) ≠ 0 . We 
write ����(a) for the support of a. Given a natural number k, we write [k] for the set 
{0,… , k − 1} . Given a finite group �  of order ps for some prime p and natural num-
ber s, we say that �  is a p-power group.

2.1 � Graph Theory

In this work all graphs are considered to be undirected, simple and to not contain 
self-loops. Given a graph G we write V(G) for the vertices and E(G) for the edges 
of G. We denote the complete graph on � vertices as K

�
 . A labeled graph is a graph 

G with a bijective labeling � ∶ V(G) → [#V(G)] of the vertices and we will sloppily 
identify vertices with their labels. A subgraph of G is a graph obtained from G by 
deleting vertices (including incident edges) and/or edges. Given a subset S ⊆ V(G) , 
the induced subgraph G[S] is the graph with vertices S and edges E(G) ∩ S2.

A homomorphism from a graph H to a graph G is a function � ∶ V(H) → V(G) 
that is edge-preserving, i.e. for every edge {u, v} ∈ E(H) it holds that 
{�(u),�(v)} ∈ E(G) . We write ���(H,G) for the set of all homomorphisms from 
H to G. A homomorphism � is called an embedding if � is injective. We write 
���(H,G) for the set of all embeddings from H to G. An isomorphism from a graph 
H to a graph G is a bijective homomorphism. We say that H and G are isomorphic, 
denoted by H ≅ G , if such an isomorphism exists and we denote G as the set of all 
(isomorphism types of) graphs. An automorphism of a graph H is an isomorphism 
from H to H. We write ���(H) for the set of all automorphisms of H. An embedding 
� from H to G is called a strong embedding if for all vertices u, v ∈ V(H) it holds 
that {u, v} ∈ E(H) ⇔ {�(u),�(v)} ∈ E(G) . We write ������(H,G) for the set of all 
strong embeddings from H to G.
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Given graphs H and G, we write ���(H,G) for the set of all subgraphs of G that 
are isomorphic to H and ������(H,G) for the set of all induced subgraphs of G that 
are isomorphic to H.

Fact 7  For all graphs H and G it holds that

A graph property � is a function from graphs to {0, 1} with the additional con-
straint that �(G) = �(G�) whenever G and G′ are isomorphic. We say that � holds 
on G if �(G) = 1 and we are not going to distinguish between � and the set of 
graphs for which � holds as this will be clear from the context. We write �k for 
the set of all (isomorphism types of) graphs with k vertices on which � holds. For 
technical reasons we define ��

k
 to be the set of all edge-subsets A of the labeled com-

plete graph with k vertices such that � holds on the graph with the same vertices 
and edges A. A graph property is called monotone if it is closed under the removal 
of edges, that is, if G′ is obtained from G by removing edges and � holds for G, 
then � holds for G′ as well. A property is called co-monotone if its complement is 
monotone.5

2.2 � Transformation Groups and Simplical (Graph) Complexes

Let � be a finite set. A simplicial complex over the ground set � is a set � of 
non-empty subsets of � such that whenever a set A is contained in � and A′ is a 
non-empty subset of A, then A′ is contained in � as well. An element A of � is 
called a simplex and the dimension of A, denoted as ���(A) , is defined to be 
#A − 1 . The Euler characteristic � of a simplical complex � is defined to be 
�(�) ∶=

∑
i≥0(−1)

i
⋅ #{A ∈ � � ���(A) = i} and the reduced Euler characteristic of 

� is defined to be 𝜒̂(𝛥) ∶= 1 − 𝜒(𝛥).

Fact 8  𝜒̂(𝛥) =
∑

i≥0(−1)
i
⋅ #{A ∈ 𝛥 ∪ {�} � #A = i}.

Given a simplicial complex � and a finite group �  that operates on the ground 
set � of � , we say that � is a � -simplicial complex if the induced action of �  
on subsets of � preserves � . More precisely, if A ∈ � and g ∈ �  then the set 
g ⊳ A ∶= {g ⊳ a | a ∈ A} is contained in � as well. If this is the case we can define 
the fixed-point complex �� as follows. Let O1,… ,Ok be the orbits of � with respect 
to �  . Then

#���(H,G) = #���(H,G) ⋅ #���(H), and

#������(H,G) = #������(H,G) ⋅ #���(H).

5  We remark that in some literature, e.g. [22, 25], the notions of monotonicity and co-monotonicity are 
reversed.
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The following theorem, which is due to Smith [28] (see also Chapt.  3 in [2] and 
[24]), will be of crucial importance in Sect. 4.

Theorem  9  Let �  be a group of order ps for some prime p and natural number 
s and let � be a � -simplicial complex. Then �(�) ≡ �(�� ) mod p and hence 
𝜒̂(𝛥) ≡ 𝜒̂(𝛥𝛤 ) mod p.

Now let � be a monotone graph property. Then ��

k
⧵{�} is a simplicial com-

plex, called the graph complex of �k . The ground set is the set of all edges of 
the complete labeled graph Kk on k vertices and we emphasize ��

k
⧵{�} being a 

simplicial complex for monotone properties by denoting it as �(�k) . If �  is any 
permutation group on the set [k] then �  induces a group operation on the ground 
set of �k , i.e. the edges of the labeled complete graph of size k, by relabeling 
the vertices according to the group element. In particular, �(�k) is a � -simplicial 
complex as �k is invariant under relabeling of vertices. We write �� (�k) for the 
fixed-point complex �(�k)

�  under this operation.

2.3 � Parameterized (Counting) Complexity

We will follow the definitions of Chapt. 14 of the textbook of Flum and Grohe 
[12]. A parameterized counting problem is a function F ∶ {0, 1}∗ → ℕ together 
with a computable parameterization � ∶ {0, 1}∗ → ℕ . (F, �) is called fixed-param-
eter tractable (FPT) if there exists a deterministic algorithm � and a comput-
able function f such that � computes F in time f (�(x)) ⋅ |x|O(1) for any input x. 
Given two parameterized counting problems (F, �) and (F�, ��) , a parameterized 
Turing reduction from (F, �) to (F�, ��) is an FPT algorithm w.r.t. � that has oracle 
access to F′ and that on input x computes F(x) with the additional restriction that 
there exists a computable function g such that for any oracle query y it holds that 
�
�(y) ≤ g(�(x)) . We write (F, �) ≤T

P
(F�, ��).

The parameterized counting problem #������ asks, given a graph G and a natu-
ral number k, to compute the number of complete subgraphs of size k in G and 
the problem is parameterized by k. The class #W[1] contains all problems (F, �) 
such that (F, �) ≤T

P
#������ holds. Given a recursively enumerable class of graphs 

H the problems #���(H) , #���(H) , #���(H) , #������(H) and #������(H) 
ask, given a graph H ∈ H and an arbitrary (unlabeled) graph  G, to compute 
#���(H,G) , #���(H,G) , #���(H,G) , #������(H,G) and #������(H,G) , respec-
tively. All problems are parameterized by |H|. As stated in the introduction, there 
are dichotomy results for each of the aforementioned problems [6, 9, 10, 13]. We 
emphasize on the following, which is crucial for the framework of graph motif 
parameters.

𝛥
𝛤 ∶=

{
S ⊆ {1,… , k}

|||| S ≠ � ∧
⋃
i∈S

Oi ∈ 𝛥

}
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Theorem 10  ([10, 13]) The problem #���(H) is fixed-parameter tractable if there 
exists b ∈ ℕ such that the treewidth6 of every graph in H is bounded by b. Other-
wise, the problem is #W[1]-hard.

In this work we deal with a generalization of #������(H) . Let � be a computable 
graph property. The problem #������(�) asks, given a graph G and a parameter 
k ∈ ℕ to compute

3 � Graph Motif Parameters

In [8] Curticapean, Dell and Marx generalized the problem #���(H) to linear com-
binations, called graph motif parameters. To this end, let A be a recursively enu-
merable set of functions a ∶ G → ℚ such that ����(a) is finite. Then the problem 
#���(A) asks, given a ∈ A and a graph G, to compute 

∑
H∈G a(H) ⋅ #���(H,G) . 

The parameter is the description length of a, denoted by |a|. Their main result states 
that computing a linear combination of homomorphisms is as hard as computing all 
terms with non-zero coefficients:

Theorem 11  ([8]) There exists a deterministic algorithm that, on input a function 
a ∶ G → ℚ with finite support, a graph F ∈ ����(a) and a graph G and given oracle 
access to the function G ↦

∑
H∈G a(H) ⋅ #𝖧𝗈𝗆(H,G) , computes #���(F,G) in time 

g(|a|) ⋅ #V(G)O(1) and additionally satisfies that the number of vertices of every graph 
G′ for which the oracle is queried is of size bounded by maxH∈����(a) #V(H) ⋅ #V(G).

Using this result, Curticapean, Dell and Marx proved that the problem #���(A) 
is fixed-parameter tractable if there is a constant upper bound on the treewidth of 
all graphs that occur in the support of a function a ∈ A , and #W[1]-hard other-
wise. After that they showed that all of the problems #���(H) , #������(H) , ...are 
expressible as linear combinations of homomorphisms, immediately implying the 
existence of dichotomy results for those problems. However, establishing a concrete 
criterion for fixed-parameter tractability requires to find out which graphs are con-
tained in the support of a function a when the problem is translated to a linear com-
bination of homomorphisms, and this can be highly non-trivial.

In what follows, we will establish a concrete criterion for properties � such that 
the coefficient of Kk is non-zero when the function

∑
H∈�k

#������(H,G).

6  We remark that the graph parameter of treewidth is not used explicitely in this work. Hence we refer 
the reader e.g. to Chapt. 11 in [12].
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is translated to a linear combination of homomorphisms. This is motivated by the 
fact that, in this case, Theorem 11 allows us to compute the number #���(Kk,G) 
which is equal to k! times the number of cliques of size k in G. As #������ can not 
be solved in time f (k) ⋅ #V(G)o(k) for any computable function f under the Exponen-
tial Time Hypothesis [4, 5], we will not only obtain #W[1]-hardness but also a tight 
lower bound under the lense of fine-grained complexity theory.

Theorem 12  (Theorem 1 restated) Let � be a graph property, let k be a non-zero 
natural number and let a ∶ G → ℚ be the function such that for all graphs G the fol-
lowing is true

Then �k! ⋅ a(Kk)� = �∑A∈��

k

(−1)#A�.

Proof  Using the principle of inclusion-exclusion we can express the number of 
strong embeddings in terms of the number of embeddings (see e.g. Chapt. 5.2.3 in 
[20]):

where H′ ranges over all graphs obtained from H by adding edges. Next we collect 
terms in (6) that correspond to isomorphic graphs. To this end we let #{H�

⊇ H} 
denote the number of possibilities to add edges to H such that the resulting graph is 
isomorphic to H′ . Note that #{Kk ⊇ H} = 1 if H has k vertices. We obtain

Next we translate the number of embeddings to a linear combination of homomor-
phisms. This can be done using Möbius inversion7 (see [8] or Chapt. 5.2.3 in [20]):

where the sum and the Möbius function � are over the partition lattice of V(H�) and 
H�∕� is obtained from H′ by contracting every pair of vertices that is contained in 
the same block in � . We observe that the coefficient of #���(Kk,G) in the above 

G ↦

∑
H∈�k

#𝖨𝗇𝖽𝖲𝗎𝖻(H,G)

∑
H∈�k

#������(H,G) =
∑
H

a(H) ⋅ #���(H,G).

(6)
#������(H,G) =

∑
H�

⊇ H

V(H) = V(H�)

(−1)#E(H
�)−#E(H)

⋅ #���(H�,G),

(7)#������(H,G) =
∑
H�∈G

(−1)#E(H
�)−#E(H)

⋅ #{H�
⊇ H} ⋅ #���(H�,G).

(8)#���(H�,G) =
∑
�≥�

�(�, �) ⋅ #���(H�∕�,G),

7  We omit the formal introduction to Möbius inversion as we will only need the fact that �(�, �) = 1 . We 
refer the interested reader to [20], where the concept is introduced and Eq. (8) is proved.
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sum is �(�, �) = 1 if H′ is isomorphic to Kk and zero otherwise as every vertex con-
traction of a graph with k vertices that is not the complete graph can not result in the 
complete graph with k vertices. Hence the coefficient of #���(Kk,G) in Eq. (7) is 
precisely (−1)#E(Kk)−#E(H) . Next we use Fact 7 and obtain that

It follows that the coefficient a(Kk) of #���(Kk,G) in Eq. (9) satisfies

We now multiply this equation by k!, which we interpret as the number #���k of 
elements of the symmetric group of the k vertices. Taking also the absolute value on 
both sides allows us to drop the constant factor (−1)#E(Kk) and we obtain

For any graph H in the above sum choose a set A0 of edges of the labeled complete 
graph Kk on k vertices such that the corresponding subgraph G(A0) is isomorphic to 
H. The group ���k acts on the vertices and thus on the edges of Kk and by the defi-
nition of a graph automorphism, the stabilizer of the set A0 has exactly #���(H) ele-
ments. On the other hand the orbit of A0 under ���k is the collection of all sets A 
such that G(A) ≅ H . By the Orbit Stabilizer theorem we have 
#���k

#���(H)
= #{A ⊆ E(Kk) | G(A) ≅ H} . Inserting in Eq. (11) we obtain

	�  ◻

Theorem  12 implies the following sufficient criterion for #W[1]-hardness of 
the problem #������(�) which we will use in the remainder of the paper.

Corollary 13  Let � be a graph property and let

(9)
∑
H∈�k

#������(H,G) =
∑
H∈�k

#������(H,G) ⋅ #���(H)−1.

(10)a(Kk) =
∑
H∈�k

(−1)#E(Kk)−#E(H)
⋅ #���(H)−1.

(11)|k! ⋅ a(Kk)| =
||||||
∑
H∈�k

(−1)#E(H)
⋅

#���k

#���(H)

||||||
.

(12)|k! ⋅ a(Kk)| =

||||||||||||

∑
H∈𝛷k

∑
A ⊆ E(Kk)

G(A) ≅ H

(−1)#E(H)

||||||||||||

=

|||||||

∑
A∈�𝛷

k

(−1)#A

|||||||
.

K =

⎧⎪⎨⎪⎩
k ∈ ℕ

����
�
A∈��

k

(−1)#A ≠ 0

⎫⎪⎬⎪⎭
.



2279

1 3

Algorithmica (2020) 82:2267–2291	

If K is infinite, then #������(�) is #W[1]-hard. If additionally K is dense, 
#������(�) can not be solved in time f (k) ⋅ #V(G)o(k) for any computable function f, 
unless ETH fails.

Proof  Theorems 12 and 11 induce a parameterized Turing reduction from the prob-
lem #���({Kk | k ∈ K}) which is known to be #W[1]-hard by Theorem 10. While 
this implies the first statement, we explicitly use a reduction from the problem 
#��������� to prove the latter. #��������� asks, given k ∈ ℕ and a k-vertex-colored 
graph G, to compute the number of cliques of size k in G that are colorful, i.e. 
exactly one vertex of each color is contained in the clique. It is known that this prob-
lem can not be solved in time f (k) ⋅ #V(G)o(k) for any computable function f unless 
ETH fails (see e.g. Chapt. 1.2.3 in [7]). Before we proceed with the reduction, we 
recall that K being dense implies that there are constants c and b such that for all 
k ∈ ℕ with k > b there exists k� ∈ K such that k ≤ k′ ≤ ck.

Now given an instance (G, k) of #��������� we proceed as follows. If k ≤ b we 
solve the problem by brute-force which requires time O(nb) . Otherwise we search 
for the minimal number k� ∈ K such that k ≤ k′ ≤ ck . Next we construct the graph 
G′ from G by adding k� − k vertices vk+1,… , v�

k
 and color them with new colors 

k + 1,… , k� . After that we add edges {vi, u} for all i ∈ {k + 1,… , k�} and u ∈ V(G) . 
Now it can easily be verified that the number of colorful k′-cliques in G′ equals the 
number of colorful k-cliques in G. Theorem 12 implies that for every graph G the 
coefficient a(Kk� ) of #���(Kk� ,G) is non-zero if 

∑
H∈�k�

#������(H,G) is expressed 
as a linear combination of homomorphisms and Theorem 11 hence allows us to com-
pute #���(Kk� ,G

��) for every subgraph G′′ of G′ in FPT time if access to #������(�) 
is provided. Dividing by k�! yields the number of (uncolored) k′-cliques in G′′ . It thus 
remains to reduce counting colorful cliques to uncolored cliques, which can be done 
by applying the principle of inclusion-exclusion as shown e.g. in Chapt.  1.4.1 in 
[7]—note that the latter reduction is given for (not necessarily induced) subgraphs, 
but in case of cliques, subgraphs and induced subgraphs are the same.8 As all oracle 
calls satisfy that the parameter ( k′ ) is bounded by c ⋅ k for a constant c and that the 
size of the queried graph is bounded by g(k) ⋅ #V(G) for some computable function 
g, and the overall reduction runs in FPT time, it holds that any algorithm that solves 
#������(�) in time f �(k) ⋅ #V(G)o(k) for some computable function f ′ can be used to 
solve #��������� in time f ��(k) ⋅ #V(G)o(k) for some computable function f ′′ , which 
is impossible unless ETH fails. 	�  ◻

8  As pointed out by an anonymous reviewer, it is also possible to just delete edges between vertices of 
the same color to reduce colorful cliques to uncolored cliques.
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4 � Monotone Properties

Recall that monotone graph properties are closed under the removal of edges. In 
what follows we assume every monotone graph property to hold on the independent 
set, i.e., the graph containing no edges, because otherwise the property would be 
trivially false. For technical reasons we say that a property is non-trivial if it is false 
on Kk for all but finitely many k ∈ ℕ.9 We start by refining Theorem 12 for mono-
tone properties.

Lemma 14  Let � be a monotone graph property and let k be a non-zero natural 
number. Then it holds that 

∑
A∈�𝛷

k

(−1)#A = 𝜒̂(𝛥(𝛷k)).

Proof  We have that

Note that (13) holds because �k is true for the independent set. 	�  ◻

Corollary 15  (Corollary 3 restated) Let � be a monotone graph property and let

If K is infinite, then #������(�) is #W[1]-hard. If additionally K is dense, 
#������(�) can not be solved in time f (k) ⋅ #V(G)o(k) for any computable function f, 
unless ETH fails.

Proof  Follows immediately from Lemma 14 and Corollary 13. 	�  ◻

The above criterion yields hardness of #������(�) for every monotone graph 
property � whose graph complex is well-understood with respect to the (reduced) 
Euler characteristic. The thesis of Jonsson (see Chapt. 10.5 in [17]) provides a large 
list of graph complexes including e.g. disconnectivity, colorability and coverabil-
ity, only to name a few, whose reduced Euler characteristics are non-zero infinitely 

(13)
∑
A∈��

k

(−1)#A = (−1)#� +
∑
i≥1

(−1)i ⋅ #{A ∈ �
�

k
⧵{�} | #A = i}

(14)= 1 +
∑
i≥0

(−1)i+1 ⋅ #{A ∈ �
�

k
⧵{�} | #A = i + 1}

(15)= 1 −
∑
i≥0

(−1)i ⋅ #{A ∈ �(�k) | ���(A) = i}

(16)= 1 − 𝜒(𝛥(𝛷k)) = 𝜒̂(𝛥(𝛷k)).

K = {k ∈ ℕ | 𝜒̂(𝛥(𝛷k)) ≠ 0}.

9  This is required to exlude properties like �(G) = 0 ⇔ #V(G) ≡ 1 mod 2 which indeed is monotone as 
it is closed under the removal of edges.
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often and to which Corollary 15 is hence applicable. We would also like to point out 
the work of Chakrabarti, Khot and Shi [3] who proved the reduced Euler charac-
teristic of a large family of graph complexes to be odd. Their result will be used to 
prove the fourth condition of Theorem 5 and reads as follows—we state it in terms 
of homomorphisms.

Lemma 16  ([3]) Let F be a graph and let �[F] be the graph property that holds 
true on a graph G if and only if ���(F,G) = � , i.e., there is no homomorphism 
from F to G. Furthermore let TF ∶= min{22

t

− 1 | 22t ≥ #V(F)} and let k ∈ ℕ 
such that k ≡ 1 mod TF . Then it holds that �(�[F]

k
) ≡ 0 mod 2 and hence 

𝜒̂(𝛷[F]

k
) ≡ 1 mod 2.

Unfortunately, as the proof of the above lemma shows, it is often quite tedious 
to argue about the (reduced) Euler characteristic of the graph complex induced by 
a more complicated property � and hence proving hardness of #������(�) . In the 
remainder of this section we will therefore demonstrate that Corollary 15 together 
with Theorem 9 yields a fruitful topological approach to prove #W[1]-hardness and 
conditional lower bounds for #������(�) , given that � is a monotone graph prop-
erty. We outline the approach in the following lemma.

Lemma 17  Let � be a monotone graph property, let K be an infinite subset of ℕ 
and let � = {�k | k ∈ K} be a set of permutation groups such that for every k ∈ K 
the group �k is a pk-power group for some prime pk . If for every k ∈ K it holds that

then #������(�) is #W[1]-hard. If additionally K is dense, #������(�) can not be 
solved in time f (k) ⋅ #V(G)o(k) for any computable function f, unless ETH fails.

Proof  Follows immediately from Corollary 15 and Theorem 9. 	�  ◻

Intuitively, Lemma 17 states that instead of analyzing 𝜒̂(𝛥(𝛷k)) which might be 
tedious, it suffices to prove that the reduced Euler characteristic of the fixed-point 
complex of �(�k) with respect to a p-power group is not 0 modulo p. For our pur-
poses it will suffice to use the groups ℤp for prime numbers p, explained as follows. 
Recall that the ground set of �(�p) is the set of all edges of the labeled complete 

𝜒̂(𝛥𝛤k (𝛷k)) ≢ 0 mod pk,

Fig. 1   Non-empty unions of orbits on the operation of ℤ7 on the edge set of the labeled graph with 7 
vertices. If � is trivially true then �ℤ7 (�7) contains all of the above subsets of orbits. If � holds only 
for bipartite graphs then none of the above subsets is contained in �ℤ7 (�7) . If � is planarity then 
�
ℤ7 (�7) = {O1,O2,O3} . More exotically, if � is the property of not being 5-edge-connected then 

�
ℤ7 (�7) contains every subset of orbits except for O1 ∪O2 ∪O3
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graph on p vertices. Now b ∈ ℤp is interpreted as a relabeling x ↦ x + b of the ver-
tices,10 which induces an operation on the edges by mapping the edge {x, y} to the 
edge {x + b, y + b} . We remark that this group was also used in an intermediate step 
in [18]. It can easily be verified that this mapping is a group operation. Furthermore 
�(�p) is a ℤp-simplicial complex with respect to this operation as � is invariant 
under relabeling of vertices. Hence the fixed-point complex �ℤp(�p) is defined. Fur-
thermore observe that every orbit of the group operation is an Hamilton cycle. We 
illustrate �ℤ7(�7) for some properties � in Fig. 1.

Note that, given a prime p > 2 , the ground set of �ℤp(�p) consists of exactly 
1

2
(p − 1) elements. In particular those are the Hamiltonian cycles

Equivalently, Hi is the orbit of the (labeled) edge {0, i} under the operation of ℤp 
for i ∈ {1,… ,

1

2
(p − 1)} and it can easily be verified that those are all orbits of the 

group operation. In what follows, given a non-empty set P ⊆ {1,… ,
1

2
(p − 1)} , we 

write HP for the graph with vertices (labeled with) {0,… , p − 1} and edges 
⋃

i∈P Hi.

Fact 18  Let P be non-empty subset of {1,… ,
1

2
(p − 1)} . Then it holds that

Now we have everything we need to prove our main result. We start with mono-
tone properties that are false on odd cycles or true on odd antiholes.

Lemma 19  Let � be a non-trivial monotone graph property. If � does not hold on 
odd cycles or if � holds on odd anti-holes then there exists a constant N ∈ ℕ such 
that 𝜒̂(𝛥ℤp(𝛷p)) ≢ 0 mod p for every prime p > N.

Proof  If � does not hold on odd cycles then �ℤp(�p) = � and hence

As � is non-trivial there exists N ∈ ℕ such that �(Kk) = 0 for all k > N . Now if � 
holds on odd anti-holes then 𝛥ℤp(𝛷p) = {P | � ⊊ P ⊊ {1,… ,

1

2
(p − 1)}} for all 

p > N because � is monotone and HP is an anti-hole if and only if #P =
1

2
(p − 1) − 1 . 

Furthermore, � does not hold on H{1,…,
1

2
(p−1)} ≅ Kp as p > N . Hence

H1 = (0, 1, 2,…),

H2 = (0, 2, 4,…),

⋮

H 1

2
(p−1) =

(
0,

1

2
(p − 1), p − 1,…

)
.

P ∈ �
ℤp(�p) ⇔ HP ∈ �p.

𝜒̂(𝛥ℤp(𝛷p)) = 1 − 𝜒(𝛥ℤp(𝛷p)) = 1 − 0 = 1 ≢ 0 mod p.

(17)𝜒̂(𝛥ℤp(𝛷p))

10  Here + is addition modulo p.
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Note that (18) follows from Fact 8. 	� ◻

We continue with one more exotic property which illustrates the utility of the topo-
logical approach by exploiting the simple structure of �ℤp(�p).

Lemma 20  Let c ∈ ℕ be an arbitrary constant and let � be the graph property of 
being not (c + 1)-edge-connected. Then 𝜒̂(𝛥ℤp(𝛷p)) ≢ 0 mod p for every prime 
p > c + 3.

Proof  We rely on the following observation. 	� ◻

Claim 21  The graph HP is (c + 1)-edge-connected if and only if #P > ⌊ c

2
⌋.

Proof  If #P ≤ ⌊ c

2
⌋ then every vertex in HP has degree at most c, hence HP is not 

(c + 1)-edge-connected. If #P > ⌊ c

2
⌋ then HP contains at least ⌊ c

2
⌋ + 1 pairwise 

edge-disjoint Hamilton cycles. Disconnecting the graph would require to remove at 
least two edges from every Hamilton cycle, i.e., at least 2 ⋅ (⌊ c

2
⌋ + 1) ≥ c + 1 edges. 

Hence HP is (c + 1)-edge-connected. 	�  ◻

It follows from the Claim that

Hence

(18)=
∑
i≥0

(−1)i ⋅ #{P ∈ �
ℤp(�p) ∪ {�} | #P = i}

(19)=
∑
i≥0

(−1)i ⋅ #
{
P ⊊ {1,… ,

1

2
(p − 1)} | #P = i

}

(20)=

⎛
⎜⎜⎝

�
P⊆{1,…,

1

2
(p−1)}

(−1)#P
⎞
⎟⎟⎠
− (−1)

1

2
(p−1) = (−1)

1

2
(p−1)+1

≢ 0 mod p.

𝛥
ℤp(𝛷p) =

�
P ⊆

�
1,… ,

1

2
(p − 1)

�
� P ≠ � ∧ #P ≤ ⌊ c

2
⌋
�
.

(21)𝜒̂(𝛥ℤp(𝛷p))

(22)=
∑
i≥0

(−1)i ⋅ #{P ∈ �
ℤp(�p) ∪ {�} | #P = i}

(23)=

⌊ c

2
⌋�

i=0

(−1)i ⋅ #
�
P ⊆ {1,… ,

1

2
(p − 1)} � #P = i

�
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Note that (22) follows from Fact 8. The formula for the alternating sum of binomials 
used in the first equality of (24) can be proved by induction. 	�  ◻

Finally, Theorem 5 follows from Lemmas 17, 16, 19 and 20 .

Proof (of Theorem 5)  If � is non-trivial and one of the conditions 1, 2 or 3 is true, 
then Lemmas 19 and 20 imply the existence of a constant N ∈ ℕ such that

holds for all primes p > N . Hence we can apply Lemma 17 by setting K to be the 
set of all primes p > N and �p = ℤp for all p ∈ K . As K is obviously infinite, it only 
remains to show that it is dense as well. However, this is an immediate consequence 
of Bertrand’s postulate, stating that for all natural numbers n > 3 there exists at least 
one prime number p such that n < p < 2n − 2.

If � satisfies condition 4, then the claim follows by Lemma 16 and Corollary 15. 
To see this, note that the set

is infinite and dense for every fixed graph F. 	� ◻

5 � Non‑monotone Properties

In this section we turn to non-monotone properties and illustrate that Theo-
rem  1 itself is a useful criterion when it comes to establishing #W[1]-hardness 
of #������(�) . Recall that, given a prime q and a subset Q of {0,… , q − 1} , the 
property ���[q,Q] holds on a graph H if and only if (#E(H) ��� q) ∈ Q . Note 
that ���[q,Q] generalizes the property of having an even (or odd) number of 
edges as investigated in [16]. It turns out that any non-trivial modularity con-
straint with respect to a prime induces #W[1]-hardness.

Lemma 22  Let q be a prime number and Q ⊆ {0, 1,… , q − 1} a subset which is 
neither empty nor the full set. Then for � = ���[q,Q] and sufficiently large integers 
n, the sum 

∑
A∈��

k

(−1)#A is non-vanishing for some k ∈ [n, n + 2].

Proof  In the case q = 2 all terms in the sum 
∑

A∈��

k

(−1)#A have the same sign, so 
clearly the sum is never zero for k ≥ 1 . Thus we can assume q ≥ 3.

For a = 0, 1,… , q − 1 denote

(24)=

⌊ c

2
⌋�

i=0

(−1)i ⋅

� 1

2
(p − 1)

i

�
= (−1)⌊

c

2
⌋
⋅

� 1

2
(p − 1) − 1

⌊ c

2
⌋

�
≢ 0 mod p.

𝜒̂(𝛥ℤp(𝛷p)) ≢ 0 mod p

{k ∈ ℕ | k ≡ 1 mod TF}
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Given n ≥ 1 the complete graph on n vertices has m =
(
n

2

)
 edges and the number of 

subgraphs G with j edges is exactly 
(
m

j

)
 . Thus if we define

then we need to show that for n sufficiently large there is k ∈ {n, n + 1, n + 2} such 
that SQ(m) ≠ 0 for m =

(
k

2

)
.

The crucial point we are going to use is that the functions Sa(m) satisfy a simple 
recursion. Indeed

where it is understood that S−1(m) = Sq−1(m) . Let � = (S0, S1,… , Sq−1)
T , then 

expressing the recursion in matrix form we have

In particular, we have

Fortunately, it turns out to be easy to diagonalize the matrix M: for the q-th root of 
unity � = exp(2�i∕q) we have that the vectors

are eigenvectors of M for the eigenvalues �b = 1 − �
−b . Moreover, we have 

that �(0) = v0 + v1 +…+ vq−1 is the sum of all these eigenvectors. Combining 
Mvb = �bvb with Eq. (27) we obtain

Sa(m) =
∑

j≡a ��� q

(−1)j
(
m

j

)
.

(25)SQ(m) =
∑
a∈Q

Sa(m)

Sa(m + 1) =
∑

j≡a ��� q

(−1)j
(
m + 1

j

)

=
∑

j≡a ��� q

(−1)j
(
m

j

)
+ (−1)j

(
m

j − 1

)

= Sa(m) − Sa−1(m),

(26)�(m + 1) = M�(m), forM =

⎛
⎜⎜⎜⎜⎝

1 0 … 0 − 1

−1 1 0 0

0 ⋱ ⋱ ⋮

0 … − 1 1 0

0 … 0 − 1 1

⎞
⎟⎟⎟⎟⎠
.

(27)�(m) = Mm
�(0), with �(0) = (1, 0,… , 0)T .

vb =
1

q

⎛⎜⎜⎜⎝

1

�
b

⋮

�
b(q−1)

⎞⎟⎟⎟⎠
, for b = 0, 1,… , q − 1
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The desired number SQ(m) is obtained by summing the components of this vector 
corresponding to Q ⊂ {0, 1,… , q − 1} and we obtain

Now clearly the term for b = 0 vanishes. As for the terms with b ≠ 0 we see then that 
�
b is again a primitive q-th root of unity. We claim that 

∑
a∈Q �

ba is then nonzero. 
Indeed, otherwise the number �b is a zero of the polynomial PQ(z) =

∑
a∈Q za.

In general it is true that a polynomial P ∈ ℚ[z] satisfies P(�b) = 0 iff P is of the 
form P(z) = Q(z)�q(z) with �q(z) = zq−1 + zq−2 +…+ z + 1 the qth cyclotomic 
polynomial and Q ∈ ℚ[z] any polynomial. For this reason, the polynomial �q is 
called the minimal polynomial of �b.

Returning to the situation above we see that the polynomial PQ is of degree at 
most q − 1 . Now if PQ(�

b) = 0 then we could write PQ(z) = Q(z)�p(z) and by 
degree considerations we would need to have Q of degree 0, i.e. a constant. But 
since we assumed that Q is not the empty set or the full set {0, 1,… , q − 1} , the 
polynomial PQ is not a rational multiple of �q . This gives a contradiction.

Now we need to find arguments to show SQ(m) ≠ 0 for suitable m, which we will 
later specialize to be of the form m =

(
k

2

)
 . First, for large m we claim that among 

(28)�(m) = Mm

q−1�
b=0

vb =

q−1�
b=0

�
m
b
vb =

1

q

q−1�
b=0

(1 − �
−b)m

⎛⎜⎜⎜⎝

1

�
b

⋮

�
b(q−1)

⎞⎟⎟⎟⎠
.

(29)SQ(m) =
1

q

q−1∑
b=0

(1 − �
−b)m

(∑
a∈Q

�
ba

)
.

Fig. 2   The points 1 − �
−b for q = 5
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the terms (1 − �
−b)m the ones with b± = (q ± 1)∕2 dominate the others in absolute 

value. Denote z± = 1 − �
−b± then we illustrate this in Fig. 2 for q = 5.

To continue, from the isosceles triangle in Fig.  2 one checks that z± 
are positive multiples of primitive 4q-th roots of unity. Indeed, since 
�
−b− = exp(−2�(q − 1)∕2q) , the angle of this triangle at the point 1 is 2�(q − 1)∕2q 

and therefore the two identical smaller angles in the triangle are

On the other hand, since they are complex conjugate, one sees that combining the 
two terms for b = b± in the sum (29) we obtain

Now observe that the absolute value of the term tm = zm
−
(
∑

a∈Q �
b−a) diverges 

exponentially to infinity and dominates all terms for b ≠ b± in the sum (29). More-
over, the argument of tm (as a complex number) takes exactly 4q different values 
�1,… , �4q , using that z− is a multiple of a 4q-th root of unity. Then we claim that for 
all m such that tm is not pure imaginary, its real part still dominates the other sum-
mands in (29). Indeed, we have the explicit estimate

But recall that |tm| diverges exponentially with a base |z±| . The finitely many other 
terms in the sum (29) also have absolute value that is exponential in m but with 
strictly smaller base. Thus for m large, the term c|tm| dominates the combination of 
all the other summands.

As a conclusion from the claim we must show that for n large, the term tm is not 
pure imaginary for m =

(
k

2

)
 for some k ∈ {n, n + 1, n + 2} . But assume that t(n

2
) is 

imaginary, i.e. arg(t(n
2
)) = ±�∕2 . Then since 

(
n+1

2

)
−
(
n

2

)
= n and thus t(n+1

2
) = t(n

2
)z

n
−
 , 

we have

Now for most n this will already no longer be of the form �∕2 + �� and so t(n+1
2
) is 

not imaginary. In the unlucky case that 2q|n, we see by the same procedure that then 
t(n+2

2
) is not imaginary. In any case, we have found a suitable k. 	� ◻

For the second non-monotone property, let F be a connected graph. Then the 
property ���[F] holds on a graph H if and only if H contains an isolated subgraph 
that is isomorphic to F.

1

2

(
� − 2�

q − 1

2q

)
=

1

2
�

(
1 −

q − 1

q

)
=

1

2q
� =

2�

4q
.

1

q

(
zm
+

(∑
a∈Q

�
b+a

)
+ zm

−

(∑
a∈Q

�
b−a

))
=

2

q
Rezm

−

(∑
a∈Q

�
b−a

)
.

|Retm| ≥ c|tm|, for c = min(| cos(�i)| ∶ i = 1,… , 4q with cos(�i) ≠ 0).

arg(t(n+1
2
)) = arg(t(n

2
)) + narg(z−) = ±

�

2
+ n

�

2q
.
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Lemma 23  Let F be a connected (unlabeled) graph on f vertices. Then for 
� = ���[F] the sum Sk =

∑
A∈��

k

(−1)#A is non-vanishing exactly for k ≥ f  and 
k ≡ 0, 1 mod f.

Proof  Fix k ≥ f  and let F  be the set of subgraphs of the complete graph Kk isomor-
phic to F. For Fi ∈ F  let AFi

 be the set of graphs on the vertices [k] containing Fi as 
an isolated subgraph, i.e. a connected component. Then we are interested in the sum

We compute it via inclusion-exclusion to be

Note that in the above sum, the graphs Fi1
,… ,Fil

 are assumed pairwise distinct ele-
ments of F .

For any l ≥ 1 , we see that the intersection AFi1

∩… ∩ AFil

 is empty if the graphs 
Fij

 are not pairwise vertex-disjoint. Indeed, if two of them share the same vertex 
there can be no graph containing both of them as isolated subgraphs. On the other 
hand, if all Fij

 are vertex-disjoint, the intersection AFi1

∩… ∩ AFil

 is just the set of 
graphs containing all of the Fij

 as isolated subgraphs (here we use F connected). We 
can understand this set very explicitly: F has f vertices, so there are k − lf  vertices 
not contained in any Fij

 and between those we have full freedom to put edges or not. 
The total number of possibilities is 2(

k−lf

2
) . Moreover, we can explicitly calculate the 

sum appearing above as

This is because for k − lf ≥ 2 and two vertices v,w ∈ [k]⧵
⋃l

j=1
V(Fij

) the operation 
of flipping the edge v, w gives a bijective map from AFi1

∩… ∩ AFil

 to itself flipping 
the parity of the number of edges.

Going back to (30) let us first treat the special case f = 1 , i.e. F is an isolated ver-
tex. Then all terms for 1 ≤ l ≤ k − 2 vanish and we are left with

This never vanishes, proving the theorem.
Now assume f ≥ 2 . Then we see that all summands for 1 ≤ l < ⌊k∕f ⌋ = l0 van-

ish. Writing k = l0f + a with 0 ≤ a ≤ f − 1 we note that for a ≥ 2 the remaining 
summands for l = l0 also vanish. On the other hand, for a = 0, 1 the summands for 
l = l0 all have the same sign (−1)l+1(−1)l⋅#E(F) and there is at least one nonzero sum-
mand like this. Thus the sum does not vanish for k of this form.

Sk =
�

G∈
⋃

AFi

(−1)#E(G).

(30)
Sk =

∑
l≥1

(−1)l+1
∑

Fi1
,…,Fil

∈F

∑
G∈AFi1

∩…∩AFil

(−1)#E(G)

∑
G∈AFi1

∩…∩AFil

(−1)#E(G) =

{
(−1)l⋅#E(F), for k − lf = 0, 1

0, for k − lf ≥ 2.

Sk = (−1)k−1+1k + (−1)k+1 = (−1)k(k − 1) for k ≥ 2, S1 = 1.
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In fact we can compute Sk to be

in the cases a = 0, 1 . Indeed, the factor k!

(f !)l0 l0!
 describes the number of possibilities to 

choose an unordered collection of l0 sets of size f among the k vertices. For each of 
these sets there are f !

#���(F)
 possibilities to put a graph isomorphic to F on the vertices 

of this set, by the Orbit Stabilizer theorem. 	�  ◻

Now Lemmas 22 and 23 tell us that for the properties � = ���[q,Q], ���[F] the 
set of k such that 

∑
A∈��

k

(−1)#A ≠ 0 is dense. Hence Theorem  6 follows by 
Corollary 13.

6 � Conclusion and Future Work

We used the framework of graph motif parameters to provide a sufficient criterion 
for #W[1]-hardness of #������(�) . For monotone properties � this amounts to the 
reduced Euler characteristic of the associated graph complex to be non-zero infi-
nitely often. In particular, our results provide a fine-grained reduction from the prob-
lem of counting cliques of size k to counting induced subgraphs of size k with prop-
erty � whenever � is monotone and 𝜒̂(𝛥(𝛷k)) ≠ 0 . Using a topological approach, 
we established hardness for a large class of non-trivial monotone graph properties. 
The obvious next question, whose answer would settle the parameterized complexity 
of #������(�) for monotone properties completely, is whether for every non-trivial 
monotone property � the set of k such that 𝜒̂(𝛥(𝛷k)) ≠ 0 is infinite.
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