
Algorithmica (2020) 82:2174–2199
https://doi.org/10.1007/s00453-019-00649-7

The Parameterised Complexity of Computing the Maximum
Modularity of a Graph

Kitty Meeks1 · Fiona Skerman2

Received: 8 October 2018 / Accepted: 29 October 2019 / Published online: 8 November 2019
© The Author(s) 2019

Abstract
The maximum modularity of a graph is a parameter widely used to describe the level
of clustering or community structure in a network. Determining the maximum mod-
ularity of a graph is known to be NP-complete in general, and in practice a range of
heuristics are used to construct partitions of the vertex-set which give lower bounds
on the maximum modularity but without any guarantee on how close these bounds
are to the true maximum. In this paper we investigate the parameterised complexity
of determining the maximum modularity with respect to various standard structural
parameterisations of the input graph G. We show that the problem belongs to FPT
when parameterised by the size of a minimum vertex cover for G, and is solvable
in polynomial time whenever the treewidth or max leaf number of G is bounded by
some fixed constant; we also obtain an FPT algorithm, parameterised by treewidth,
to compute any constant-factor approximation to the maximum modularity. On the
other hand we show that the problem is W[1]-hard (and hence unlikely to admit an
FPT algorithm) when parameterised simultaneously by pathwidth and the size of a
minimum feedback vertex set.

Keywords Modularity · Community detection · Integer quadratic programming ·
Vertex cover · Pathwidth

Kitty Meeks is supported by a Royal Society of Edinburgh Personal Research Fellowship, funded by the
Scottish Government; Fiona Skerman conducted part of this research while at Uppsala University.

B Kitty Meeks
kitty.meeks@glasgow.ac.uk

1 School of Computing Science, University of Glasgow, Glasgow, UK

2 Department of Mathematics, Heilbronn Institute for Mathematical Research, University of Bristol,
Bristol, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00649-7&domain=pdf
http://orcid.org/0000-0001-5299-3073

Algorithmica (2020) 82:2174–2199 2175

1 Introduction

The increasing availability of large network datasets has led to great interest in tech-
niques to discover network structure. An important and frequently observed structure
in networks is the existence of groups of vertices with many connections between
them, often referred to as ‘communities’.

Newman and Girvan introduced the modularity function in 2004 [24]. Modularity
gives a measure of how well a graph can be partitioned into communities and is used
in the most popular algorithms to cluster large networks. For example, the Louvain
method, an iterative clustering technique, uses themodularity function to choosewhich
parts from the previous step to fuse into larger parts at each step [2,16]. Thewidespread
use of modularity and empirical success in finding communities makes modularity an
important function to study from an algorithmic point of view.

In this paper we are concerned with the computational complexity of computing
the maximum modularity of a given input graph, and specifically in the following
decision problem.

Modularity
Input: A graph G and a constant q ∈ [0, 1].
Question: Is the maximum modularity of G at least q?

This problem was shown to be NP-complete in general by Brandes et al. [4], using
a construction that relies on the fact that all vertices of a sufficiently large clique must
be assigned to the same part of an optimal partition. They also showed that a variation
of the problem in which we wish to find the optimal partition into exactly two sets
is hard; their proof for this relied again on the use of large cliques, but DasGupta
and Desai [6] later showed that this 2-clustering problem remains NP-complete on
d-regular graphs for any fixed d ≥ 9. It has also been shown that it is NP-hard to
approximate the maximum modularity within any constant factor [8], although there
is a polynomial-time constant-factor approximation algorithm for certain families of
scale-free networks [10]. The hardness of computing constant-factor multiplicative
approximations in general has motivated research into approximation algorithms with
an additive error [8,17]: the best known result is an approximation algorithm with
additive error roughly 0.42084 [17].

In this paper we initiate the study of the parameterised complexity ofModularity,
considering its complexity with respect to several standard structural parameterisa-
tions. On the positive side, we show that the problem is in FPTwhen parameterised by
the cardinality of a minimum vertex cover for the input graph G, and that it belongs
to XP when parameterised by either the treewidth or max leaf number of G. The XP
algorithm parameterised by treewidth can easily be adapted to give an FPT algorithm,
parameterised by treewidth, to compute any constant-factor approximation maximum
modularity. On the other hand, we demonstrate that Modularity, parameterised by
treewidth, is unlikely to belong to FPT: we prove that the problem is W[1]-hard even
when parameterised simultaneously by the pathwidth of G and the size of a mini-

123

2176 Algorithmica (2020) 82:2174–2199

mum feedback vertex set for G. For background on parameterised complexity, and
the complexity classes discussed here, we refer the reader to [5,11].

These results follow the same pattern as those obtained for the problem Equitable
Connected Partition [12], and indeed our hardness result involves a reduction from
a specialisation of this problem. There are clear similarities between the two prob-
lems: in a partition that maximises the modularity, every part will induce a connected
subgraph and, in certain circumstances, we achieve the maximum modularity with
a partition into parts that are as equal as possible. However, the crucial difference
between the two problems is that the input to Equitable Connected Partition
includes the required number of parts, whereasModularity requires us to maximise
over all possible partition sizes; in fact, if we restrict to partitions with a specified parts,
it is no longer necessarily true that a partition maximising the modularity must induce
connected subgraphs. This difference makes reductions between the two problems
non-trivial.

1.1 TheModularity Function

The definition ofmodularitywas first introduced byNewman andGirvan in [24].Many
or indeed most popular algorithms used to search for clusterings on large datasets are
based on finding partitions with high modularity [15,19], and the heuristics within
them sometimes also use local modularity optimisation, for example in the Louvain
method [2]. See [14,25] for surveys on community detection including modularity
based methods.

Knowledge on the maximum modularity for classes of graphs helps to understand
the behaviour of the modularity function. There is a growing literature on this which
began with cycles and complete graphs in [4]. Bagrow [1] and Montgolfier et al. [7]
showed some classes of trees have high maximum modularity which was extended
in [21] to all trees with maximum degree o(n), and furthermore to all graphs where
the product of treewidth and maximum degree grows more slowly than the number
of edges. Many random graph models also have high modularity, see [22,23] for a
treatment of Erdős-Renyi random graphs, [21] for random regular graphs and also [26]
which includes the preferential attachment model.

Given a set A of vertices, let e(A) denote the number of edges within A, and let
vol(A) (sometimes called the volume of A) denote the sum of the degree dv (in the
whole graph G) over the vertices v in A. For a graph G withm ≥ 1 edges and a vertex
partition A of G, set the modularity score of A on G to be

qA(G) = 1

2m

∑

A∈A

∑

u,v∈A

(
1uv∈E − dudv

2m

)
= 1

m

∑

A∈A
e(A) − 1

4m2

∑

A∈A
vol(A)2;

the maximum modularity of G is q∗(G) = maxA(G), where the maximum is over all
partitions A of the vertices of G. Graphs with no edges are defined conventionally to
have modularity 1. However note that if the modularity of graphs with no edges were
defined to be 0 it would not change any of the results.

123

Algorithmica (2020) 82:2174–2199 2177

The modularity function is designed to score partitions highly when most edges
fall within the parts and penalise partitions with very few or very big parts. These two
objectives are encoded as the edge contribution or coverage qE

A(G) = 1
m

∑
A∈A e(A),

and degree tax qD
A(G) = 1

4m2

∑
A∈A vol(A)2, in the modularity of a vertex partitionA

of G.
Note that for any graph withm ≥ 1 edges 0 ≤ q∗(G) ≤ 1. To see the lower bound,

notice that the trivial partition which places all vertices in the same part has modularity
zero. For example, complete graphs and stars have modularity 0 as noted in [4]. A
graph consisting of c disjoint cliques of the same size has modularity 1−1/c with the
optimal partition taking each clique to be a part.

As modularity is at most 1 it is sometimes useful to consider the modularity deficit
q̃A(G) = 1− qA(G). Denote by ∂(A) the number of edges between vertex set A and
the rest of the graph. Then

q̃A(G) = 1

2m

∑

A∈A

(
∂(A) + vol(A)2

2m

)

and we may equivalently minimise the modularity deficit to maximise the modularity.
In particular

q̃(G) = min
A∈A

q̃A(G) = 1 − q∗(G).

We will make use of several facts about the maximum modularity of a graph.

Fact 1 (Lemma 1 of [9], Lemma 2.1 of [6]) For any integer c > 0 and any graph G,

max
|A|≤c

qA(G) > q∗(G)
(
1 − 1

c

)
.

Fact 2 (Lemma 3.4 of [4]) Suppose that G is a graph that contains no isolated vertices.
IfA is a partition of V (G) such that qA(G) = q∗(G) then, for every A ∈ A, G[A] is
a connected subgraph of G.

Fact 3 (Corollary 1 of [4]) Let G = (V , E) and suppose that V0 ⊆ V is a set of
isolated vertices. Then q(G) = q(G\V0). Moreover, if partitions A and A′ agree on
all vertices of V \V0, then qA(G) = qA′(G).

Fact 4 (Lemma 1.6.5 of [27]) If A is a partition of V (G) such that qA(G) = q∗(G)

then no part A consists of a single non-isolated vertex.

Proof Let u be a vertex with degree du > 0 and suppose (for a contradiction) that
A = {{u}, A1, . . . , Ak} is an optimal partition of G. For each i = 1, . . . , k define the
vertex partition Bi = {A1, . . . , Ai ∪ {u}, . . . , Ak}. We can derive a simple expression
for qBi (G) − qA(G) as most terms cancel:

qBi (G) − qA(G) = 1

m
e({u}, Ai) − 1

2m2 du vol(Ai).

123

2178 Algorithmica (2020) 82:2174–2199

By assumption, A is an optimal partition so qBi (G) ≤ qA(G) and thus for each i
we have 2m · e({u}, Ai) ≤ du vol(Ai). Hence we can sum over i = 1, . . . , k and the
inequality should hold. However for the LHS 2m

∑
i e({u}, Ai) = 2mdu and the RHS

is

du

k∑

i=1

vol(Ai) = du(2m − du) < 2mdu

and so we have our contradiction. 	

Observe that Facts 2, 3 and 4 together imply that the search for an optimal partition

can be restricted to those in which all parts are connected subgraphs and no part
consists of a single node.

1.2 Notation and Definitions

Given a graph G = (V , E), and a set U ⊆ V of vertices, we write G[U] for the
subgraph of G induced by U and G\U for G[V \U]. Given two disjoint subsets of
vertices A, B ⊆ V , we write e(A, B) for the number of edges with one endpoint in A
and the other in B. We shall often want to denote the number of edges between a set
of vertices and the remainder of the graph so set ∂(A) = e(A, Ā). If P is a partition
of a set X , and Y ⊂ X , we write P[Y] for the restriction of P to Y .

A vertex cover of a graph G = (V , E) is a set U ⊆ V such that every edge has
at least one endpoint in U ; equivalently, G\U is an independent set (i.e. contains no
edges). The vertex cover number of G is the smallest cardinality of any vertex cover
of G. A feedback vertex set for G is a set U ⊆ V such that G\U contains no cycles.
Notice that the vertex cover number of G gives an upper bound on the size of the
smallest feedback vertex set for G, written fvs(G). The max leaf number of G is the
maximum number of leaves (degree one vertices) in any spanning tree of G.

A tree decomposition of a graph G is a pair (T ,D) where T is a tree and D =
{D(t) : t ∈ V (T)} is a collection of non-empty subsets of V (G) (or bags), indexed
by the nodes of T , satisfying:

1. V (G) = ⋃
t∈V (T) D(t),

2. for every e = uv ∈ E(G), there exists t ∈ V (T) such that u, v ∈ D(t),
3. for every v ∈ V (G), if T (v) is defined to be the subgraph of T induced by nodes

t with v ∈ D(t), then T (v) is connected.

We will assume throughout that the indexing tree T has a distinguished root node r ; if
not wemay choose an arbitrary node to be the root. Given any node t ∈ V (T)wewrite
Vt for the set of vertices of G that appear in bags indexed by t and the descendants
of t .

If T is in fact a path, we say that (T ,D) is a path decomposition of G. The width of
the tree decomposition (T ,D) is defined to be maxt∈V (T) |D(t)|−1, and the treewidth
of G, written tw(G), is the minimum width over all tree decompositions of G. The
pathwidth of G, pw(G), is the minimum width over all path decompositions of G.

123

Algorithmica (2020) 82:2174–2199 2179

We note that there is an FPT algorithm to compute a minimum-width tree decom-
position of any graph G, where the treewidth of G is taken as the parameter [3].
Moreover, any such tree decomposition can be transformed into a so-called nice tree
decomposition (having certain algorithmically useful properties) in linear time, with-
out increasing the number of nodes by more than a constant factor [18].

2 Positive Results

In this section we identify a number of structural restrictions on the input graph that
allow us to compute the maximum modularity of a graph, or a good approximation to
this quantity, efficiently.

2.1 Parameterisation byVertex Cover Number

In this section we demonstrate thatModularity is in FPTwhen parameterised by the
vertex cover number of the input graph.

Theorem 5 Modularity, parameterised by cardinality of a minimum vertex cover
for the input graph G, is in FPT.

To prove this result, we make use of recent work of Lokshtanov [20] which gives
an FPT algorithm for the following problem.

Integer Quadratic Programming
Input:An n×n integermatrix Q, anm×n integermatrix A, and anm-dimensional
vector b.
Parameter: n + α, where α is the maximum absolute value of any entry in A or
Q.
Problem: Find a vector x ∈ Z

n which minimises xT Qx, subject to Ax ≤ b.

Our strategy can be summarised as follows. We first observe that we may restrict
our attention to partitions in which every part intersects the vertex cover. Moreover,
the vertices outside the vertex cover can be classified into at most 2k “types” according
to their neighbourhood (which by definition must be a subset of the vertex cover). We
then argue that the modularity of a partition depends only on (1) the inherited partition
of the vertex cover and (2) the number of (non-vertex-cover) vertices of each type that
belong to each of the parts. Using this characterisation, we can reduce the problem
of maximising the modularity to that of solving a collection of instances of Integer
Quadratic Programming.

Before embarking on the proof of Theorem 5, we introduce some notation. Suppose
that the graph G = (V , E) has |E | = m, and that U = {u1, . . . , uk} is a vertex cover
for G. Let P = {P1, . . . , P�} be a partition of U , and set W = V \U (so W is an
independent set).

We can partition the vertices ofW into 2k sets based on their type: the type τU (w) ∈
{0, 1}k of a vertex w ∈ W describes which of the vertices in U are neighbours of

123

2180 Algorithmica (2020) 82:2174–2199

u1

u2

S00

S10

S01

S11

Fig. 1 An example of a graph with vertex cover U = {u1, u2} and four sets of distinct types indicated
for the vertices W = V \U . For the vertex partition A = {A1, A2, A3} indicated with circles (•), squares
(�) and diamonds (�) respectively the only non-zero values of xA

σ,i are: x
A
00,1 = 2, xA10,1 = 1, xA01,2 = 2,

xA01,3 = 1 and xA11,3 = 2. Note also thatA extends the partitionP = {{u1}, {u2}} ofU but not the partition

P ′ = {{u1, u2}} of U

w. Formally τU (w) j = 1 if u jw ∈ E(G) and τU (w) j = 0 otherwise. For each
σ ∈ {0, 1}k , we set Sσ to be the set of all vertices in W with type exactly σ , that is,
Sσ = {w ∈ W : τ(w) = σ }.

Now let A = {A1, . . . , Ar } be a partition of V . We write xAσ,i for the number of

vertices of type σ which are assigned to Ai , that is, xAσ,i = |Sσ ∩ Ai |. Finally, we
introduce 0-1 vectors to encode the sets Pi ∈ P: for 1 ≤ i ≤ �, we let π i ∈ {0, 1}k be
given by π i

j = 1 if u j ∈ Pi , and π i
j = 0 otherwise. An example is given in Fig. 1.

We now argue that, if the partition A extends P , we can compute the modularity
of A using only the values xAσ,i , together with information about P .

Lemma 1 Let U = {u1, . . . , uk} be a vertex cover for G = (V , E), where |E | = m,
and let P be a partition of U. If A is any partition of V which extends P and has the
property that every A ∈ A has non-empty intersection with U, then

qE
A(G) = 1

m

�∑

i=1

e(Pi) + 1

m

∑

(σ,i)

xAσ,i (σ · π i),

and

4m2qD
A = 4

∑

i

e(Pi)
2 + 4

∑

(σ,i)

xAσ,i e(Pi)(σ · (1 + π i))

+
∑

(σ,i)(σ ′, j)
xAσ,i x

A
σ ′, j (σ · (1 + π i))(σ ′ · (1 + π j)).

Proof Suppose that P = {P1, . . . , P�} and A = {A1, . . . , A�}, where Pi ⊆ Ai for
each i ; we set Bi = Ai ∩ W for each 1 ≤ i ≤ �. For any vertex w ∩ Bi , we have that
e(w, Pi) is given by the dot product τ(w) · π i ; thus the number of edges between Pi
and Bi for each i is given by

123

Algorithmica (2020) 82:2174–2199 2181

e(Pi , Bi) =
∑

σ∈{0,1}k
xAσ,i (σ · π i). (1)

Since there are no edges inside any set Bi , it follows that

e(Ai) = e(Pi) +
∑

σ∈{0,1}k
xAσ,i (σ · π i),

and hence we can write the edge contribution of A as

qE
A(G) = 1

m

�∑

i=1

e(Pi) + 1

m

∑

(σ,i)

xAσ,i (σ · π i). (2)

Similarly for the degree tax, observe that a vertex w ∈ W of type τ(w) has degree
τ(w) · 1 ≤ k, and hence vol(Bi) = ∑

σ xσ,i (σ · 1). Notice that vol(Pi) = 2e(Pi) +
e(Pi , Bi) and we already have an expression for e(Pi , Bi) in terms of the xAσ,i in (1).
Hence, as vol(Pi ∪ Bi) = vol(Pi) + vol(Bi), we have

4m2qD
A =

∑

i

vol(Pi ∪ Bi)
2 =

∑

i

(
2e(Pi) +

∑

σ

xAσ,i ((σ · π i) + (σ · 1))
)2

and thus rearranging,

4m2qD
A = 4

∑

i

e(Pi)
2 + 4

∑

i

e(Pi)
∑

σ

xAσ,i (σ · (1 + π i))

+
(∑

σ

xAσ,i (σ · (1 + π i))
)2

= 4
∑

i

e(Pi)
2 + 4

∑

(σ,i)

xAσ,i e(Pi)(σ · (1 + π i))

+
∑

(σ,i)(σ ′, j)
xAσ,i x

A
σ ′, j (σ · (1 + π i))(σ ′ · (1 + π j)),

as required. 	

We are now ready to prove the main result of this section.

Proof of Theorem 5 We will assume that the input to our instance of Modularity is
a graph G = (V , E), where |E | = m. We may assume without loss of generality
that we are also given as input a vertex cover U = {u1, . . . , uk} for G (as if not we
can easily compute one in the allowed time). We may further assume that G does not
contain any isolated vertices, as we can delete any such vertices (in polynomial time)
without changing the value of the maximum modularity (by Fact 3).

123

2182 Algorithmica (2020) 82:2174–2199

Note that the total number of possible partitions ofU into non-empty parts is equal
to the kth Bell number, Bk (and hence is certainly less than kk). It therefore suffices
to describe an fpt-algorithm which determines, given some partition P of U ,

qP (G) = max{qA(G) : A[U] = P}.

The maximum modularity of G can then be calculated by taking

max{qP (G) : P is a partition of U }.

From now on, we consider a fixed partition P = {P1, . . . , P�} of U , and describe
how to compute qP (G). It follows from Facts 2 and 4, together with the fact that W
is an independent set that, ifA = {A1, . . . , A j } is a partition of V which achieves the
maximum modularity, then every part Ai has non-empty intersection withU . We will
call a partition with this property a U -partition of G. It then suffices to maximise the
modularity over all U -partitions in order to determine the value of qP (G).

Now, by Lemma 1, we know that we can express the modularity of a U -partition
A as

qA(G) = 1

m

�∑

i=1

e(Pi) + 1

m

∑

(σ,i)

xAσ,i (σ · π i) − 1

m2

∑

i

e(Pi)
2

− 1

m2

∑

(σ,i)

xAσ,i e(Pi)(σ · (1 + π i))

− 1

4m2

∑

(σ,i)(σ ′, j)
xAσ,i x

A
σ ′, j (σ · (1 + π i))(σ ′ · (1 + π j)). (3)

As we have fixed the partition P , all values e(Pi) can be regarded as fixed constants.
In order to determine the maximum modularity we can obtain with a U -partition, we
therefore need to find the values of xAσ,i which maximise this expression.

We can rewrite (3) as the sum of a constant term, two linear functions θ and φ of
the xAσ,i and a quadratic function ψ of the xAσ,i (up to scaling by constants):

qA(G) = 1

m

�∑

i=1

e(Pi) − 1

m2

∑

i

e(Pi)
2

︸ ︷︷ ︸
constant

+ 1

m

∑

(σ,i)

xAσ,i (σ · π i)

︸ ︷︷ ︸
θ(A)

− 1

m2

∑

(σ,i)

xAσ,i e(Pi)(σ · (1 + π i))

︸ ︷︷ ︸
φ(A)

− 1

4m2

∑

(i,σ)(j,σ ′)
xAσ,i x

A
σ ′, j (σ · (1 + π i))(σ ′ · (1 + π j))

︸ ︷︷ ︸
ψ(A)

.

123

Algorithmica (2020) 82:2174–2199 2183

To find the maximum value of qA(G) over all U -partitions it therefore suffices to
determine, for all possible values of θ(A) and φ(A), the minimum possible value of
ψ(A). Before describing how to do this, we observe that the number of combinations
of possible values for θ(A) and φ(A) and is not too large. Note that 0 ≤ ∑

σ,i x
A
σ,i

(σ ·π i) < nk, and 0 ≤ ∑
σ,i x

A
σ,i e(Pi)(σ ·(1+π i)) < n

(k
2

)
2k < nk3, so the number of

possible pairs (θ(A), φ(A)) is at most n2k4. Thus, if we know the minimum possible
value ofψ(A) corresponding to each possible pair (θ(A), φ(A)), we can compute the
maximummodularity achieved by anyU -partitionA such that (θ(A), φ(A)) = (y, z),
and maximising over the polynomial number of possible pairs (y, z)will give qP (G).

Now, given a possible pair of values (y, z) for (θ(A), φ(A)), we describe how to
compute

min{ψ(A) : A is a U -partition with θ(A) = y and φ(A) = z}.

Our strategy is to express this minimisation problem as an instance of Integer
Quadratic Programming and then apply the FPT algorithm of [20].

In this instance, we have n = �2k ≤ k2k , and our vector of variables x =
(x1, . . . , xn)T is given by

xi = xA(
σi mod 2k

)
,
i/2k�,

where σ1, . . . , σ2k is a fixed enumeration of all vectors in {0, 1}k . The matrix Q
expresses the value of ψ(A) in terms of x: if we set Q = {qi, j } where

qi, j =
(
σ(i mod 2k) ·

(
1 + π

⌈
i/2k

⌉)) (
σ(j mod 2k) ·

(
1 + π

⌈
j/2k

⌉))
,

then it is easy to see that ψ(A) = xT Qx. Note also that the maximum absolute value
of any entry in Q is at most 4k2.

We now use the linear constraints to express the conditions that

1. θ(A) = y,
2. φ(A) = z, and
3. the values xi,σ correspond to a valid U -partition A.

The first of these conditions can be expressed as a single linear constraint:

∑

(σ,i)

xAσ,i (σ · π i) = y,

or equivalently a1x = y where a1 is the 1 × n row vector with i th entry equal to

σ(i mod 2k) · π
⌈
i/2k

⌉
.

123

2184 Algorithmica (2020) 82:2174–2199

We can similarly express the second condition as a single linear constraint:

∑

(σ,i)

xAσ,i e(Pi)(σ · (1 + π i)) = z,

or equivalently a2x = z, where a2 is the 1 × n row vector with i th entry equal to

e
(
P
i/2k�

) (
σ(i mod 2k) ·

(
1 + π

⌈
i/2k

⌉))
.

Note that every entry in the vectors a1 and a2 has absolute value no more than 2k3.
For the third condition, note that the values xi,σ correspond to a valid U -partition if
and only if every xi,σ is non-negative, and for each σ we have

∑�
i=1 x

A
i,σ = |Sσ |.

We can therefore express all three conditions in the form Ax = b, where A is a(
4 + (� + 1)2k

) × n and b is a
(
4 + (� + 1)2k

)
-dimensional vector (notice that we

use two inequalities to express each of the linear equality constraints).
Altogether, this means that the solution to this Integer Quadratic Program-

ming instance will determine the values of xAi,σ which minimize (out of all values
corresponding to some U -partition A) the value of ψ(A), subject to the additional
requirement that θ(A) = y and φ(A) = z. Note that the number of variables n is at
most k2k and the largest absolute value of any entry in A or Q is at most 2k3, so the
parameter in the instance of Integer Quadratic Programming is bounded by a
function of k. This completes the proof. 	

We note the algorithm described can easily be modified to output an optimal parti-
tion.

2.2 Parameterisation by Treewidth

In this sectionwedemonstrate thatModularity, whenparameterised by the treewidth
of the input graph G, belongs to XP and so is solvable in polynomial time on graph
classes whose treewidth is bounded by some fixed constant. We further show that
for any fixed ε > 0 there is an FPT-algorithm, parameterised by treewidth, which
computes a factor (1−ε)-approximation; i.e. returning a value between (1−ε)q∗ and
q∗ where q∗ is the maximum modularity of the graph.

Theorem 6 Modularity parameterised by the treewidth of the input graph G is
in XP.

Proof As the proof makes use of standard dynamic programming techniques on tree
decompositions, we only give an outline proof here. Suppose that G has n vertices
and m edges, and has treewidth k. We will assume that we are given a nice tree
decomposition (T ,D) (where T is a tree and D = {D(t) : t ∈ V (T)}) of G, of width
k, as part of the input (if not we can compute one in FPT time).

The proof relies heavily on Fact 2. This means we can compute the optimum
modularity without considering partitions that induce disconnected subgraphs; hence,
for any node t ∈ V (T), we need only consider partitions A with the property that, if

123

Algorithmica (2020) 82:2174–2199 2185

A ∈ A does not intersect D(t), then all vertices in A only appear in bags indexed by
nodes in precisely one connected component of T \t .

We compute the modularity by working upwards from the leaves in the standard
way.Aswe do this, we need to keep track of relevant statistics for the parts that intersect
the current bag (liquid parts) and also the total contribution to the modularity from
the parts (frozen parts) which contain only vertices from bags indexed by descendants
of the current node (and so by the reasoning above cannot accept more vertices from
elsewhere in the graph).

For any node t ∈ V (T), a valid state of t consists of the following:

1. a partition P of D(t);
2. a function α : P → [m] such that α(Pi) ≥ e(Pi) for each Pi ∈ P;
3. a function β : P → [2m] such that β(Pi) ≥ vol(Pi) for each Pi ∈ P .

Here P records the restriction of a partition to D(t), α keeps track of the number of
edges captured so far in each of the liquid parts, and β keeps track of the volume so
far of each of the liquid parts. Notice that the total number of possible states for any
node t is at most (k + 1)(k+1) · m(k+1) · (2m)(k+1) = mO(k).

For each possible state of a node t , we need to keep track of the maximum contri-
bution to modularity from frozen parts we can achieve consistent with the liquid parts
having the specified state: this is done with a function σt , the signature of t . Given any
state (P, α, β) of t , we first define a (t,P, α, β)-partition to be any partition A of Vt
such that:

1. P = A[D(t)];
2. for all A ∈ A with A ∩ D(t) �= ∅:

– α (A ∩ D(t)) = e(A), and
– β (A ∩ D(t)) = vol(A).

We then set

σt (P, α, β) = max

{
1

m

∑

B∈B
e(B) − 1

m2

∑

B∈B
vol(B)2 : A is a (t,P, α, β)-partition

and B = {A ∈ A : A ∩ D(t) = ∅}
}
.

Throughout the proof we adopt the convention that the maximum value of an empty
set is −∞.

It is clear that, with knowledge of σr for the root r of the tree decomposition, we can
easily determine the maximum modularity of G. It therefore remains to outline how
we compute σt for the four types of node in the nice tree decomposition, using only
information about the values of σt ′ where t ′ is a child of t . We begin by observing that
if t is a leaf node then we can exhaustively consider all possibilities in time depending
only on k.

Now suppose t is an introduce node with child t ′, whereD(t) = D(t ′)∪{v}. Given
any state (P, α, β) of t , we say that a state (P ′, α′, β ′) of t ′ is introduce-compatible
with (P, α, β) if:

123

2186 Algorithmica (2020) 82:2174–2199

– P ′ = P\{v};
– for every P ∈ P , if v /∈ P then α′(P) = α(P), and if v ∈ P (but P\{v} �= ∅)
then α′(P) = α(P) − |{u ∈ P : uv ∈ E(G)}|;

– for every P ∈ P , if v /∈ P then β ′(P) = β(P), and if v ∈ P (but P\{v} �= ∅)
then β ′(P) = β(P) − d(v).

It then follows that σt (P, α, β) is equal to

max{σt ′(P ′, α′, β ′) : (P ′, α′, β ′) is introduce-compatible with (P, α, β)}.

Next, suppose that t is a forget node with child t ′, where D(t) = D(t ′)\{v}. Given
any state (P, α, β) of t , we define two functions σ 1

t and σ 2
t ; these functions correspond

to the case where one of the parts that is liquid at t ′ becomes frozen at t (if v was the
last vertex in its part), and the case where all parts that are liquid at t ′ remain liquid at
t , respectively. We set

σ 1
t (P, α, β) = max

{
σt ′(P ′, α′, β ′) + 1

m
α′ ({v}) − 1

4m2 β ′ ({v})2 :
P ′ = P ∪ {v} and, for all P ∈ P,

α′(P) = α(P) and β ′(P) = β(P)

}
,

and

σ 2
t (P, α, β) = max

{
σt ′(P ′, α′, β ′) : P = P ′\{v}, |P ′| = |P| and,
for all P ∈ P ′, α′(P) = α(P\v)

and β ′(P) = β(P\v)

}
.

We then see that

σt (P, α, β) = max
{
σ 1
t (P, α, β), σ 2

t (P, α, β)
}

.

Finally, suppose that t is a join node with children t1 and t2, whereD(t1) = D(t2) =
D(t). In this case we see that

σt (P, α, β) = max

{
σt1(P, α1, β1) + σt2(P, α2, β2) : for all P ∈ P,

α(P) = α1(P) + α2(P) − e(P) and

β(P) = β1(P) + β2(P) − vol(P)

}
.

	

To obtain our FPT approximation result, we use a very similar approach; the key

is to restrict our attention to partitions with only a constant number of parts. For any

123

Algorithmica (2020) 82:2174–2199 2187

constant c ∈ N, we write q≤c(G) for the maximum modularity for G achievable with
a partition into at most c parts, that is

q≤c(G) = max
|A|≤c

qA(G).

We refer to the problem of deciding whether q≤c(G) ≥ q for a given input graph G
and constant q ∈ [0, 1] as c-Modularity. We now argue that c-Modularity is in
FPT parameterised by the treewidth of the input graph. The crucial difference from our
XP algorithm above is the fact that, whenwe fix the number of parts in the partition, we
can no longer assume that every part is connected. However, if the maximum number
of parts c is a constant, we can keep track of the necessary statistics for every possible
part, not just those that intersect the bag under consideration.

Lemma 2 c-Modularity is in FPT when parameterised by the treewidth of the input
graph.

Proof The strategy is broadly the same as that used in the proof of Theorem 6, however
when the number of parts is fixedwe can no longer assume that every part in the optimal
partition is connected. Thus, instead of recording statistics relating to each part that
intersects the bag currently under consideration, we keep track of the same statistics
for each of the c (possibly empty) parts allowed in the partition. Formally, for any
node t ∈ V (T), a valid state of t consists of:

1. a function π : D(t) → [c];
2. a function α : [c] → [m] such that α(i) ≥ e(π−1(i)) for all i ∈ [c];
3. a function β : [c] → [2m] such that β(i) ≥ vol(π−1(i)) for all i ∈ [c].
Here π records the mapping of vertices of D(t) to the c possible parts, α keeps track
of the number of edges captured so far in each of the c parts, and β the volume so
far of each part. Notice that the number of possible states for any node t is at most
ck+1 · mc · (2m)c = ck+1mO(c).

Given any state (π, α, β) of t , we define a (t, π, α, β)-partition to be any partition
A = {A1, . . . , Ac} of Vt such that:

1. v ∈ Aπ(v) for each v ∈ D(t);
2. for each i ∈ [c]:

– α(i) = e(Ai), and
– β(i) = vol(Ai).

We then set

θt (π, α, β) =
{
1 if there exists a (t, π, α, β)-partition of Vt ,

0 otherwise.

It is clear that, if r is the root of the tree decomposition,

q≤c(G) = max
θr (π,α,β)=1

{
1

m

c∑

i=1

α(i) + 1

m2

c∑

i=1

β(i)2
}

.

123

2188 Algorithmica (2020) 82:2174–2199

Thus it suffices to compute all values of θr . Note that if t is a leaf node we can consider
all possibilities in time depending only on k and c; we now outline how to compute
the values of θt for a node t , given the values for its children.

Suppose first that t is an introduce node with child t ′, where D(t) = D(t ′) ∪
{v}. Given any state (π, α, β) of t , we say that a state (π ′, α′, β ′) of t ′ is introduce-
compatible with (π, α, β) if:

– π ′ = π |D(t ′);
– for every i ∈ [c], if π(v) �= c then α′(i) = α(i), and if π(v) = i then α′(i) =

α(i) − |{u ∈ π−1(i) : uv ∈ E(G)}|;
– for every i ∈ [c], if π(v) �= i then β ′(i) = β(i), and if π(v) = P then β ′(i) =

β(i) − d(v).

It then follows that θt (P, α, β) is equal to

max{θt ′(π ′, α′, β ′) : (π ′, α′, β ′) is introduce-compatible with (π, α, β)}.

Next, suppose that t is a forget node with child t ′, where D(t) = D(t ′)\{v}. In this
case we have

θt (π, α, β) = max{θt ′(π ′, α′, β ′) : π = π ′|D(t), α
′ = α and β ′ = β}.

Finally, suppose that t is a join node with children t1 and t2, whereD(t1) = D(t2) =
D(t). In this case we see that

θt (π, α, β) = max

{
θt1(π, α1, β1) · θt2(π, α2, β2) :

∀i ∈ [c], α(i) = α1(i) + α2(i) − e(π−1(i))

and β(i) = β1(i) + β2(i) − vol(π−1(i))

}
.

	

Recall (Fact 1) that q∗(G) ≥ q≤c(G) > q∗(G)
(
1 − 1

c

)
; thus, for any constant

ε > 0, we obtain a factor (1 − ε)-approximation by solving
 1
ε
�-Modularity. This

immediately gives the following result.

Corollary 1 Given any constant ε > 0, there is an FPT-algorithm, parameterised
by the treewidth of the input graph G, that returns a partition A with qA(G) >

(1 − ε)q∗(G).

We conclude this section by noting that sparse graphs, in particular graphs G
with low tree width, tw(G), and maximum degree, �(G), can have high maximum
modularity. In particular Theorem 1.11 of [21] shows q∗(G) ≥ 1 − 2((tw(G) +
1)�(G)/|E(G)|)1/2.

123

Algorithmica (2020) 82:2174–2199 2189

2.3 Parameterisation byMax Leaf Number

In this section we demonstrate that Modularity can be solved in time linear in the
number of connected subgraphs of the input graph G; as a consequence of this result,
we deduce that the problem belongs to XPwhen parameterised by themax leaf number
of G.

Theorem 7 Let G be a graph on n vertices with m edges and at most h connected
subgraphs. Then Modularity can be solved in time O(h2n).

Proof Wewill assumewithout loss of generality (by Fact 3) thatG contains no isolated
vertices. For any induced subgraph H of G, and partition AH of V (H), we write

qAH (H ,G) = 1

m

∑

A∈AH

e(A) − 1

4m2

∑

A∈AH

vol(A)2,

where vol(A) denotes the volume of A in G. We then set

q∗(H ,G) = max
AH

qAH (H ,G),

where the maximum is taken over all partitionsAH of V (H). Thus, q∗(H ,G) can be
seen as the maximum possible contribution of parts contained in H to the modularity
of G, if we only consider partitions of V (G) such that every part is either completely
contained in V (H) or does not intersect V (H).

Let H be a connected subgraph of G. Then, for any partition AH of V (H) with
|AH | > 1, such that each part induces a connected subgraph, it is clear that there
exists a partition (X ,Y) of V (H) into two nonempty sets such that H [X] and H [Y]
are both connected, and every element of AH is completely contained in either X or
Y . Conversely, if (X ,Y) is a partition with this property it is immediate that partitions
of X and Y can be combined to give a partition of V (H). For any connected graph H ,
we write P(H) for the set of all partitions (X ,Y) of V (H) into two non-empty sets
such that G[X] and G[Y] are both connected. Since we need only consider partitions
in which every part induces a connected subgraph (by Fact 2), it follows that

q∗(H ,G) = max

{(1

m
e(H) − 1

m2 vol(H)2
)
,

max
(X ,Y)∈P(H)

{
q∗(G[X],G) + q∗(G[Y],G)

}}
, (4)

again adopting the convention that the maximum, taken over an empty set, is equal
to −∞.

By assumption, G has only h connected induced subgraphs. We note that, with
suitable data structures, we can compute a list of all such subgraphs in timeO(nh). To
enumerate all connected induced subgraphs containing the vertex v, we can explore
a search tree as follows: we associate the pair ({v}, V (G)\{v}) with the root and, on

123

2190 Algorithmica (2020) 82:2174–2199

reaching a node associated with the pair (U ,W), we select an arbitrary vertex x ∈ W
such that N (x)∩U �= ∅ (if such a vertex exists), and create two child nodes associated
with (U ∪ {x},W\{x}) and (U ,W\{x}) respectively. When this process terminates,
the vertex-set of every connected induced subgraph appears as the first element of the
tuple for exactly one leaf node. Repeating the process for each vertex in the graph
(after deleting those starting vertices already considered) will produce a list of all
connected induced subgraphs.

From now on we will assume that we have computed a list H1, . . . , Hh of all
connected induced subgraphs of G; without loss of generality we may further assume
that these subgraphs are listed in non-decreasing order of their number of vertices.
In particular, this means that there is no connected induced subgraph that is strictly
contained in H1, so P(H1) = ∅ and q∗(H1,G) = 1

m e(H1) − 1
m2 vol(H1)

2. We can
reformulate (4) as follows:

q∗(Hj ,G) = max

{(1

m
e(Hj) − 1

m2 vol(Hj)
2
)
,

max
i< j

V (Hi)⊂V (Hj)

Hj\V (Hi) connected

{
q∗(Hi ,G) + q∗(Hj\V (Hi),G)

}}
.

Note that, if Hj\V (Hi) is connected, then Hj\V (Hi) is H� for some � < j . Thus,
if we know the values q∗(H1,G), . . . , q∗(Hj−1,G), we can compute q∗(Hj ,G) in
timeO(j |Hj |). It follows that, by considering the connected subgraphs H1, . . . , Hh in
order, we can compute q∗(H) for every connected induced subgraph in timeO(h2n).

Now suppose that G has connected components C1, . . . ,C�, where V (Ci) = Vi
for each i . By Fact 2 (see also Lemma 1.6.2 of [27]), we can restrict our attention to
partitions A of V (G) such that every part is completely contained in some Vi ,

q∗(G) =
�∑

i=1

q∗(Ci ,G).

Since each connected component Ci is a connected induced subgraph of G, it occurs
in the list H1, . . . , Hh of connected induced subgraphs. Thus, once we have computed
q∗(H ,G) for each connected induced subgraph H , we can immediately determine
q∗(G) by summing the appropriate values. Hence the overall time required to compute
q∗(G) is O(h2n). 	

It is known that, if the max leaf number of G is c, then G is a subdivision of some
graph H on at most 4c vertices [13]; a graph on n vertices that is a subdivision of
such a graph H has at most 24cn(4c)2 connected subgraphs (once we have decided
which branch vertices belong to a subgraph, it remains only to decide where to cut
each path from one of the chosen branch vertices to one we have not chosen). Thus,
if the max leaf number of G is bounded by a constant it follows that G has at most a
polynomial number of connected subgraphs, and the following result is an immediate
consequence of Theorem 7.

123

Algorithmica (2020) 82:2174–2199 2191

Corollary 2 Modularity is inXP when parameterised by the max leaf number of the
input graph G.

We conjecture that this result is not optimal, and thatModularity is in fact in FPT
with respect to this parameterisation.

3 Hardness results

In this section we complement our positive result about the FPT approximability of
the problem parameterised by treewidth by demonstrating that computing the exact
value of the maximum modularity is hard even in a more restricted setting.

Theorem 8 Modularity, parameterised simultaneously by the pathwidth and the
size of a minimum feedback vertex set for the input graph, is W[1]-hard.

Our proof of this result relies on the hardness of the following problem.

Equitable Connected Partition (ECP)
Input: A graph G = (V , E) and r ∈ N.
Question: Is there a partition of V into r classes V1, . . . , Vr such that |Vi |−|Vj | ≤
1 for all 1 ≤ i < j ≤ r , and the induced subgraph G[Vi] is connected for each
i ∈ 1, . . . , r?

The parameterised complexity of ECP was investigated thoroughly in [12]. Among
other results, the problem is shown to beW[1]-hard even when parameterised simulta-
neously by r , pw(G) and fvs(G). In proving this hardness result, the authors implicitly
consider the following variation of ECP.

Anchored Equitable Connected Partition (AECP)
Input: A graph H = (VH , EH), and a set of distinguished anchor vertices
a1, . . . , ar ∈ V .
Question: Is there a partition of VH into r classes V1, . . . , Vr such that ai ∈ Vi
for all i ,

∣∣|Vi | − |Vj |
∣∣ ≤ 1 for all 1 ≤ i < j ≤ r , and the induced subgraph G[Vi]

is connected for each i ∈ 1, . . . , r?

From the proof of [12, Theorem 1] we can extract the following statement about
the hardness of AECP.

Lemma 3 ([12], implicit in proof of Theorem 1) AECP is W[1]-hard, parameterised
simultaneously by pw(H) and fvs(H), even if the following conditions hold simulta-
neously:

1. H is connected;
2. the graph H ′ obtained from H by deleting all vertices of degree one is a subdivision

of a 3-regular graph H̃;

123

2192 Algorithmica (2020) 82:2174–2199

3. the branch vertices of H ′ (i.e. vertices of H̃) are precisely the anchor vertices
a1, . . . , ar ;

4. r ≥ 4 is even and divides |VH |;
5. H\{a1, . . . , ar } is a disjoint union of isolated vertices and paths with pendant

edges.

In the proof of Theorem 8, it is useful to analyse the ‘per unit modularity deficit’
fm(B) of vertex subsets B. Form ≥ 1 and vertex subset B with vol(B) ≥ 1 we define

fm(B) = ∂(B)

vol(B)
+ vol(B)

2m
. (5)

Intuitively, minimising the per unit modularity deficit fm(B) maximises the mod-
ularity (see (7) for a precise statement). Hence, loosely, the following lemma says
that if we are restricted to parts B with δ(B) = 4 the modularity maximising volume
is vol(B) = 2

√
2m. Moreover, while it would usually be better to take parts with

δ(B) < 4 these parts are actually worse (i.e. higher fm(B) value) if their volumes
are too big or too small. The function fm(B) plays a similar role to the n-cost in
Proposition 1 of [21].

Lemma 4 Let m ≥ 1, vol(B) ≥ 1 and let fm(B) be as defined in (5). Then the
following properties hold:

0: if ∂(B) = 0 and vol(B) > 4
√
2m then fm(B) > 2

√
2/m.

1: if ∂(B) = 1 and vol(B) > 3.7321
√
2m or vol(B) < 0.2679

√
2m then fm(B) >

2
√
2/m.

2: if ∂(B) = 2 and vol(B) > 3.4143
√
2m or vol(B) < 0.5857

√
2m then fm(B) >

2
√
2/m.

3: if ∂(B) = 3 and vol(B) > 3
√
2m or vol(B) <

√
2m then fm(B) > 2

√
2/m.

4: if ∂(B) = 4andvol(B) ≥ 2
√
2m then fm(B) ≥ 2

√
2/mwith equality iffvol(B) =

2
√
2m.

5: if ∂(B) ≥ 5 then fm(B) > 2
√
2/m.

Proof Fix a vertex set B with a constant number, �, of edges to the rest of the graph
(so ∂(B) = �). For � = 0 one can check that directly that if vol(B) > 4

√
2m then

fm(B) > 2
√
2/m which establishes part 0. Thus wemay assume � ≥ 1. By definition,

fm(B) = �/ vol(B) + vol(B)/(2m) and so

fm(B) ≥ 2

√
2

m
⇔

(
vol(B)√

2m
− 2

)2

≥ 4 − �. (6)

Hence for � = 4 we get equality iff vol(B) = 2
√
2m which immediately implies

part 4 of the lemma. Also for � ≥ 5 the RHS of (6) is negative which gives part 5 of
the lemma. It remains to prove parts 1, 2 and 3 of the lemma.

Now suppose � ∈ {1, 2, 3} then
√
4 − � is real and so we may rearrange as the

difference of two squares,

fm(B) > 2

√
2

m
⇔

(
vol(B)√

2m
− 2 − √

4 − �

) (
vol(B)√

2m
− 2 + √

4 − �

)
> 0.

123

Algorithmica (2020) 82:2174–2199 2193

a1

a2

a4

a3

...

α
...

α

...

α

...

α

a1

a2

a4

a3

..
.

β

Fig. 2 Possible input graph H with anchors a1, a2, a3, a4 and the graph G constructed from it by adding
α new leaves adjacent to each anchor, β isolated edges and a perfect matching between the anchors

Observe fm(B) > 2
√
2/m if the terms in the product above are either both positive

or both negative. Hence fm(B) > 2
√
2/m if

vol(B) > 2
√
2m

(
1 + 1

2

√
4 − �

)
or vol(B) < 2

√
2m

(
1 − 1

2

√
4 − �

)
.

Therefore for � = 1 we get fm(B) > 2
√
2m if vol(B) >

√
2m(2 + √

3) and
2 + √

3 ∼ 3.7320508 ≤ 3.7321. Likewise, keeping � = 1, fm(B) > 2
√
2m if

vol(B) <
√
2m(2 − √

3) and 2 − √
3 ∼ 0.26794919 ≥ 0.2679. This establishes part

1 of the lemma. The parts 2 and 3 follow in the same fashion. 	

We are now ready to prove Theorem 8.

Proof of Theorem 8 We give a reduction from AECP. Suppose that (H , {a1, . . . , ar })
is the input to an instance of AECP; we will describe how to construct a graph G,
where pw(G) and fvs(G) are both bounded by a function of r , together with an
explicit q0 ∈ (0, 1) such that (G, q0) is a yes-instance for Modularity if and only if
(H , {a1, . . . , ar }) is a yes-instance for AECP.

We may assume without loss of generality that our instance of AECP satisfies all
of the conditions of Lemma 3.

We define a new graph G, obtained from H by adding the following (see Fig. 2):

– α new leaves adjacent to each anchor vertex a1, . . . , ar ,
– β isolated edges disjoint from G, and
– an arbitrary perfect matching on the anchor vertices a1, . . . , ar ,

where the values of α and β will be determined later.
The idea of the construction is that the α edges help ensure that each anchor vertex

is in a separate part of any modularity optimal partition and the β edges allow us
to get the numbers to work at the end of the proof. Notice that, even with these
modifications, G\{a1, . . . , ar } is still a disjoint union of isolated vertices and paths
with pendant edges; hence pw(G) ≤ r + 1 and fvs(G) ≤ r . We set m = |E(G)| so
m = |E(H)| + αr + β + r/2.

123

2194 Algorithmica (2020) 82:2174–2199

Define our instance of Modularity to be (G, q0), where

q0 = 1 − β

m2 − 2
√
2(m − β)

m3/2 .

We now argue that (G, q0) is a yes-instance if and only if (H , {a1, . . . , ar }) is a
yes-instance for AECP. Recall that

q∗(G) = 1 − min
A

∑

A∈A

(
∂(A)

2m
+ vol(A)2

4m2

)
,

and that the partitionAwhich achieves theminimum in the expression above is exactly
the modularity maximalA. In any modularity optimal partition,A, each isolated edge
will form its own part: this follows from Facts 2 and 4. Write V ′ for vertices of G
without the vertices supporting the β isolated edges, and let the minimisation be over
A′ which are vertex partitions of V ′. We then have

q∗(G) = 1 − β

m2 − min
A′

∑

A∈A′

∂(A)

2m
+ vol(A)2

4m2 .

Rearranging, we see that

1 − β

m2 − q∗(G ′) = m − β

m
min
A′

∑

A∈A′

vol(A)

2(m − β)

(
∂(A)

vol(A)
+ vol(A)

2m

)

= m − β

m
min
A′

∑

A∈A′

vol(A)

2(m − β)
fm(A) (7)

≥ m − β

m
min
A⊆V ′ fm(A). (8)

The last inequality holds because
∑

A vol(A) = 2(m−β) and so (7) is a weighted sum
of the fm(A)with total weight one. This, together with the fact that no A has zero vol-
ume, also implies that (7)≥ (8) with equality if and only if fm(A) = minB⊂V ′ fm(B)

for every A ∈ A′.
Note that, since A′ is the restriction of some modularity optimal partition A to a

connected component of G, we may assume that, for all A ∈ A′, G[A] is connected.
Moreover, if v is a pendant vertex adjacent to u then u and v are in the same part in
A′; we call a partition with this last property (or, abusing notation, a set that would
not violate this condition in a partition) ‘pendant-consistent’.

We now make the following claim, writing s = |H |/r for the desired part size in
our instance of AECP.

Claim 9 Suppose that α > 32|E(H)|2 and that we have
√
2m = s + α + 1. Then:

a) for any connected, pendant-consistent set B ⊆ V ′ we have fm(B) ≥ 2
√
2/m, and

if fm(B) = 2
√
2/m then B contains exactly one anchor and vol(B) = 2

√
2m;

123

Algorithmica (2020) 82:2174–2199 2195

b) if (H , {a1, . . . , ar }) is a yes-instance, then there is a vertex partition A′ of V ′ so
that fm(A) = 2

√
2/m for all A ∈ A′;

c) if there is a vertex partition A′ = {A1, . . . , Ar } of V ′ so that for all Ai ∈ A,
fm(Ai) = 2

√
2/m, A is pendant-consistent and G[A] is connected for all A ∈ A′,

then (H , {a1, . . . , ar }) is a yes-instance.
We defer the proof of Claim 9. For now we assume that Claim 9 holds and that we

have α > 32|E(H)|2 and √
2m = s + α + 1 and prove the theorem holds under these

assumptions. By Claim 9(a) and line (7), we have

q∗(G) ≤ q0 = 1 − β

m2 − 2
√
2(m − β)

m3/2 .

Hence in particular (G, q0) is a yes-instance if and only if there is a partitionA′ of V ′
such that ∀A ∈ A′ fm(A) = 2

√
2/m.

Claim9(b), togetherwith line (7), implies that, if (H , {a1, . . . , ar }) is a yes-instance,
then so is (G, q0). Converesly, if (G, q0) is a yes-instance, it follows from Claim 9(c),
that (H , {a1, . . . , ar }) is a yes-instance.

It remains only to show the claim holds and we can choose suitable values of α and
β to ensure α > 32|E(H)|2 and √

2m = s + α + 1. Set α to be the least integer such
that

α ≥ 32|E(H)|2, (α+s+1)2 > 2|E(H)|+2αr+r and α = s+1 (mod 2). (9)

Recall that r is even. This, along with our parity constraint between α and s, implies
that (α + s + 1)2 − r is even. Thus we can choose β to be

β = 1

2

(
(α + s + 1)2 − r

)
− |E(H)| − αr; (10)

note β is positive because we set α so that (α+ s+1)2 > 2|E(H)|+2αr +r . Finally,
observe that we do have

√
2m = s + α + 1 because, by the chosen value of β,

m = |E(H)| + αr + β + r/2 = (s + α + 1)2/2.

This concludes the proof of the theorem except that we must still establish Claim 9.

Proof of Claim 9(a): We begin by showing that our two assumptions α > 32|E(G)|2
and α + s + 1 = √

2m imply that α > 0.969
√
2m. Recall that H without pendant

edges is a subdivision of a cubic graph and so the average degree in H is at least two.
Thus |E(H)| ≥ |H |. Also r ≥ 4, so |H | ≥ 4s ≥ s + 1 so |E(H)| ≥ s + 1. By
assumption α > 32|E(H)|2 ≥ 32(s + 1). But also by assumption α + s + 1 = √

2m
and so α ≥ 32/33

√
2m > 0.969

√
2m.

We now show that if fm(B) ≤ 2
√
2/m then B must contain exactly one anchor.

First suppose B contains no anchors: then B does not contain nor is B incident to
any of the α extra edges added to anchors nor the r/2 extra edges in the perfect
matching between anchors. Hence the volume of B in G is at most what it was in H ,

123

2196 Algorithmica (2020) 82:2174–2199

i.e. volG(B) ≤ volH (B) ≤ 2|E(H)|. Also note that as G[V ′] is connected, ∂(B) ≥ 1,
hence by Lemma 4 it is enough to show that vol(B) < 0.2679

√
2m and this will show

that for B with no anchors, fm(B) > 2
√
2/m. Clearly m ≥ α and by assumption

α > 32|E(H)|2. Hence for B with no anchors:

0.2679
√
2m ≥ 0.2679

√
64|E(H)|2 = 2.1432 E(H) > vol(B)

and so if fm(B) ≤ 2
√
2/m then B must contain at least one anchor.

If B contains at least two anchors then there are two options: B = V ′ and B � V ′.
We rule out B = V ′ and fm(B) ≤ 2

√
2/m first. Note that vol(V ′) = 2|E(H)| +

2αr + r . But r ≥ 4 and by earlier in the proof α > 0.969
√
2m. Hence vol(V ′) ≥

8α > 7.752
√
2m and so by Lemma 4 we get that fm(V ′) > 2

√
2/m. Thus B �= V ′.

Now we show that for B � V ′ with at least two anchors in B we have fm(B) >

2
√
2/m. In the case B �= V ′ because G[V ′] is connected ∂(B) ≥ 1. If B has at least

two anchors then vol(B) ≥ 4α > 3.876
√
2m. Therefore for B � V ′ with at least

two anchors in B, ∂(B) ≥ 1 and vol(B) > 3.878
√
2m hence fm(B) > 2

√
2/m by

Lemma 4.
Thus to ensure fm(B) ≤ 2

√
2/m we must have exactly one anchor in B. In par-

ticular we can now assume that B contains exactly one anchor. Let graph G ′ be G
without the added perfect matching between anchors at the end of the construction
of G from H . Now G ′[B] is connected, B has exactly one anchor and after stripping
pendant vertices that anchor has degree 3 in G ′ so we have ∂G ′(B) ≥ 3. And because
B is pendant-consistent ∂G ′(B) = 3, after re-adding the perfect matching between
anchors ∂G(B) = 4.

But now, because ∂G(B) = 4, by Lemma 4 we have that fm(B) ≥ 2
√
2/m. Also

by Lemma 4 to get equality fm(B) = 2
√
2/m we must have vol(B) = 2

√
2m which

establishes the last part of the claim. 	
 Claim 9(a)

Proof of Claim 9(b): Suppose (H , {a1, . . . , ar }) is a yes-instance.We prove there exists
a vertex partitionA′ of V ′ such that, for all A ∈ A′, fm(A) = 2

√
2/m. By assumption,

there is a connected equipartition B = {B1, . . . , Br } of V (H) such that ai ∈ Bi for
each i . In the construction of the graph G from H we added α pendant vertices, say
ui1, . . . , u

i
α , to each anchor ai . Define A′ = {Bi ∪ {ui1, . . . , uiα} : Bi ∈ B}. Observe

that that A′ is a vertex partition of V ′ as the set V ′ consists exactly of V (H) together
with the extra αr vertices addedwith the pendant edges on each anchor. It now remains
to prove that fm(Ai) = 2

√
2/m for each i .

Consider G ′, the graph formed from G by removing the arbitary perfect matching
added in the last step of the construction of G from H . Recall the graph G ′ is the
subdivision of a 3-regular graph with the anchors as the branch vertices. Fix i and note
that H [Bi] connected implies that G ′[Ai] is connected. But as G ′[Ai] is connected,
contains exactly one anchor and contains every vertex pendant to a vertex in Ai it
must be the case that ∂G ′(Ai) = 3. Now re-add the perfect matching and we get that
∂G(Ai) = 4.

It suffices now to show that vol(Ai) = 2
√
2m. To see this, first observe that G[Ai]

is a tree, and so |EG(Ai)| = |Ai |−1. But by the construction |Ai | = |Bi |+α = s+α.
Recall the volume of a vertex set is twice the number of internal edges plus the number

123

Algorithmica (2020) 82:2174–2199 2197

of edges between the set and the rest of the graph. Thus, because ∂G(Ai) = 4, we get

vol(Ai) = 2(s + α − 1) + 4 = 2(s + α + 1) = 2
√
2m,

which establishes the claim. 	
 Claim 9(b)

Proof of Claim 9(c): Suppose there exists a vertex partition A′ = {A′
1, . . . , A

′
r } of V ′

such that, for all A′
i ∈ A′, fm(A′

i) = 2
√
2/m, A′

i is pendant-consistent, and G[A′
i]

is connected. By Claim 9(a) we may also assume that for all A′
i ∈ A′ we have

vol(A′
i) = 2

√
2m. We will show this implies that (H , {a1, . . . , ar }) is a yes-instance.

Fix some i . The induced subgraph G[A′
i] is connected and contains exactly one

anchor, say ai , so we can remove the perfect matching between the anchors andG ′[A′
i]

is still connected. Let Bi be the vertex set obtained from A′
i by removing the α added

leaves pendant on the anchor ai . Then Bi ⊆ V (H) and H [Bi] is connected.
It remains only to show that |Bi | is exactly s = |H |/r . Since G(A′

i) is a tree with
volume 2

√
2/m and ∂G(A′

i) = 4, vol(A′
i) = 2(|Ai | − 1) + 4 = 2|Ai | + 2. But

|Ai | = |Bi | + α and so

|Bi | = |Ai | − α = vol(A′
i)/2 − 1 − α;

by design this is precisely vol(A′
i)/2 − 1 − α = s and so we are done.

	
 Claim 9(c)

This completes the proof. 	

4 Conclusions and Open Problems

We have shown that Modularity belongs to FPT when parameterised by the vertex
cover number of the input graph, and that the problem is solvable in polynomial time on
input graphs whose treewidth or max leaf number is bounded by some fixed constant;
we also showed that there is an FPT algorithm, parameterised by treewidth, which
computes any constant-factor approximation to the maximum modularity. In contrast
with the positive approximation result, we demonstrated that the problem is unlikely
to admit an exact FPT algorithm when the treewidth is taken to be the parameter, as it
isW[1]-hard even when parameterised simultaneously by the pathwidth and size of a
minimum feedback vertex set for the input graph.

We conjecture that our XP algorithm parameterised by max leaf number is not
optimal, and that Modularity in fact belongs to FPT with respect to this parameteri-
sation. Another open question arising from our work is whether the problem belongs
to FPT with respect to other parameters for which this is not ruled out by our hardness
result, including treedepth, modular width and neighbourhood diversity.

It is also natural to ask whether our approximation result can be extended to larger
classes of graphs, for example those of bounded cliquewidth or bounded expansion.
Moreover, when considering treewidth as the parameter, it would be interesting to
investigate the existence or otherwise of an ε-approximation in time f (tw, ε)nO(1).

123

2198 Algorithmica (2020) 82:2174–2199

Acknowledgements The authors are grateful to Jessica Enright for some helpful initial discussions about
the topic.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bagrow, J.P.: Communities and bottlenecks: trees and treelike networks have high modularity. Phys.
Rev. E 85(6), 066118 (2012)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large
networks. J. Stat. Mech Theory Exp. 2008(10), P10008 (2008)

3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. In:
Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pp.
226–234. ACM, New York, NY, USA (1993). https://doi.org/10.1145/167088.167161

4. Brandes, U., Delling, D., Gaertler,M., Gorke, R., Hoefer,M., Nikoloski, Z.,Wagner, D.: Onmodularity
clustering. IEEETrans.Knowl.DataEng.20(2), 172–188 (2008). https://doi.org/10.1109/TKDE.2007.
190689

5. Cygan,M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,
S.: Parameterized Algorithms. Springer, Cham (2015)

6. DasGupta, B., Desai, D.: On the complexity of newman’s community finding approach for biological
and social networks. J. Comput. Syst. Sci. 79(1), 50–67 (2013). https://doi.org/10.1016/j.jcss.2012.
04.003

7. de Montgolfier, F., Soto, M., Viennot, L.: Asymptotic modularity of some graph classes. In: Asano,
T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) Algorithms and Computation. ISAAC 2011. Lecture
Notes in Computer Science, vol. 7074. Springer, Berlin, Heidelberg (2011)

8. Dinh, T.N., Li, X., Thai, M.T.: Network clustering via maximizing modularity: Approximation algo-
rithms and theoretical limits. In: 2015 IEEE International Conference on Data Mining, pp. 101–110
(2015). https://doi.org/10.1109/ICDM.2015.139

9. Dinh, T.N., Thai, M.T.: Finding community structure with performance guarantees in scale-free net-
works. In: Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference
on Social Computing (SocialCom), 2011 IEEE Third International Conference on, pp. 888–891. IEEE
(2011)

10. Dinh, T.N., Thai, M.T.: Community detection in scale-free networks: approximation algorithms for
maximizing modularity. IEEE J. Sel. Areas Commun. 31(6), 997–1006 (2013). https://doi.org/10.
1109/JSAC.2013.130602

11. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)
12. Enciso, R., Fellows,M.R., Guo, J., Kanj, I., Rosamond, F., Suchý, O.:What makes equitable connected

partition easy. In: Chen, J., Fomin, F.V., (eds.) Parameterized and Exact Computation: 4th International
Workshop, IWPEC 2009, Copenhagen, Denmark, September 10–11, 2009, Revised Selected Papers,
pp. 122–133. Springer, Berlin, (2009). https://doi.org/10.1007/978-3-642-11269-0_10

13. Estivill-Castro, V., Fellows, M., Langston, M., Rosamond, F.: FPT is P-time extremal structure I. In:
Algorithms and Complexity in Durham 2005, Proceedings of the first ACiD Workshop, volume 4 of
Texts in Algorithmics, pp. 1–41. King’s College Publications (2005)

14. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
15. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016)
16. Jutla, I.S., Jeub, L.G.S., Mucha, P.J.: A generalized Louvain method for community detection imple-

mented in MATLAB. (2011) http://netwiki.amath.unc.edu/GenLouvain
17. Kawase, Y., Matsui, T., Miyauchi, A.: Additive Approximation Algorithms for Modularity Max-

imization. In: Hong, S.H. (ed.) 27th International Symposium on Algorithms and Computation
(ISAAC 2016), Leibniz International Proceedings in Informatics (LIPIcs), vol. 64, pp. 43:1–43:13.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016). https://doi.org/10.
4230/LIPIcs.ISAAC.2016.43

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/167088.167161
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1109/TKDE.2007.190689
https://doi.org/10.1016/j.jcss.2012.04.003
https://doi.org/10.1016/j.jcss.2012.04.003
https://doi.org/10.1109/ICDM.2015.139
https://doi.org/10.1109/JSAC.2013.130602
https://doi.org/10.1109/JSAC.2013.130602
https://doi.org/10.1007/978-3-642-11269-0_10
http://netwiki.amath.unc.edu/GenLouvain
https://doi.org/10.4230/LIPIcs.ISAAC.2016.43
https://doi.org/10.4230/LIPIcs.ISAAC.2016.43

Algorithmica (2020) 82:2174–2199 2199

18. Kloks, T.: Treewidth—Computations and Approximations, Lecture Notes in Computer Science, vol.
842. Springer, Berlin (1994)

19. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys.
Rev. E 84(6), 066122 (2011)

20. Lokshtanov, D.: Parameterized integer quadratic programming: Variables and coefficients. (2015)
arXiv:1511.00310 [cs.DS]

21. McDiarmid, C., Skerman, F.: Modularity of regular and treelike graphs. J. Complex Netw. 6, 596
(2017)

22. McDiarmid, C., Skerman, F.: Modularity of Erdős-Rényi random graphs. Random Struct. Algorithms,
(to appear)

23. McDiarmid, C., Skerman, F.: Modularity of Erdős-Rényi random graphs. In: 29th International Con-
ference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, vol.
1 (2018)

24. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E
69(2), 026113 (2004)

25. Porter, M., Onnela, J.P., Mucha, P.: Communities in networks. Not AMS 56(9), 1082–1097 (2009)
26. Prokhorenkova, L.O., Prałat, P., Raigorodskii,A.:Modularity ofmodels of complex networks. Electron.

Notes Discrete Math. 61, 947–953 (2017)
27. Skerman, F.: Modularity of networks. Ph.D. thesis, University of Oxford (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1511.00310

	The Parameterised Complexity of Computing the Maximum Modularity of a Graph
	Abstract
	1 Introduction
	1.1 The Modularity Function
	1.2 Notation and Definitions

	2 Positive Results
	2.1 Parameterisation by Vertex Cover Number
	2.2 Parameterisation by Treewidth
	2.3 Parameterisation by Max Leaf Number

	3 Hardness results
	4 Conclusions and Open Problems
	Acknowledgements
	References

