
Algorithmica (2010) 56: 235–269
DOI 10.1007/s00453-008-9174-2

Largest and Smallest Convex Hulls for Imprecise Points

Maarten Löffler · Marc van Kreveld

Received: 11 July 2006 / Accepted: 12 February 2008 / Published online: 4 March 2008
© The Author(s) 2008. This article is published with open access at Springerlink.com

Abstract Assume that a set of imprecise points is given, where each point is specified
by a region in which the point may lie. We study the problem of computing the
smallest and largest possible convex hulls, measured by length and by area. Generally
we assume the imprecision region to be a square, but we discuss the case where
it is a segment or circle as well. We give polynomial time algorithms for several
variants of this problem, ranging in running time from O(n logn) to O(n13), and
prove NP-hardness for some other variants.

Keywords Computational geometry · Imprecision · Data imprecision · Convex hulls

1 Introduction

In computational geometry, many fundamental problems take a point set as input
on which some computation is done, for example to determine the convex hull, the
Voronoi diagram, or a traveling sales route. These problems have been studied for
decades. The vast majority of research assumes the locations of the input points to
be known exactly. In practice, however, this is often not the case. Coordinates of the
points may have been obtained from the real world, using equipment that has some
error interval, or they may have been stored as floating points with a limited number
of decimals. In real applications, it is important to be able to deal with such imprecise
points.

This research was partially supported by the Netherlands Organisation for Scientific Research
(NWO) under BRICKS/FOCUS grant number 642.065.503 and under the open competition project
GOGO.

M. Löffler (�) · M. van Kreveld
Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
e-mail: loffler@cs.uu.nl

M. van Kreveld
e-mail: marc@cs.uu.nl

mailto:loffler@cs.uu.nl
mailto:marc@cs.uu.nl

236 Algorithmica (2010) 56: 235–269

When considering imprecise points, various interesting questions arise. Some-
times it is sufficient to know just a possible solution, which can be achieved by just
applying existing algorithms to some point set that is possibly the true point set. More
information about the outcome can be obtained by computing a probability distribu-
tion over all possibilities, for example using Monte Carlo methods and a probability
distribution over the input points. In many applications it is also important to know
concrete lower and upper bounds on some measure on the outcome, given concrete
bounds on the input: every point is known to be somewhere in a prescribed region.

1.1 Related Work

A lot of research about imprecision in computational geometry is directed at compu-
tational imprecision rather than data imprecision. Regarding data imprecision, there
is a fair amount of work that uses stochastic or fuzzy models of imprecision. Alter-
natively, an exact model of imprecision can be used.

Nagai and Tokura [22] compute the union and intersection of all possible con-
vex hulls to obtain bounds on any possible solution. As imprecision regions they
use circles and convex polygons, and they give an O(n logn) time algorithm. They
also study the Minkowski sum of convex polygons and the diameter of a point set.
Ostrovsky-Berman and Joskowicz [25] study the union of all possible convex hulls
when the imprecision of the points is not independent, but the points depend linearly
on a limited number of parameters.

Espilon Geometry is a framework for robust computations on imprecise points.
Guibas et al. [15] define the notion of strongly convex polygons: polygons that are
certain to remain convex even if the input points are perturbed within a disc of ra-
dius ε. They define an ε-convex δ-hull of a point set P to be a polygon with points
of P as vertices that is convex even when the points move over a distance ε, yet has
all vertices of the convex hull of P at most δ away from its boundary. They show that
such a hull always exists when δ ≥ 2ε, and give an O(n3 logn) algorithm to compute
it. Related results are given in [4, 9, 18].

Abellanas et al. [1] define the tolerance of a geometric structure as the largest
perturbation of the vertices such that the topology of the structure is guaranteed to
stay the same. They focus mainly on the planar Delaunay triangulation, and show
that its tolerance can be computed in linear time. They also study several subgraphs
of the Delaunay triangulation.

On the other hand, Bandyopadhyay and Snoeyink [2] study the possible changes
in topology for a fixed maximum perturbation ε. A triangle (or simplex in higher
dimensions) with vertices in some point set is called almost Delaunay when a per-
turbation of the set of at most ε exists, such that the circumcircle of the perturbed
triangle does not contain any other points. They show applications to the problem of
folding proteins.

Khanban and Edalat [16] want to compute the Delaunay triangulation of a set of
imprecise points, modeled as rectangles. They do this by defining the in-circle test,
a test that decides whether a point is inside the circle through three other points, on
imprecise points.

Boissonnat and Lazard [5] study the problem of finding the shortest convex hull of
bounded curvature that contains a set of points, and they show that this is equivalent

Algorithmica (2010) 56: 235–269 237

to finding the shortest convex hull of a set of imprecise points modeled as circles
that have the specified curvature (see also Sect. 2.2). They give a polynomial time
approximation algorithm.

Goodrich and Snoeyink [14] study a problem where they are given a set of parallel
line segments, and must choose a point on each segment such that the resulting point
set is in convex position. This can be seen as a convexity test for points with one-
dimensional imprecision. They present an algorithm that finds a solution, if it exists,
in O(n logn) time. They also show how to minimize the area or perimeter of the
polygon in O(n2) time.

The problem of finding the shortest tour for a set of imprecise points when the
order is not fixed, has been studied before and is generally called the Traveling Sales-
man Problem with Neighborhoods, or (Planar) Group-TSP. This problem is known to
be NP-hard. Mata and Mitchell [20] give a constant factor approximation algorithm
for some region models; additional results can be found in [7, 27].

Given a sequence of k polygons with a total of n vertices, Dror et al. [10] study the
problem of finding a tour that touches all of them in a given order and that is as short
as possible. They give an O(nk log(n/k)) algorithm when the input polygons are
disjoint and convex, and prove that the problem is NP-hard for non-convex polygons.
Higher dimensions are considered in [26].

Fiala et al. [12] consider the problem of finding distant representatives in a collec-
tion of subsets of a given space. Translated to our setting, they prove that maximizing
the smallest distance in a set of n imprecise points, modeled as circles or squares, is
NP-hard. Finally, we mention de Berg et al. [8] for a problem with data imprecision
motivated from computational metrology, Cai and Keil [6] for visibility in an impre-
cise simple polygon, Sellen et al. [28] for precision sensitivity, and Yap [30] for a
survey on robustness, which deals with computational imprecision rather than data
imprecision.

The smallest possible convex hull of a set of imprecise points coincides with the
notion of a polygon transversal: the smallest (convex) polygon intersecting a set of
regions. Mukhopadhyay et al. [21] compute the smallest area convex polygon that
intersects a set of parallel line segments in O(n logn) time, while Rappaport [23]
computes the smallest perimeter polygon transversal of a set line segments in a con-
stant number of orientations, also in O(n logn) time.

1.2 Problem Definition

All in all there has been little structured research into concrete bounds on the possible
outcomes of geometric problems in the presence of data imprecision. When placing
a traditional problem that computes some structure on a set of points in this context,
two important questions arise:

1. What are imprecise points? That is, what are the restrictions on the input of the
problem?

2. What are bounds on the outcome? That is, what kind of restrictions on the output
of the problem do we want to infer from this?

The first question is what we are given. We model imprecise points by requiring
the points to be inside some fixed region, without any assumption on where exactly in

238 Algorithmica (2010) 56: 235–269

their regions the points are, but with absolute certainty that they are not outside their
regions. The question then arises what shape these regions should be given. Some
natural choices are square and circular regions (or unit balls in the L1 and L2 met-
ric). The square model for example occurs when points have been stored as floating
point numbers, where both the x and y coordinates have an independent uncertainty
interval, or with raster to vector conversion. The circular model occurs when the point
coordinates have been determined by a scanner or by GPS, for example. Other mod-
els that may be interesting include the line segment model, the rectangle model, the
regular k-gon model, the discrete point set model, or the Voronoi model (where the
cells are the imprecision regions), mostly from a theoretical point of view. Another
question is what kind of restrictions we impose on those regions. For example, all
points can have the same kind of shape, but are they all of the same size? Do they
have the same orientation? Can we assume they are disjoint?

The second question is what we actually want to know. Geometric problems usu-
ally output some complex structure, not just a number, so a measure on this structure
is needed. For example, the convex hull of a set of points can be measured by area
or perimeter, or maybe even other measures in some applications. Once a measure
has been established, the question is whether an upper or a lower bound is desired, or
both.

1.3 Results

All these questions together lead to a large class of problems that are all closely
related to each other. This paper aims to find out how exactly they are related, which
variants are easy and which are hard to compute, and to provide algorithms for the
problems that can be solved in polynomial time. Since this type of problem has hardly
been studied, we consider the classical planar convex hull problem.

We studied various variants of this problem, and our results are summarized in
Table 1. These results are treated in detail in Sects. 3, 4 and 5. First, in the next
section, some related issues are discussed.

2 Preliminaries

Before the main results are treated, we discuss some difficulties that occur when
dealing with imprecise points. First we look at the Euclidean Minimum Spanning
Tree problem for imprecise points, and then we take a closer look at the circular
region model for imprecision.

2.1 Minimum Spanning Tree

To get an idea of how imprecision affects the complexity of geometric problems,
consider the Minimum Spanning Tree (MST) problem in an imprecise context. In this
case, we have a collection of imprecise points, and we want to determine the MST of,
for example, minimal length. This means that we want to choose the points in such
a way that the MST of the resulting point set is as small as possible. This problem is

Algorithmica (2010) 56: 235–269 239

Table 1 An overview of the complexity of the various variants. Two of the bounds are already known

Goal Measure Model Restrictions Running time

Largest Area Line segments Parallel O(n3)

Largest Area Line segments Non-intersecting, convex position1 O(n3)

Largest Area Line segments – NP-hard2

Largest Area Squares Non-intersecting O(n7)

Largest Area Squares Non-intersecting, equal size O(n3)

Largest Area Squares Equal size O(n5)

Largest Perimeter Line segments Parallel O(n5)

Largest Perimeter Line segments – NP-hard2

Largest Perimeter Squares Non-intersecting O(n10)

Largest Perimeter Squares Equal size O(n13)

Smallest Area Line segments Parallel O(n logn) [21]

Smallest Area Squares – O(n2)

Smallest Perimeter Line segments Parallel O(n logn) [23]

Smallest Perimeter Squares – O(n logn)

1The ‘convex position’ restriction means that the endpoint of the input segments are in convex position

2The decision version of the first NP-hard problem is NP-complete, but not of the second one

Fig. 1 (a) It is algebraically
difficult to find the minimal
MST. (b) It is combinatorially
difficult to find the minimal
MST

difficult in two different senses. It is combinatorially difficult to find the structure of
the optimal solution, but even when we know the structure it is algebraically difficult
to find the exact locations of the points.

Consider the input in Fig. 1a. It consists of five fixed points and one imprecise
point (in the square model, but it could also be a circle or something else). No matter
where the point is chosen in this square, the MST of the resulting set will connect
all of the fixed points to the imprecise point. Thus the problem reduces to minimiz-
ing the sum of the distances from the imprecise point to the fixed points, and this
requires finding roots of high degree polynomials, which is an algebraically difficult
problem [3].

But even when we disregard the algebraic problems, the problem is still difficult.
We can prove that it is NP-hard by reduction from the Steiner Minimal Tree prob-

240 Algorithmica (2010) 56: 235–269

lem [13]. Given a set of n fixed points P in the plane, we can compute its Steiner
Tree using a solution to the imprecise MST problem as follows. Take the set P as
precise points, and add a set P ′ of n − 2 imprecise points whose regions are squares
or circles that contain P , see Fig. 1b. The shortest MST of P ∪ P ′ is the Steiner
Minimal Tree of P .

2.2 Circular Model

Perhaps the most natural way of modeling imprecision is by allowing every point to
be inside a circular region. The convex hull problem then becomes:

Problem 1 Given a set of circles, choose a point inside each circle such that the
area/perimeter of the convex hull of the resulting point set is as large/small as possible
(see Fig. 2).

Two difficulties are introduced by using circular regions. The first difficulty is
that the combinatorial complexity of the problem increases. In the case of the square
model we can use the notion of extreme points in some directions. With circles this is
not possible since there are no special directions any more. The second difficulty is of
an algebraic kind. Even when we know which circles have to be chosen to obtain the
largest/smallest area/perimeter, it is not easy to find out where exactly in the circles
the points should be.

One special case of this problem has been studied before. For the problem of
finding the smallest perimeter for a set of unit size circles, Boissonnat and Lazard
[5] show that this problem can be approximated in polynomial time. The question
of whether it can be solved exactly in polynomial time is left open, and has to our
knowledge not yet been answered. The same problem for smallest area is also stated
as an open problem in [5].

One remark to make here is that given the algebraic complexity of the problem,
one could argue that an exact solution cannot be computed. For example in the case
of the smallest perimeter, even in a simple situation with only three circles, the co-
ordinates of the optimal points within the circles will generally be roots of some
polynomials of degree six. These roots cannot be computed exactly, only approxi-
mated. With this idea in mind, one could say that an approximation is the best we
can get in any case, and therefore a good polynomial time approximation is a good
solution.

Fig. 2 The largest area convex
hull for a set of circles

Algorithmica (2010) 56: 235–269 241

3 Largest Convex Hull

We now present our results on the imprecise convex hull problem. This section deals
with computing the largest possible convex hull; the smallest convex hull is treated
in the next section. We first use the line segment model, in which every point can be
anywhere on a line segment. This problem does not have much practical use, but it
will be extended to the square model later.

3.1 Line Segments

The problem we discuss in this section is the following:

Problem 2 Given a set of parallel line segments, choose a point on each line segment
such that the area of the convex hull of the resulting point set is as large as possible
(see Fig. 3a).

3.1.1 Observations

First we will show that we can ignore the interiors of the segments in this problem,
that is, we only have to consider the endpoints.

Lemma 1 There is an optimal solution to Problem 2 such that all points are chosen
at endpoints of the line segments.

Proof Suppose there exists a set of points P that has one point on every segment,
has maximal area, and a minimal number of points that are not at an endpoint of their
segments, and yet contains a point p that is not at an endpoint of its segment. If p is
not a vertex of the convex hull, just move it to one of the endpoints of its segment.
The new convex hull will be of equal or larger size, contradicting the choice of P .

If p is a vertex of the convex hull, and we move it over its segment, the area of the
polygon changes as a linear function, if we maintain the combinatorial structure of
the original hull. The maximum of this function is at one of the endpoints. Move p

to this endpoint, and the area of the polygon increases. It is possible that the polygon

Fig. 3 (a) The largest convex hull for a set of line segments. (b) The polygon Pij

242 Algorithmica (2010) 56: 235–269

is no longer convex or that some points of P no longer lie within the polygon, but
correcting this can only increase the area of the convex hull further. Once again we
have a contradiction with the choice of P . We conclude that P does not exist, and the
lemma is proven. �

Note that the lemma does not make use of the restriction that the segments are
parallel, and also applies to general sets of line segments. From now on however, we
do enforce this restriction. Without loss of generality, we assume the segments to be
oriented vertically.

3.1.2 Algorithm

Let L = {l1, l2, . . . , ln} be a set of n line segments, where li lies to the left of lj if
i < j . Let l+i denote the upper endpoint of li , and l−i denote the lower endpoint of
li . Now we need to pick one of each pair of endpoints to determine the largest area
convex hull. We use a dynamic programming algorithm that runs in O(n3) time and
O(n2) space. The key element of this algorithm is a polygon which is defined for
each pair of line segments.

For i �= j , define the polygon Pij as the largest possible polygon that is the convex
hull of some choice of endpoints to the left of li and lj , and uses the top of li and the
bottom of lj , see Fig. 3b. In other words, it is the convex hull of a set of endpoints
l+k for some values k ≤ i, and endpoints l−k for some values k ≤ j , where not both l+k
and l−k can occur for the same k, such that the area of this convex hull is maximized.
Note that Pij is defined both for the case i < j and i > j .

We consider the polygon Pij that starts at l+i and ends at l−j , and optimally solves

the subproblem to the left of these points, that is, contains only vertices l+k with k < i

or l−k with k < j , but not both for the same k, such that the area of the polygon is
maximal, see Fig. 3b. Note that Pij will be convex.

Now, we will show how to compute all Pij using dynamic programming. The
solution to the original problem will be either of the form Pkn or Pnk for some 0 <

k < n, and can thus be computed in linear time once all Pij are known.
When 1 < i < j , then we can write

Pij = max
k<j ;k �=i

(
Pik + �l+i l−j l−k

)

Of course we maximize over the area of the polygons. In words, we choose one of
the lower points to the left of lj , and add the new point l−j to the polygon Pik that

optimally solves everything to the left of the chosen point l−k . Analogously, when
1 < j < i, we can write

Pij = max
k<i;k �=j

(
Pkj + �l+i l−j l+k

)

When i = 1 or j = 1, we can use the same formulas to compute Pij , but we need the

additional option to just choose the line segment l+i l−j with area 0, in case there are
no more points to the left of the new one.

Algorithmica (2010) 56: 235–269 243

The algorithm runs in O(n3) time and requires O(n2) space. This is because we
do not have to actually store the entire polygon Pij for each i and j , but only the next
point on the upper chain when i > j or the lower chain when i < j , and the area of
the polygon. When we scan the known polygons while determining a new one, we
only have to add the area of a triangle to the stored area, and take the maximum of
those numbers. We do not need to enforce convexity, because a non-convex solution
can never be optimal.

Theorem 1 Given a set of n arbitrarily sized, parallel line segments, the problem of
choosing a point on each segment such that the area of the convex hull of the resulting
point set is as large as possible can be solved in O(n3) time.

3.1.3 Arbitrary Orientations

The above algorithm works for parallel line segments. When the line segments are
allowed to have arbitrary orientations, the most general version of the problem, where
segments are allowed to intersect, becomes NP-hard, and the decision version NP-
complete. We prove this by reduction from SAT. Given an instance of SAT, we make
the following construction.

We start with a large circle, and divide it into enough arcs, that is, at least as many
as the number of variables plus the number of clauses in the SAT instance, see Fig. 4a.
The arcs do not need to have the same length. We separate these arcs by precise points
(degenerate line segments). The solution will contain at least the convex hull of these
precise points. We will make sure never to place any (parts of) line segments outside
this circle, so maximizing the area of the convex hull is now equal to maximizing the
sum of the areas within the arcs.

For each Boolean variable b in the SAT instance, we take an empty arc and add
the configuration of Fig. 4b inside. This configuration consists of two precise points
l and r that were already added, a segment parallel to lr with endpoints t and f , and
two sets of points Pb and Qb . The points of Pb are placed so that they are all on
the convex hull of {l, f, r} ∪ Pb ∪ Qb , but none is on the convex hull of {l, t, r} ∪
Pb ∪ Qb , and the points of Qb are placed so that they are all on the convex hull
of {l, t, r} ∪ Pb ∪ Qb , but none is on the convex hull of {l, f, r} ∪ Pb ∪ Qb . The
whole configuration is symmetric by design. The idea is that to maximize the area
within this configuration, we either need t and all points in Qb , or f and all points

Fig. 4 (a) The division of the circle into independent arcs. (b) A variable. (c) A clause

244 Algorithmica (2010) 56: 235–269

in Pb . The first case represents the value true for this variable, and the second case
represents the value false. The points in Pb and Qb will have their other endpoints
in the clauses, or if they are only present to achieve symmetry they are simply precise
points.

For each clause in the SAT instance, we also take an empty arc, and add just a
single point s in it, see Fig. 4c. Now we make s the other endpoint of one segment
from each variable that occurs in this clause. For example, if the clause is a ∨ b ∨¬c,
then we make s the other endpoint of one of the points in Pa , one of the points in Pb ,
and one of the points in Qc . For the area to be maximal, of at least one of these three
segments the point must be chosen in s, which is only possible when a is true, b is
true or c is false.

Let A∗ be the area of the convex hull of the set of points that contains the fixed
points, all clause points s, and within every variable configuration the point t and the
point set Q. Now an assignment to the variables to satisfy the SAT instance can be
made if and only if a solution to the convex hull maximization problem of area A∗
exists.

It is well known that rational points are dense on the unit circle, and we can con-
struct m points that are all at least π

m
radians apart with coordinates dat depend

quadratically on m. Between two such fixed points l and r , we make a symmetric
construction with points on a grid parallel to lr . If the variable is used k times, this
grid needs 2k cells in the lr direction, and k2 cells in the perpendicular direction. If
we place the grid in a rectangle of width half the length of lr , and height 1

2m
times

the length of lr , then the variables do not interfere with each other. Thus all con-
structed points are rational points of polynomial complexity. This analysis shows that
the decision problem is in NP.

Theorem 2 Given a set of n arbitrarily oriented, possibly intersecting line segments,
the problem of choosing a point on each segment such that the area of the convex hull
of the resulting point set is as large as possible is NP-hard. The decision version of
the problem is NP-complete.

3.1.4 All Endpoints in Convex Position

The status of the problem for arbitrarily oriented line segments that do not intersect
is still open. There is, however, another special situation that we can solve. If the
endpoints of the input line segments are in convex position, and the segments do not
intersect, we can also solve the problem in O(n3) time. An example of such a set of
line segments is shown in Fig. 5a. Because the points are in convex position, there is
a cyclic ordering on them that we can use.

To solve the problem in this case, we also use a dynamic programming approach.
Let p and q be endpoints of different line segments, and let p′ and q ′ be their re-
spective other ends. We define Ppq as the chain that connects p to q in positive
(counterclockwise) direction, such that the area of the region enclosed by the chain
and pq is maximal over all valid chains that connect p to q , see Fig. 5b. A chain is
valid if it does not contain both ends of any input line segment. When p′ is between
p and q (in positive direction), we also define P ′

pq as the chain that connects p to q

Algorithmica (2010) 56: 235–269 245

Fig. 5 (a) A set of line segments whose endpoints are in convex position. (b) The polygons Ppq (solid)
and P ′

pq (dashed)

in positive direction and maximizes the area enclosed by it, but is not allowed to use
any points between p′ and q . With a slight abuse of notation, we use Ppq and P ′

pq

both for the chains and for the areas of their corresponding polygons.
If we know all Ppq , then we can solve the problem in O(n2) time, since the opti-

mal solution will be of the form Ppq + qp for some p and q . To compute all Ppq , we
find the following recursive relations between the P and P ′ values.

Let p and q be endpoints of different line segments. If there are no points between
them, then Ppq = pq . Else, if p′ is not between p and q , then there exists a point r

between p and q such that Ppq is pr + Prq . If p′ is between p and q , then either
Ppq = P ′

pq , or there is a point r between p′ and q such that Ppq = P ′
pr + Prq .

If P ′
pq is defined, we know that p′ is between p and q . If there are no points

between p and p′, then P ′
pq = pq . Else, there exists a point r between p and p′,

such that P ′
pq = Ppr + rq .

In all cases, we have written Ppq and P ′
pq in terms of shorter chains and at most

one variable point. Since there are a quadratic number of such chains, we can compute
them all in O(n3) time and O(n2) space.

Theorem 3 Given a set of n arbitrarily sized, arbitrarily oriented, non-intersecting
line segments with their endpoints in convex position, the problem of choosing a point
on each segment such that the area of the convex hull of the resulting point set is as
large as possible can be solved in O(n3) time.

3.2 Squares

The problem we discuss in this section is the following:

Problem 3 Given a set of axis-aligned squares, choose a point in each square such
that the area of the convex hull of the resulting point set is as large as possible (see
Fig. 6a).

246 Algorithmica (2010) 56: 235–269

Fig. 6 (a) The largest area convex hull for a set of squares. (b) The four extreme points

3.2.1 Observations

Once again we observe that the points will never have to be chosen in the interior of
the squares. In fact we only have to take the corners of the squares into account.

Lemma 2 There is an optimal solution where all points lie at a corner of their
square.

Proof Suppose there exists a set of points P that has one point in every square, has
maximal area, and a minimal number of points that are not at a corner of their squares,
and yet contains a point p that is not at a corner of its square. If p is not a vertex of
the convex hull, just move it to one of the corners of its square. The new convex hull
will be of equal or larger size, contradicting the choice of P .

If p is a vertex of the convex hull, and we move it around in its square, the area of
the polygon changes as a linear function in the coordinates of p as we maintain the
combinatorial structure. The maximum of this function is at one of the corners. Move
p to this corner, and the area of the polygon increases. It is possible that the polygon
is no longer convex or that some points of P no longer lie within the polygon, but
correcting this can only increase the area of the polygon further. Once again we have
a contradiction with the choice of P . We conclude that P does not exist, and the
lemma is proven. �

First we define the four extreme points of the convex hull we are trying to compute
as the leftmost, topmost, rightmost and bottommost points. These points divide the
hull into four chains that connect them. These chains have some useful properties.
For example, the chain that connects the leftmost point pl to the topmost point pt

will always stay within the triangle �plpt s, where s is the intersection between the
vertical line through pl and the horizontal line through pt . The extreme points and
the triangles that surround the four chains are shown in Fig. 6b.

Lemma 3 All vertices on the top left chain are top left corners of their squares, all
vertices on the top right chain are top right corners of their squares, all vertices on
the bottom left chain are bottom left corners of their squares, and all vertices on the
bottom right chain are bottom right corners of their squares.

Algorithmica (2010) 56: 235–269 247

Fig. 7 The four extreme points of the optimal solution need not be corners of the extreme squares. (a) Ten
input squares. (b) The optimal solution

Proof All vertices on the top left chain will have the outside of the hull above them
and to their left. This means they have to be top left corners of their squares, because
otherwise we could move the point to the left or upwards and the area of the convex
hull would increase. Similar arguments apply to the other three chains. �

In general it is not easy to find the extreme points. For example, it could be that
none of the extreme points in the optimal solution is in one of the extreme squares in
the input, see for example Fig. 7. Here the topmost and bottommost squares are the
large ones, and the leftmost and rightmost squares are the medium ones. However, in
the optimal solution the extreme points will all be corners of the small squares.

3.2.2 Algorithm for Non-overlapping Squares

When we restrict the problem to non-overlapping squares, we can solve the problem
in O(n7) time. The idea behind the solution is to divide the squares into groups of
squares of which we know that only two of their corners are feasible for an optimal
solution, and then to use the algorithm for parallel line segments (Problem 2) on these
groups.

When the four extreme points are known, we can use this information to solve the
problem in O(n3) time. However, how to find those points still remains a difficult
problem, so we try all possible combinations, hence the total of O(n7).

The four extreme points pl , pt , pr and pb divide the plane as shown in Fig. 8.
From pl we draw a line to the right, from pb one upwards, from pr one to the left
and from pt one downwards. These four lines intersect at four intersection points. For
a square to be able to have its point on the top left chain, its upper left corner needs
to be in the rectangle between pl and pt (actually even in the upper left triangle).
An analogous property holds for the other chains. If a square has the potential to be
included on more than two chains, this means that it must have at least one of the
four intersection points in its interior. Since the squares do not overlap, there can be
at most four such squares. Of these squares we simply try every possible combination
of corners, of which there are only constantly many, so we can assume from now on
that every square has at most two potential corners.

248 Algorithmica (2010) 56: 235–269

Fig. 8 The four extreme points can divide the plane in two different ways

Fig. 9 The squares can be
divided into five groups of
parallel line segments

Now that all squares have only two potential corners, we can represent them by
line segments. We see that a segment can be of six possible kinds, as there are six
ways of picking two of four points. These six kinds may however have only four
orientations: horizontal, vertical or one of the two diagonal directions. In fact, not all
four can appear at the same time in our problem. Indeed, a diagonal line segment has
to have its endpoints in two opposite triangles (see Fig. 9). This means that if there
are line segments in both diagonal directions, they have to intersect, and thus their
original squares have to overlap, which was not allowed. Therefore, there can only be
diagonal segments in one direction.

Furthermore, since all line segments have to reach over the quadrilateral
♦plptprpb , line segments of the same kind have to be close to each other, that
is, their intersection intervals have to be consecutive. There are six possible kinds of
line segments, of which we have seen that only five may appear at the same time,
which implies that we can divide the segments into five groups, as shown in Fig. 9.
Of course, the segments in the figure cannot be extended to non-overlapping squares,
but it is hard to draw a picture in which they can, as the squares would have to have
very different sizes if we want several squares in each of the five groups.

We will now solve the situation of Fig. 9 in O(n3) time. The bases L, R, T , B , and
M stand for the left, right, top, bottom, and middle (diagonal) sets of line segments.
The superscripts denote the endpoints of these segments.

Note that any convex hull of a choice of points in this situation must follow these
sets of endpoints in the correct order. That is, it starts at the left extreme point, then

Algorithmica (2010) 56: 235–269 249

goes to a number of points of LB , then to a number of points of BL, then to the
bottom extreme point, and so on. It cannot, for example, go to a point of LB , then to
a point of BL, and then back to a point of LB .

The algorithm will repeatedly take two of the ten sets of endpoints, and for each
combination of a point in one, and a point in the other set, compute the optimal
subsolution connecting those points in linear time, based on earlier results. The sub-
solutions are computed in the following order:

• For each pair of points in LT and LB , we compute the optimal solution connecting
them around the left side, using the algorithm for parallel line segments.

• For each pair of points in BL and BR , we compute the optimal solution connecting
them around the lower side, using the algorithm for parallel line segments.

• For each pair of points p ∈ MT L and q ∈ LB , compute the optimal chain connect-
ing them that does not use any other point of MT L. This can be done by trying a
linear number of points r ∈ LT as the point to connect p to, and using the known
optimal chain between r and q .

• For each pair of points p ∈ MT L and q ∈ BL, compute the optimal chain connect-
ing them around the left side that does not use any other points of MT L and BL.
We do this by trying a linear number of points r ∈ LB as the point to connect q to,
and combining this with the known optimal chain between p and r , computed in
the previous step.

• For each pair of points p ∈ MBR and q ∈ BL, compute the optimal chain connect-
ing them that does not use any other point of MBR . This can be done by trying a
linear number of points r ∈ BR as the point to connect p to, and using the known
optimal chain between r and q .

• For each pair of points p ∈ MT L and q ∈ MBR , compute the optimal chain con-
necting them around the lower left side that does not use any other points of MT L

and MBR . We can do this by trying a linear number of points r ∈ BL as the left-
most point of BL that is used, and then combining the chains between p and r and
between q and r that we computed in the two previous steps.

• For each pair of points p ∈ MT L and q ∈ MBR , compute the optimal chain con-
necting them around the lower left side, which is allowed to use other points of
MT L and MBR . We do this by using an adjusted version of the algorithm for par-
allel line segments. The optimal chain connecting p to q either uses another point
from MT L or MBR , or it does not and uses the chain computed in the previous
step. This means we must take the maximum of the formula given in Sect. 3.1.2,
and the optimal chain of the previous step.

• In a symmetrical way, for each pair of points in MT L and MBR , compute the
optimal chain connecting them around the upper right side that does not use any
other points of MT L and MBR .

• Finally, check a quadratic number of pairs of a point from MT L and a point from
MBR , and for each pair combine the chains of the previous two steps. The optimal
solution is the maximum of these pairs.

The algorithm given above works when we assume that each set of endpoints is
used at least once by the optimal solution. Of course, that need not be the case. But if
from a certain group no point is used, then we also know that all points of the opposite

250 Algorithmica (2010) 56: 235–269

group may be used, and we are left with a smaller problem that can be solved in a
similar way as described above. This means we can just try solving the problem under
the assumption that one or more of the groups do not appear in the optimal solution,
and then pick the best solution without increasing the time bound.

Theorem 4 Given a set of n arbitrarily sized, non-overlapping, axis-aligned squares,
the problem of choosing a point in each square such that the area of the convex hull
of the resulting point set is as large as possible can be solved in O(n7) time.

3.2.3 Unit Size Squares

The extra factor O(n4) that comes from the fact that it is hard to determine the ex-
treme points, relies on situations where the size of the squares differs greatly, such as
in Fig. 7a. When the squares have equal size, we show that there are only constantly
many squares that can give the extreme points, thus reducing the running time of the
above algorithm to O(n3).

For simplicity we assume general position, that is, no two squares have the same
x- or y-coordinates. It is not true that all of the extreme points need to be corners of
the extreme squares, as is shown in Fig. 11, but we do have the following property:

Lemma 4 In the largest area convex hull problem for axis-aligned unit squares, an
extreme square in the input set gives one of the extreme points of the optimal solution.

Proof Let l be the vertical line at the leftmost x-coordinate in the input set, and let
Sleft be the square that has its left side at l. This square must clearly contribute a vertex
to the optimal solution H , because otherwise the addition of one of its left corners
would improve the optimal solution. If one of its left corners is used, then this must
be the leftmost extreme point of H .

If the top right (the bottom right case is symmetric) corner p of Sleft is part of H ,
then p must be part of the top right chain of H , by Lemma 3. If p is the topmost or
the rightmost point on this chain, it is also an extreme point of H .

Now assume that p is not the topmost or rightmost point on its chain, see Fig. 10.
Then the topmost point q has to be above and to the left of p. Suppose there is another
point on the top right chain between q and p. Then this point must also be a top right
corner of its square, and it must lie to the left of p. But since all squares are equally
large, the left side of this square has to be to the left of l, a contradiction. So there are
no points between p and q .

Fig. 10 Including the leftmost
point increases the area

Algorithmica (2010) 56: 235–269 251

Fig. 11 The optimal solution
does not use the top edge of the
topmost square, since moving it
down increases the area of the
convex hull

There is also a point r that is the first on the chain to the right of and below p in
the optimal solution H . Now q has to be at the top left corner of its square, because
otherwise the square would once again lie to the left of l. Let the top left point of Sleft
be p′, and the top right point of the same square as q be q ′. If there are points on
the top left chain above the horizontal line through p, let s be the one closest to q . If
there are none, let s be the intersection of the upper left chain and the segment pp′.

Now take H , and take p′ instead of p, and q ′ instead of q . The resulting solution
H ′ has a larger area than H , contradicting the assumption that p was not the topmost
or rightmost point on its chain. This is because the triangle �pqs is not larger than the
triangle �pq ′s. For the rest of the plane, all points inside H will also be inside H ′.
Furthermore, p′ was not part of H so H ′ really is larger than H . H ′ is not necessarily
convex, but making it convex will only increase the area. �

Note that this lemma also applies to overlapping squares.
As a consequence of this lemma, the largest convex hull problem for non-

overlapping axis-aligned unit squares can be solved in O(n3) time. In the simple
situation where the leftmost square gives the left extreme point, the topmost square
the top extreme point, etc, this is easy to see, because then we have only 24 possible
configurations for the extreme points, and we can just solve each problem using the
O(n3) time algorithm described in Sect. 3.2.2. However, it is also possible that the
topmost square gives for example the left extreme point, as shown in Fig. 11, where
the top extreme point of the optimal solution is not in one of the extreme squares.
However, this can only happen when the leftmost square is the same as the topmost
square. In that case we have three possible points of that square to try, and when we
try for example the lower left point we can just take the reduced problem and search
for the extreme squares again (which can be done in constant time if we sorted them
first). This procedure has to be followed at most four times, since we find an extreme
point every time, thus the total number of configurations to try is still constant.

Theorem 5 Given a set of n equal size, non-overlapping, axis-aligned squares, the
problem of choosing a point in each square such that the area of the convex hull of
the resulting point set is as large as possible can be solved in O(n3) time.

3.2.4 Overlapping Unit Squares

For overlapping squares, the problem remains open. However, for overlapping
squares of equal size, we can solve the problem in O(n5) time. Figure 12a shows

252 Algorithmica (2010) 56: 235–269

Fig. 12 (a) The largest convex hull for a set of intersecting unit squares. (b) The structure P2601

this situation. We can solve this problem with a variation on the dynamic program-
ming solution to Problem 2.

Assume the four extreme points pl , pt , pr and pb to be known. By Lemma 4 there
are only a constant number of possibilities for them, and trying them all does not
increase the time bound asymptotically. We call the remaining squares S1, . . . , Sn−4,
sorted from left to right. For square Si , we denote the top left corner by Stl

i , the top
right corner by Str

i , the bottom left corner by Sbl
i , and the bottom right corner by Sbr

i .
Abusing notation slightly, we also denote Stl

0 = pl , Str
0 = pt , Sbl

0 = pl and Sbr
0 = pb .

For different h, i, j, k ∈ {0, . . . , n − 4}, we define the structure Phijk to be the set
of four chains that consists of a chain going from pl to Stl

h via a number of top left
corners of squares Sm with m < h, a chain going from pt to Str

i via a number of top
right corners of squares Sm with m < i, a chain going from pl to Sbl

j via a number

of bottom left corners of squares Sm with m < j , and a chain going from pb to Sbr
k

via a number of bottom right corners of squares Sm with m < k, such that no square
participates on two different chains, and such that the area of the region bounded by

these chains and the segments Stl
hpt , Str

i pr , Sbl
j pb and Sbr

k pr is maximal, see Fig. 12b.
If h > i, j, k we can compute Phijk in linear time using the structures Pmijk for

m < h

Phijk = max
m<h;m �=i,j,k

(
Pmijk + �Stl

mStl
hpt

)

If one of the other indices is the largest, a similar expression holds. There are
O(n4) structures to compute in linear time, so the algorithm runs in O(n5) time and
O(n4) space. Once all of the P ’s are computed, we pick the one with the largest area,
and the problem is solved.

Theorem 6 Given a set of n equal size, possibly overlapping, axis-aligned squares,
the problem of choosing a point in each square such that the area of the convex hull
of the resulting point set is as large as possible can be solved in O(n5) time.

Algorithmica (2010) 56: 235–269 253

4 Smallest Convex Hull

In this section we will investigate the problem of finding the smallest area convex
hull of a set of imprecise points. As in the previous section we will first look into the
line segment model, and then move on to squares.

4.1 Line Segments

The problem we discuss in this section is the following:

Problem 4 Given a set of parallel line segments, choose a point on each line segment
such that the area of the convex hull of the resulting point set is as small as possible
(see Fig. 13).

This problem is equivalent to that of finding the smallest area convex polygon
transversal of the line segments: the smallest convex polygon that intersects all seg-
ments. Mukhopadhyay et al. [21] study this problem and give an O(n logn) algo-
rithm to solve it. Here we give a summary of the ideas of their algorithm, since they
are relevant for the square case we will treat in the next section.

Observe that if a line segment contributes a vertex to the optimal solution, and the
segment is not the leftmost or rightmost one, then this vertex must be on one of the
endpoints of the segment. Otherwise we could move it up or down while decreasing
the area until we reach an endpoint or the vertex disappears. Denote the leftmost
segment by sl and the rightmost segment by sr .

To solve Problem 4, we define the top chain and the bottom chain of the set of
segments. The top chain is a polyline connecting the lower endpoint of sl to the lower
endpoint of sr , and is defined as the upper half of the convex hull of the set of all
lower endpoints of the input segments, see Fig. 14a. The bottom chain is defined
symmetrically.

The regions enclosed between the top and bottom chain is the greatest common
region, or GCR, of the set of line segments. This is the largest region that is part of the
convex hull of every possible choice of points on the segments, or equivalently, the
intersection of all those convex hulls. If this regions is empty (i.e., the bottom chain
always stays above the top chain), then there is a stabber of the segments, which leads
to a zero area solution. This can be found in linear time [11].

To find the optimal solution, we need to find a point on sl and a point on sr such
that the polygon we get by drawing tangents from those two points to the top and

Fig. 13 The smallest convex
hull for a set of line segments

254 Algorithmica (2010) 56: 235–269

Fig. 14 (a) The top chain ct and bottom chain cb . (b) The optimal solution

Fig. 15 The smallest convex
hull for a set of squares

bottom chains, see Fig. 14b, has minimum area. The two positions are independent:
if they would be connected by a straight line (that passes above the top chain or below
the bottom chain), we could move them up or down together and decrease the area.
We can compute their individual optimal positions in linear time. The total time is
O(n logn), because we need to compute the chains.

Theorem 7 Given a set of n arbitrarily sized, parallel line segments, the problem of
choosing a point on each segment such that the area of the convex hull of the resulting
point set is as small as possible can be solved in O(n logn) time.

4.2 Squares

The problem we discuss in this section is the following:

Problem 5 Given a set of axis-aligned squares, choose a point in each square such
that the area of the convex hull of the resulting point set is as small as possible (see
Fig. 15).

4.2.1 Observations

The squares can be divided into those that define a vertex of the optimal convex hull,
and those that do not. Of the squares that define a vertex, there are only four for which
this point does not lie at a corner, and for those we can show it must at least be on
some line segment.

Algorithmica (2010) 56: 235–269 255

Fig. 16 (a) Up to four vertices
of the smallest convex hull may
not be a corner of one of the
squares. (b) The top left, bottom
left, top right, and bottom right
chains

Lemma 5 In the optimal solution, only the leftmost, rightmost, topmost, and bottom-
most vertices of the convex hull need not be corners of their squares.

Proof Suppose some other vertex of the convex hull is not at the corner of its square.
Suppose for example that this vertex lies between the leftmost and the topmost ver-
tices. This means that moving the vertex either down or to the right will decrease the
area of the convex hull. Since the vertex is not at a corner, it can move in at least one
of those directions. Thus the convex hull cannot be optimal. �

These four squares will be called the extreme squares in four directions, and for
these four squares, the points must lie on the inner edge. We call these squares Sl , Sr ,
St and Sb , meaning the leftmost, rightmost, topmost and bottommost squares. Here
leftmost means the square with the leftmost right side, etc. We call their points the
four extreme points, and denote them with pl , pr , pt , and pb , respectively. An exam-
ple where there are indeed four points not at a corner is shown in Fig. 16a.

Similar to the case of parallel line segments, we now define four chains connecting
corners of the squares. The top left chain, for example, will be the chain connecting
the bottom right corner of Sl to the bottom right corner of St , via other bottom right
corners of squares, such that the region to the lower right of the chain is convex and
contains a point of every square. In the same way we can define the top right chain,
the bottom right chain, and the bottom left chain. An example is shown in Fig. 16b.
In the case where two of the extreme squares are the same, one of the chains reduces
to a single point.

For every location of the point pl , there is a tangent point alt(pl) on the top left
chain such that the line through pl and alt(pl) does not go through the region to the
lower right of the top left chain. When there are more than one such points we choose
the one that lies most to the upper right. Similarly, we define alb(pl) as the tangent
point on the bottom left chain. For every point pt we define tangent points atl(pt) and
atr(pt) on the top left and top right chains, for every pr we define two tangent points
art(pr) and arb(pr) on the top right and bottom right chains, and finally we define for
every point pb two tangent points abl(pb) and abr(pb) on the bottom left and bottom
right chains. All those tangent points are vertices of the chains. Note that they may
also be corners of the extreme squares.

Lemma 6 If the points pl , pt , pr and pb are known, in the optimal solution the point
pl is connected to pt by a straight line segment if this segment does not intersect the

256 Algorithmica (2010) 56: 235–269

top left chain, and otherwise via the piece of the top left chain between alt(pl) and
atl(pt). Similarly pt is connected to pr by a straight line segment or via the piece of
the top right chain between atr(pt) and art(pr), pr is connected to pb by a straight
line segment or via the piece of the bottom right chain between arb(pr) and abr(pb),
and pb is connected to pl by a straight line segment or via the piece of the bottom
left chain between abl(pb) and alb(pl).

Proof The optimal solution H contains the convex hull of pl , pt , pt and pb . If there
is a vertex q of the top left chain that is to the top left of the segment plpt , but is
not contained in the optimal solution, then the solution is invalid. This is because q

is a bottom right corner of its square, so the whole square is disjoint from H . Similar
reasoning applies to the other three chains. �

In the degenerate case where the squares Sl , St , Sr and Sb are just points, this
implies that the four chains together form the optimal solution.

Note that just as in the case of line segments, we can still find out if a zero area
solution exists in linear time, since a solution of zero area still corresponds to a stab-
ber, and a stabber of a set of squares can be computed in O(n) time if it exists [11].
However, this is no longer directly related to the greatest common region.

4.2.2 Algorithm

So far everything is still the same as in the case of line segments. However, we can
no longer use the approach we used in the case of the line segments, because now the
locations of the four extreme points are no longer independent. It can really happen
that in the optimal solution, two of those points are directly connected by a straight
line, as can be seen in the example in Fig. 15. Instead, we use an alternative approach.

Each of the four extreme points can move over an edge of its square. We divide
this edge into a linear number of intervals. Within each interval, if the point would
be chosen there, the vertices on the chains the point would be connected to are the
same. This means the endpoints of the intervals are exactly the points that lie on a
line through two consecutive vertices of one of the chains. The resulting intervals are
shown in Fig. 17.

If we would only consider one extreme point at a time, as we did with the line
segments, then the point would have to be at one of the endpoints of these intervals,
since the area function is piecewise linear, and only changes exactly at those end-
points. However, when we consider all four extreme points simultaneously, then the

Fig. 17 The lower left and the
lower right chain divide the
upper edge of Sb into a linear
number of intervals

Algorithmica (2010) 56: 235–269 257

Fig. 18 The area of a solution
can be decomposed into
triangles that depend on at most
two variables

optimal location of one or more of the points may also be somewhere in the middle
of an interval, as is already apparent in Fig. 16a.

Assume we know for each of the four extreme points the interval on which they
must be in the optimal solution. We then know the tangent points on the chains they
must be connected to if we do not look at the other extreme points. Since we know
this for each extreme point, we can see whether they will be connected to each other
or to a chain. For example, the left point pl has a point alt(pl) on the top left chain it
could be connected to, and the upper point pt has a point atl(pt) on the top left chain
it could be connected to. If alt(pl) lies to the lower left of atl(pt), then pl and pt will
be connected to their tangent points, and not to each other. If alt(pl) lies to the upper
right of atl(pt), then pl and pt will be connected by a straight line segment. If alt(pl)

is equal to atl(pt), then we do not know yet.
We can now write the area of the convex hull as a polynomial in four variables

that specify the exact locations of the extreme points within their interval. This poly-
nomial will have degree at most 2, because we can decompose the area into triangles
that depend on at most two of the variables, as shown in Fig. 18. We can find the min-
imum of this polynomial within the bounds given by the intervals on which the points
can move, in constant time. In the case where we do not know whether two points
will be connected by a straight line segment or via a point on a chain, we simply try
both and add an extra restriction to the variables in the one case.

We can now easily solve the problem in O(n4) time. In the optimal solution, each
of the four extreme points needs to be on one of the intervals of its segment. This
means a total of O(n4) possible combinations of intervals, and for each combination
the solution requires solving a polynomial that does not depend on n. However, many
of the combinations of intervals seem to be redundant, because a solution using them
can clearly be seen not to be optimal. Indeed we can show that we do not need to
spend O(n4) time to solve this problem, and improve it to O(n2).

We observe that each connection between two of the extreme points must be one
of three types. We call the connection of type 0 if the points are connected by a
single line segment that does not touch the respective chain in the optimal solution.
We call the connection of type 1 if the points are connected by a single line segment
that touches the respective chain. We call the connection of type 2 if they are not
connected by a single line segment. In Fig. 19 examples are shown of only type 0
connections, only type 1 connections, only type 2 connections, and an example with
two connections of type 0, one of type 1, and one of type 2.

258 Algorithmica (2010) 56: 235–269

Fig. 19 The points can be connected either (a) directly, (b) just touching a point on the chain, (c) via
multiple points of the chain. (d) Multiple cases can appear together

There are only a constant number of possible combinations of connections be-
tween the four extreme points, namely 34. If we can compute the optimal solution of
each type and test their validity in less than O(n4) time, then we can just pick the
best one and we have a faster algorithm. We make the following observations.

• Each connection of type 1 reduces the number of possible combinations of inter-
vals by a linear factor.

• Every pair of connections of type 2 divides the problem into two independent sub-
problems.

• Every pair of adjacent connections of type 0 removes the need to divide one of the
extreme squares into intervals, reducing the number of possible combinations of
intervals by a linear factor.

The first statement is true because there is only a linear number of pairs of intervals
for the two extreme points in question for which the point to which they can be
connected on the chain is the same, and this is required for a type 1 connection.

The second statement is similar to the independence of the extreme points in the
case of line segments. Since we know by assumption that the two connections are
of type 2, the optimal subproblems together have to be the optimal solution for the
complete problem. The two connections could be adjacent, giving one subproblem of
linear complexity and one of potentially cubic complexity, or they could be opposite
to each other, giving two problems of potentially quadratic complexity.

The third statement means that if one of the extreme points has only connections
of type 0, there is no need to divide its edge into intervals, since the structure of the
convex hull, and therefore the polynomial describing the area, will be the same.

When one or more of these patterns occur, we can solve the problem in less time.
For example, take type 0-1-2-2. This type contains two type 2 connections, and also
a type 1 connection. The type 2 connections divide the problem into two independent
subproblems. The smallest subproblem can be solved in linear time, by just choosing
the best out of a linear number of intervals. For each interval we know their tangent
points on the chains, so it can be solved in constant time. The larger subproblem con-
tains a type 1 connection. This means there is only a linear number of combinations
of intervals such that the connection is really of type 1. We can find them and store
them easily in quadratic time. Now we look at a quadratic number of groups of three
intervals; one combination of two that we just stored, and one from the remaining
extreme point (the one between the type 0 and type 2 connections). For each three in-
tervals, we can solve the problem in constant time since all tangent points are known.

Algorithmica (2010) 56: 235–269 259

Table 2 The 21 possible types

0-0-0-0 0-0-0-1 0-0-0-2 0-0-1-1 0-0-1-2 0-1-0-1 0-1-0-2

1-1-1-1 1-1-1-2 1-1-1-0 1-1-2-2 1-1-2-0 1-2-1-2 1-2-1-0

2-2-2-2 2-2-2-0 2-2-2-1 2-2-0-0 2-2-0-1 2-0-2-0 2-0-2-1

We can also check in constant time whether all connections are of the correct types
(in particular the type 0 connection), by looking at the tangent points. We have now
solved both subproblems in O(n2) time. We finally need to check whether the sub-
solutions together yield a convex shape. If they don’t, then the type was not 0-1-2-2.
If they do, then it is a potential optimal solution.

There are 34 possible types, but after removing symmetries only 21 remain, see
Table 2. Note that in all 21 types at least one of these three patterns has to occur, and
thus every type can be solved in O(n3) time. Furthermore, in all but one case (and
its symmetric variants), actually two of these patterns occur together, and they can
be solved in O(n2) time. All these types can be solved in a similar way to the one
described above. The one exception is the one shown in Fig. 19d.

This type has only one of the three patterns. However, we show we can solve it in
linear time.

Lemma 7 The pattern with a type 0 connection, a type 1 connection, a type 0 con-
nection and a type 2 connection, in that order, can be solved in O(n) time.

Proof We assume the types of connections to be as in Fig. 19d, other cases are sym-
metric. Since the top right and bottom left connections do not touch the chains, we
do not need to look at these two chains any more. There will be one point p on the
top left chain that is the tangent point of the top left connection. Now the top left
connection is a single line segment from the leftmost extreme point to the topmost
extreme point, and is still allowed to rotate around p within some interval such that
it does not intersect the top left chain, see Fig. 20a.

For a fixed position of the top left connection, and therefore the points pl and pt ,
the optimal solution is easy to see. Find the two consecutive points on the bottom
right chain such that the leftmost extreme point has its y-coordinate between the y-
coordinates of those two points. The bottommost extreme point will be on the line
through these two points, because moving it in either direction from that position
would increase the area. In the same way, the rightmost point must be on the line
through the two points that have their x-coordinates closest to that of the topmost
extreme point, as in Fig. 20a.

Now if we start with p as the bottom leftmost point on the top left chain, and
rotate the line connecting the leftmost extreme point to the topmost extreme point
around it in clockwise direction, the bottommost two points of the bottom right chain
that determine the position of the bottommost extreme point will only move upwards,
while the two points that determine the position of the rightmost extreme point will
also only move upwards, see Fig. 20b. When the line rotates far enough, p will change
to the next point of the top left chain, but still the points on the bottom right chain
only move towards the upper right. This means that after a linear number of steps we
have tried all possibilities and found the optimal solution.

260 Algorithmica (2010) 56: 235–269

Fig. 20 (a) The special case 0-1-0-2. (b) The bottom left part zoomed in

Because we assumed the type is 0-1-0-2, we still have to make sure that the so-
lutions we check are indeed of this type. This means that we have to check that the
lower left and upper right connections do not intersect their respective chains. We can
check this on average in constant time every step, if we keep track of the slope of the
connections and the first vertex of the chain it would intersect. Also, the points on
the lower right chain have to be in the correct order, otherwise the found hull is not
convex and may even intersect itself. We can check this in constant time as well. �

We conclude that every situation can be solved in O(n2) time, and therefore the
whole problem can be solved in O(n2) time.

Theorem 8 Given a set of n arbitrarily sized, possibly overlapping, axis-aligned
squares, the problem of choosing a point in each square such that the area of the
convex hull of the resulting point set is as small as possible can be solved in O(n2)

time.

5 Perimeter Versus Area

Until now we have only considered area of the convex hull as the measure to max-
imize or minimize, but there are other measures that can be used. The other natural
measure for determining the size of convex polygons is the perimeter. In this section
we will analyse the relevant differences between those two measures, and how the
results of the previous sections can be extended to the perimeter measure.

One important observation is the way the size of a polygon changes when only
one point is moving over a line, while the rest remains fixed. The area of the polygon
is just a linear function of the moving point, but the perimeter is not: The distance
between two points changes as a symmetric hyperbolic function with a minimum
when one point moves over a straight line. This means the perimeter changes as the
sum of two such functions, as long as the combinatorial structure of the hull does
not change. Another important difference is that the area of a polygon is invariant

Algorithmica (2010) 56: 235–269 261

under many kinds of transformations, including shearing, while the perimeter is only
invariant under rigid transformations.

More specific to the problem at hand, when we want to maximize the area of
a polygon, convexity is automatically achieved. When we want to maximize the
perimeter, however, convexity has to be taken care of explicitly. When looking for
minimal size, this works the other way around. A minimal perimeter polygon will
automatically be convex, while a minimal area polygon is generally not.

We can adjust all of the above algorithms to the perimeter measure in a more or less
straightforward fashion. The time bounds for the largest convex hull indeed become
worse, O(n3) for line segments becomes O(n5), and O(n7) for squares becomes
O(n10). On the other hand, the time bounds for the smallest convex hull become
better; all problems considered can be solved in only O(n logn) time. The details of
the changed algorithms can be found in the remainder of this section.

Finally, the perimeter measure introduces some computational difficulty. All of
the above mentioned adjusted algorithms require the comparison of sums of square
roots of integers, and it is not clear whether this can be done efficiently. Therefore,
we assume a computation model that allows real arithmetic in the remainder. Another
implication is that the problems described are not known to be in NP, so we cannot
prove anything NP-complete.

5.1 Longest Perimeter

When looking for the largest perimeter rather than area, we still only have to look
at the endpoints of the line segments or the corners of the squares. The function that
describes the size is no longer linear, but because it has no maximum, there will still
always be at least one direction in which a point can be moved such that the size does
not decrease. However, we cannot simply duplicate the proofs of Lemmas 1 and 2,
because by moving points to increase the perimeter we may lose convexity.

Lemma 8 Given a set of line segments or squares, there is a choice of points such
that every point is at an endpoint or corner, and the perimeter of the convex hull of
the resulting point set is as large as possible.

Proof Assume there is an optimal solution with a point q not at an endpoint or corner.
If the point is not a vertex of the convex hull, we can just move it anywhere without
decreasing the length of the perimeter. So assume the point is a vertex of the convex
hull. Let l be a line segment such that q is not at an endpoint of this segment, but is
allowed to move anywhere on the segment.

Let p and r be the neighboring vertices of q on the convex hull. The length of
the chain pqr is a hyperbolic function of the position of q on l. This function has a
single minimum, so there is at least one direction in which q can move such that the
length of pqr increases. Since we assumed the position of q to be optimal, moving
q in this direction must change the combinatorial structure of the convex hull. This
means that there must be another vertex of the convex hull on either the line through
p and q , or through q and r .

Now assume without loss of generality that l is vertical, and that moving q down
over l increases the length of pqr . In this case there must be a point s on the line

262 Algorithmica (2010) 56: 235–269

Fig. 21 (a) Moving q down
increases the perimeter. (b) The
optimal solution Pij (solid) does
not contain the smaller optimal
subsolution Pik (dashed)

through q and r that is the next vertex of the convex hull from r , see Fig. 21a. If p is
on the same side of l as r and s are, mirror p in l and note that this does not influence
the length of pqr or pqs as q moves over l. Now note that the length of pqr is
minimized exactly when q is at the intersection point of l and pr . Since moving q

down increases this length, q must be at or below this intersection point. This means,
however, that the intersection point of l and ps has to be at or above q . Thus moving
q down will also increase the length of pqs, and the length of the convex hull will
grow even though the combinatorial structure changes. Thus q is not at its optimal
position, contradicting the first assumption of this proof. �

Even though we still only have to look at a few possible locations for every point,
we cannot easily extend the algorithms in Sects. 3.1 and 3.2. The reason for this
is that we now explicitly have to ensure convexity of the solutions in the dynamic
programming algorithm for line segments. The algorithm for squares heavily relies
on the algorithm for line segments.

The fundamental property that the dynamic programming algorithm is based on,
is that the optimal solution up to some line segments li and lj always consists of
some smaller optimal solution and one extra line segment. This property no longer
holds in the case of perimeter. An example is shown in Fig. 21b. Here the solid line
represents the optimal solution from the top of li to the bottom of lj . However, this
chain does not include the optimal solution from the top of li to the bottom of lk ,
which is represented by the dashed line. The reason for this is that adding the segment
from l−k to l−j to the dashed line yields a non-convex chain, and making it convex
decreases the length. In the case of area there was no problem, because then making
it convex increased the area.

We can solve the problem in O(n5) time instead of O(n3), by keeping the op-
timal solution for every pair of points, and every direction in which the points are
connected. This way, we can ensure convexity. Since there are only a linear number
of directions that lead to another point, this leads to an O(n5) time algorithm.

Define Pij∼km to be the chain that starts at the top of li , then goes to the left to the
top of lj , then via a number of other tops to the leftmost point, then back to the right
via a number of bottoms to the bottom of lk , and finally to the bottom of lm, such that
it is convex and of maximal length, and doesn’t use both the top and bottom endpoint
of any segment. Abusing notation slightly, we also use Pij∼km to denote its length.
Now we can define a recursive relation similar to the one in Sect. 3.1.

Algorithmica (2010) 56: 235–269 263

If i < m, then

Pij∼km = max
h<k;h�=i,j

(
Pij∼hk + l−k l−m

∣∣∣�l−h l−k l−m is convex
)

We maximize over the length of the chains. If i > m a symmetric expression holds,
where we maximize over the tops of the line segments to the left of lj , rather than the
bottoms of the line segments to the left of lk .

Theorem 9 Given a set of n arbitrarily sized, parallel line segments, the problem of
choosing a point on each segment such that the perimeter of the convex hull of the
resulting point set is as large as possible can be solved in O(n5) time.

For arbitrary line segments, the NP-hardness proof for the largest area problem
still holds unchanged for the largest perimeter. The proof does not depend on the
measure, only on the fact that the value of a variable is equal in its true and false
states. However, it is not known whether this problem is in NP, since checking a
solution involves comparing sums of square roots [24].

Theorem 10 Given a set of n arbitrarily oriented, possibly intersecting line seg-
ments, the problem of choosing a point on each segment such that the perimeter of
the convex hull of the resulting point set is as large as possible is NP-hard.

For squares, all of the observations in Sect. 3.2.1 still apply. Most of them are
independent of the measure of the size, except for the last observation, which states
that the extreme points do not need to be in the extreme squares, but this is also true
for perimeter with the same example (in Fig. 7a). Also the reduction from the set of
squares to five groups of line segments does not use the measure of the convex hull,
so we can still do this for the perimeter.

We can solve this situation in O(n6) time and O(n4) space now, in a similar way
as for area, but by looking at pairs of two points at a time instead of just one, because
we need to ensure convexity. This gives O(n4) subsolutions to compute, and it takes
O(n2) time to compute them. In each step below, we will select four points from
certain groups. We always require that the two first mentioned points are directly
connected, and the two last mentioned points are directly connected, while we vary
the chain between the second and third point. We assume for now that at least two
points from every group are used.

Figure 9 is repeated in Fig. 22 for convenience.

• For each group of two points in LT and two points in LB , we compute the optimal
solution connecting them around the left side, using the algorithm for parallel line
segments.

• For each group of two points in BL and two points in BR , we compute the optimal
solution connecting them around the lower side, using the algorithm for parallel
line segments.

• For each group of two points p,p′ ∈ LT , a point q ′ ∈ LB and a point q ∈ BL,
compute the optimal chain connecting them. Note that this chain will not use any
other points from BL. This can be done by trying a linear number of points r ∈ LB

264 Algorithmica (2010) 56: 235–269

Fig. 22 Five groups of line
segments give ten sets of
endpoints

as the point to connect q ′ to, and using the known optimal chain between p,p′ and
r, q ′. We need to ensure that ∠rq ′q is convex.

• For each group of two points in BR , a point in BL and a point in LB , compute the
optimal chain connecting them symmetric to the previous step.

• For each group of two points p,p′ ∈ LT and two points q ′, q ∈ BR , compute the
optimal chain connecting them around the lower left. This can be done by choosing
a point r ∈ LB and a point s ∈ BL, and combining the solutions from p,p′ to r, s

and from r, s to q ′, q of the previous two steps. This step is critical: it is the only
step that really takes O(n6) time.

• For each group of two points p,p′ ∈ LT , a point q ′ ∈ BR and a point q ∈ MBR ,
compute the optimal chain connecting them, by choosing another point r ∈ BR and
using the optimal solution from p,p′ to r, q ′ and ensuring convexity of ∠rq ′q .

• For each group of a point in MT L, a point in LT , a point in BR and a point in
MBR , compute the optimal chain connecting them by choosing another point from
LT , symmetric to the previous step.

• For each group of two points in MT L and two points in MBR , compute the opti-
mal chain connecting them around the lower left using an adjusted version of the
algorithm for line segments.

• Symmetrically, for each group of two points in MT L and two points in MBR ,
compute the optimal chain connecting them around the upper right.

• Choose from O(n4) possible combinations of points in MT L and MBR the one
with the largest perimeter.

Every step can be executed in O(n6) time. This only works when in the optimal
solution there are at least two points in every group, but as in the case of area the
problem becomes easier when one of the groups has only one or even zero points in
the optimal solution, and there still are only a constant number of easier situations to
deal with.

Using this algorithm, we can solve the problem of finding the longest perimeter
solution for a set of non-intersecting squares in a total of O(n10) time, since we still
need a factor of O(n4) to find the four extreme points.

Theorem 11 Given a set of n arbitrarily sized, non-overlapping, axis-aligned
squares, the problem of choosing a point in each square such that the perimeter of the
convex hull of the resulting point set is as large as possible can be solved in O(n10)

time.

Algorithmica (2010) 56: 235–269 265

Fig. 23 The topmost square
does not give one of the extreme
points

Unlike the area case, we cannot improve the algorithm when the squares have
equal size. Figure 23 shows an example where the optimal solution, denoted by the
thick line, uses the topmost square at the bottom left corner while this is not an ex-
treme point. So Lemma 4 cannot be extended to the perimeter measure. Again, the
problem is that making a non-convex polygon (such as the one on the right in Fig. 10)
convex does not increase the perimeter, while it does increase the area.

The algorithm for squares of equal size that does not require the squares to be
non-overlapping can be adjusted to the perimeter measure. The same idea as in the
previous two algorithms applies: we need to ensure convexity and therefore need to
define a structure on pairs of points from each of the four groups instead of just one
point. Furthermore, we now need to try all combinations of the four extreme points
since we cannot use Lemma 4.

We try all possible combinations for pl , pt , pr and pb , which are O(n4) possi-
bilities. For each one, we now define the structure Pii′jj ′kk′ll′ to be the set of four
chains that consists of a chain going from pl to Stl

i′ via a number of top left corners
of squares Pm with m < i and then to Stl

i with a straight connection, a chain going
from pt to Str

j ′ via a number of top right corners of squares Pm with m < j and then

to Str
j with a straight connection, a chain going from pl to Sbl

k′ via a number of bottom

left corners of squares Pm with m < k and then to Sbl
k with a straight connection, and

a chain going from pb to Sbr
l′ via a number of top left corners of squares Pm with

m < l and then to Sbr
l with a straight connection, such that no square participates on

two different chains, such that all chains are convex, and such that the total length of
these chains is maximal. This gives O(n8) different structures, that can all be com-
puted in linear time by varying the rightmost point of {i, i′, j, j ′, k, k′, l, l′}. The total
algorithm runs in O(n13) time and O(n8) space.

Theorem 12 Given a set of n equal size, possibly overlapping, axis-aligned squares,
the problem of choosing a point in each square such that the perimeter of the convex
hull of the resulting point set is as large as possible can be solved in O(n13) time.

5.2 Shortest Perimeter

When looking for the shortest perimeter, we can expect less difficulties with con-
vexity than in the case of the longest perimeter. However, the fact that the size is
no longer a linear function, but a hyperbolic one with a minimum may cause some
problems.

266 Algorithmica (2010) 56: 235–269

We can still prove that almost all vertices of the optimal solution must be at end-
points or corners of their line segments or squares. When a vertex of the convex hull
is allowed to move in two opposite directions (for example up and down), and its
neighboring vertices are on both sides of this direction (so one on the left and one on
the right), the minimum of the hyperbolic function occurs exactly when the vertex is
between its two neighbors, and then it is not a vertex that determines the shape of the
convex hull. In every other situation, it can move to make the perimeter smaller. Thus
this situation cannot occur in the optimal solution, and we have, as with the area, that
only the leftmost and rightmost line segments, or the four extreme squares, can have
a vertex of the convex hull that is not at an endpoint or corner.

The O(n logn) time algorithm for line segments can be adapted easily to work for
the perimeter. In fact, Rappaport [23] describes an algorithm that solves this prob-
lem when the line segments can have up to some constant k different orientations in
O(3kn logn) time.

Theorem 13 Given a set of n arbitrarily sized, parallel line segments, the problem
of choosing a point on each segment such that the perimeter of the convex hull of the
resulting point set is as small as possible can be solved in O(n logn) time.

The algorithm for squares can also be extended to the perimeter measure without
problems. The main difference is that the functions to minimize on each interval are
now no longer linear. They will now contain some square roots, but since there are at
most eight terms with square roots with variables under them, they can be rewritten
to polynomials in constant time. This yields constant degree polynomials, so if we
assume their roots can be found at all, then they can be found in constant time.

However, we can use some properties of the perimeter to actually achieve a better
algorithm. Instead of looking at the original problem, we mirror the four chains in
the extreme line segments, which does not change the length of the solution when
the points can only move over those segments. The result is shown, rotated 45◦, in
Fig. 24. The thick line denotes the optimal solution. We now want to find a shortest
path between the chains, where it should be noted that the segment on the far left is
the same as the segment on the far right.

The tangent line of two chains in this situation can be computed in linear time
[29]. The optimal solution can be found, for example, by again trying all possible
combinations of which chains are touched by the optimal solution and checking if

Fig. 24 The four chains can be mirrored in the extreme line segments to simplify the shortest perimeter
problem

Algorithmica (2010) 56: 235–269 267

the solutions are feasible. This yields a linear time algorithm once the chains are
known, while the computation of the chains takes O(n logn) time.

Theorem 14 Given a set of n arbitrarily sized, possibly overlapping, axis-aligned
squares, the problem of choosing a point in each square such that the perimeter of
the convex hull of the resulting point set is as small as possible can be solved in
O(n logn) time.

6 Conclusions

We studied the problem of computing the largest or smallest convex hull of a set
of imprecise points. We have seen many variants of the problem, varying in goal,
measure, model and restrictions, and many different algorithms to solve them. Our
results are given in Table 1.

These results suggest that the problem of finding the smallest area or perimeter
convex hull is easier than finding the largest convex hull. The running times are better,
and there are fewer restrictions with the smallest hull. For the largest convex hull it
seems important that the regions do not intersect. It also looks like the area is easier
to maximize than the perimeter, while the perimeter is easier to minimize than the
area.

6.1 Future Work

Many problems are still open, and there are various directions of research to be pur-
sued. Most notably, what is the status of the problem of finding the largest convex
hull when the squares are allowed to intersect? Also, what results can be obtained for
the circle model? Another open problems is computing the largest convex hull for a
set of arbitrarily oriented non-intersecting line segments.

A second direction of future work concerns approximation. For the problems that
have no efficient exact algorithms, how well can they be approximated efficiently?
This applies to the open problems noted above, as well as some of the problems
for which polynomial algorithms have been given but with high exponents, such as
the O(n10) time bound, and of course the NP-hard problems. Recently we gave lin-
ear time approximation schemes for a number of convex hull maximization prob-
lems [19].

Thirdly, for many other problems in computational geometry, data imprecision
and its effect on the outcome of algorithms should be studied. Such problems include
the longest and shortest minimum spanning trees for a set of imprecise points, the
Delaunay triangulation, and any other geometric structure that is uniquely defined
on a set of points and can somehow be measured. In [17] we studied various basic
geometric measures under this model.

Higher-dimensional versions are also open.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

268 Algorithmica (2010) 56: 235–269

References

1. Abellanas, M., Hurtado, F., Ramos, P.A.: Structural tolerance and Delaunay triangulation. Inf. Process.
Lett. 71, 221–227 (1999)

2. Bandyopadhyay, D., Snoeyink, J.: Almost-Delaunay simplices: nearest neighbour relations for impre-
cise points. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms, pp. 410–419
(2004)

3. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3, 177–
191 (1988)

4. Barber, B.C.: Computational geometry with imprecise data and arithmetic. TR-377-91, Ph.D. Thesis,
Princeton University, Department of Computer Science (1993)

5. Boissonnat, J.-D., Lazard, S.: Convex hulls of bounded curvature. In: Proceedings of the 8th Canadian
Conference on Computational Geometry, pp. 14–19 (1996)

6. Cai, L., Keil, J.M.: Computing visibility information in an inaccurate simple polygon. Int. J. Comput.
Geom. Appl. 7, 515–538 (1997)

7. de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van der Stappen, A.F.:
TSP with neighborhoods of varying size. J. Algorithms 57(1), 22–36 (2005)

8. de Berg, M., Meijer, H., Overmars, M.H., Wilfong, G.T.: Computing the angularity tolerance. Int. J.
Comput. Geom. Appl. 8, 467–482 (1998)

9. Desaulniers, H., Stewart, N.F.: Robustness of numerical methods in geometric computation when
problem data is uncertain. Comput. Aided Des. 25, 539–545 (1993)

10. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons. In: Proceedings of
the 35th ACM Symposium on Theory of Computing, pp. 473–482 (2003)

11. Edelsbrunner, H.: Finding transversals for sets of simple geometric figures. Theor. Comput. Sci. 35,
55–69 (1985)

12. Fiala, J., Kratochvil, J., Proskurowski, A.: Systems of distant representatives. Discrete Appl. Math.
145, 306–316 (2005)

13. Garey, M., Graham, R., Johnson, D.: The complexity of computing Steiner minimal trees. SIAM J.
Appl. Math. 32, 835–859 (1977)

14. Goodrich, M.T., Snoeyink, J.: Stabbing parallel segments with a convex polygon. Comput. Vis. Graph.
Image Process. 49, 152–170 (1990)

15. Guibas, L., Salesin, D., Stolfi, J.: Constructing strongly convex approximate hulls with inaccurate
primitives. Algorithmica 9, 534–560 (1993)

16. Khanban, A.A., Edalat, A.: Computing Delaunay triangulation with imprecise input data. In: Proceed-
ings of the 15th Canadian Conference on Computational Geometry, pp. 94–97 (2003)

17. van Kreveld, M., Löffler, M.: Largest bounding box, smallest diameter, and related problems on im-
precise points. In: Proceedings of the 10th Workshop on Algorithms and Data Structures. LNCS,
vol. 4619, pp. 447–458. Springer, Berlin (2007)

18. Li, Z., Milenkovic, V.: Constructing strongly convex hulls using exact or rounded arithmetic. Algo-
rithmica 8, 345–364 (1992)

19. Löffler, M., van Kreveld, M.: Approximating largest convex hulls for imprecise points. In: Proceed-
ings of the 5th Workshop on Approximation and Online Algorithms. LNCS, vol. 4927, pp. 89–102.
Springer, Berlin (2008)

20. Mata, C., Mitchell, J.S.: Approximation algorithms for geometric tour and network design problems.
In: Proceedings of the 11th ACM Symposium on Computational Geometry, pp. 360–369 (1995)

21. Mukhopadhyay, A., Kumar, C., Greene, E., Bhattacharya, B.: On intersecting a set of parallel line
segments with a convex polygon of minimum area. Inf. Process. Lett. 105(2), 58–64 (2008)

22. Nagai, T., Tokura, N.: Tight error bounds of geometric problems on convex objects with imprecise co-
ordinates. In: Proceedings of the 4th Japanese Conference on Discrete and Computational Geometry.
LNCS, vol. 2098, pp. 252–263. Springer, Berlin (2000)

23. Rappaport, D.: Minimum polygon transversals of line segments. Int. J. Comput. Geom. Appl. 5(3),
243–256 (1995)

24. O’Rourke, J.: Sum of Square Roots. http://maven.smith.edu/~orourke/TOPP/P33.html
25. Ostrovsky-Berman, Y., Joskowicz, L.: Uncertainty envelopes. In: Proceedings of the 21st European

Workshop on Computational Geometry, pp. 175–178 (2005)
26. Polishchuk, V., Mitchell, J.S.B.: Touring convex bodies—a conic programming solution. In: Proceed-

ings of the 17th Canadian Conference on Computational Geometry, pp. 290–293 (2005)

http://maven.smith.edu/~orourke/TOPP/P33.html

Algorithmica (2010) 56: 235–269 269

27. Safra, S., Schwartz, O.: On the complexity of approximating TSP with neighborhoods and related
problems. In: Proceedings of the European Symposium on Algorithms. LNCS, vol. 2832, pp. 446–
458. Springer, Berlin (2003)

28. Sellen, J., Choi, J., Yap, C.-K.: Precision-sensitive Euclidean shortest paths in 3-space. SIAM J. Com-
put. 29, 1577–1595 (2000)

29. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proceedings of the IEEE
Mediterranean Electrotechnical Conference (1983)

30. Yap, C.-K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of
Discrete and Computational Geometry, pp. 927–952. Chapman & Hall/CRC, Boca Raton (2004).
Chap. 41

	Largest and Smallest Convex Hulls for Imprecise Points
	Abstract
	Introduction
	Related Work
	Problem Definition
	Results

	Preliminaries
	Minimum Spanning Tree
	Circular Model

	Largest Convex Hull
	Line Segments
	Observations
	Algorithm
	Arbitrary Orientations
	All Endpoints in Convex Position

	Squares
	Observations
	Algorithm for Non-overlapping Squares
	Unit Size Squares
	Overlapping Unit Squares

	Smallest Convex Hull
	Line Segments
	Squares
	Observations
	Algorithm

	Perimeter Versus Area
	Longest Perimeter
	Shortest Perimeter

	Conclusions
	Future Work

	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

