Skip to main content

Advertisement

Log in

Asymmetric synthesis of duloxetine intermediate (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol using immobilized Saccharomyces cerevisiae in liquid-core sodium alginate/chitosan/sodium alginate microcapsules

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Duloxetine intermediate (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol was synthesized using ACA liquid-core immobilized Saccharomyces cerevisiae CGMCC No. 2230. The optimum culture time for ACA liquid-core immobilized cells was found to be 28 h. The optimum ACA liquid-core capsule formation conditions were found to be 90 % chitosan deacetylation, 30,000–50,000 chitosan molecular weight, 5.0 g/L chitosan, and pH 6.0 citrate buffer solution. The highest activity was found when reduction conditions were pH 6.0, 30 °C and 180 rpm. The ACA-immobilized cells can be reused nine times and only 40 % of the activity is retained after nine cycles. Product inhibition of reduction was observed in batch reduction. Continuous reduction in the membrane reactor was found to remove the product inhibition on reduction and improve production capacity. Conversion reached 100 % and enantiometric excess of (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol exceeded 99.0 % in continuous reduction of 5 g/L 3-N-methylamino-1-(2-thienyl)-1-propanone in the membrane reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moore K (2004) Duloxetine: a new approach for treating stress urinary incontinence. Int J Gynaecol Obstet 86(1):53–62

    Article  Google Scholar 

  2. Mallinckrodt CH, Prakash A, Andorn AC, Watkin JG, Wohlreich MM (2006) Duloxetine for the treatment of major depressive disorder: a closer look at efficacy and safety data across the approved dose range. J Psychiat Res 40(4):337–348

    Article  Google Scholar 

  3. Perahia DGS, Wang F, Mallinckrodt CH, Walker DJ, Detke MJ (2006) Duloxetine in the treatment of major depressive disorder: a placebo- and paroxetine-controlled trial. Eur Psychiat 21(6):367–378

    Article  CAS  Google Scholar 

  4. Chang X, Yang ZH, Zeng R, Yang G, Yan JB (2010) Production of chiral aromatic alcohol by asymmetric reduction with vegetable catalyst. Chinese J Chem Eng 18(6):1029–1033

    Article  CAS  Google Scholar 

  5. Sainz-Diaz CI, Wohlfahrt G, Nogoceke E, Hernández-Laguna A, Smeyers YG, Menge U (1997) Molecular structure and conformational analysis of chiral alcohols. Application to the enantioselectivity study of lipases. J Mol Struct Theochem 390(1):225–237

    Article  CAS  Google Scholar 

  6. Kometani T, Yoshii H, Matsuno R (1996) Large-scale production of chiral alcohols with bakers’ yeast. J Mol Catal B Enzym 1(2):45–52

    Article  CAS  Google Scholar 

  7. Richter N, Gröger H, Hummel W (2011) Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. Appl Microbiol Biotechnol 89(1):79–89

    Article  CAS  Google Scholar 

  8. Ou ZM, Shi HB, Sun XY, Shen WH (2011) Synthesis of S-licarbazepine by asymmetric reduction of oxcarbazepine with Saccharomyces cerevisiae CGMCC No. 2266. J Mol Catal B Enzym 72(3):294–297

    Article  CAS  Google Scholar 

  9. Engelking H, Pfaller R, Wich G, Weuster-Botz D (2006) Reaction engineering studies on β-ketoester reductions with whole cells of recombinant Saccharomyces cerevisiae. Enzym Microb Technol 38(3–4):536–544

    Article  CAS  Google Scholar 

  10. Matsuda M, Yamazaki T, Fuhshuku K, Sugai T (2007) First total synthesis of modiolide A, based on the whole-cell yeast-catalyzed asymmetric reduction of a propargyl ketone. Tetrahedron 63(36):8752–8760

    Article  CAS  Google Scholar 

  11. Korbekandi H, Mather P, Gardiner J, Stephens G (2008) Reduction of aliphatic nitro groups using an obligately anaerobic whole cell biocatalyst. Enzyme Microb Technol 42(4):308–314

    Article  CAS  Google Scholar 

  12. Bräutigam S, Dennewald D, Schürmann M, Lutje-Spelberg J, Pitner WR, Weuster-Botz D (2009) Whole-cell biocatalysis: evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones. Enzyme Microb Technol 45(4):310–316

    Article  Google Scholar 

  13. Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124(1):182–190

    Article  CAS  Google Scholar 

  14. Xiao ZJ, Du PX, Lou WY, Wu H, Zong MH (2012) Using water-miscible ionic liquids to improve the biocatalytic anti-Prelog asymmetric reduction of prochiral ketones with whole cells of Acetobacter sp. CCTCC. Chem Eng Sci 84:695–705

    Article  CAS  Google Scholar 

  15. Schroer K, Mackfeld U, Tan IAW, Wandrey C, Heuser F, Bringer-Meyer S, Weckbecker A, Hummel W, Daußmann T, Pfaller R, Liese A, Lütz S (2007) Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J Biotechnol 132(4):438–444

    Article  CAS  Google Scholar 

  16. Piovan L, Kagohara E, Ricci LC, Keppler AF, Capelari M, Andrade LH, Comasseto JV, Porto ALM (2008) Chemoselective screening for the reduction of a chiral functionalised (±)-2-(phenylthio)cyclohexanone by whole cells of Brazilian micro-organisms. Tetrahedron Asymmetry 19(20):2385–2389

    Article  CAS  Google Scholar 

  17. Ni Y, Xu JH (2012) Biocatalytic ketone reduction: a green and efficient access to enantiopur alcohols. Biotechnol Adv 30:1279–1288

    Article  CAS  Google Scholar 

  18. Wohlgemuth R (2010) Asymmetric biocatalysis with microbial enzymes and cells. Curr Opin Microbiol 13(3):283–292

    Article  CAS  Google Scholar 

  19. Kurbanoglu EB, Zilbeyaz K, Kurbanoglu NI (2011) Cryptococcus laurentii as a new biocatalyst for the asymmetric reduction of substituted acetophenones. Tetrahedron Asymmetry 22(3):345–350

    Article  CAS  Google Scholar 

  20. Kurbanoglu EB, Zilbeyaz K, Ozdal M, Taskin M, Kurbanoglu NI (2010) Asymmetric reduction of substituted acetophenones using once immobilized Rhodotorula glutinis cells. Bioresource Technol 101(11):3825–3829

    Article  CAS  Google Scholar 

  21. Sun ZJ, Li SY, Lv GJ, Zhu J, Yu WT, Wang W, Ma XJ (2008) Metabolic response of different osmo-sensitive Sacchromyces cerevisiae to ACA microcapsule. Enzyme Microb Technol 42(7):576–582

    Article  CAS  Google Scholar 

  22. Qi WT, Ma J, Yu WT, Xie YB, Wang W, Ma XJ (2006) Behavior of microbial growth and metabolism in alginate-chitosan-alginate (ACA) microcapsules. Enzyme Microb Technol 38(5):697–704

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Natural Science Foundation of Zhejiang Province (Y4110130), the Technology Department of Zhejiang Province (2007C33047) and Natural Science Foundation of China (21106132) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ou Zhimin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhimin, O., Haibing, Z., Lan, T. et al. Asymmetric synthesis of duloxetine intermediate (S)-(-)-3-N-methylamino-1-(2-thienyl)-1-propanol using immobilized Saccharomyces cerevisiae in liquid-core sodium alginate/chitosan/sodium alginate microcapsules. Bioprocess Biosyst Eng 37, 2243–2250 (2014). https://doi.org/10.1007/s00449-014-1202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1202-9

Keywords

Navigation