Skip to main content

Advertisement

Log in

Widespread tephra layers in the Bering Sea sediments: distal clues to large explosive eruptions from the Aleutian volcanic arc

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Tephra layers within marine sediments provide information on past explosive eruptions, which is especially important in the case of remote island arcs where data on proximal pyroclastic deposits can be scarce. Three Alaska-Aleutian tephras (labeled Br2, SR2, and SR4) were found in the late Pleistocene-Holocene sediments of the Bering Sea (north Pacific). We fingerprint glass from these tephras with the help of single-shard electron microprobe and LA-ICP-MS analyses and provide microprobe data on minerals from two of these tephras. The large compositional variability of the Alaska-Aleutian volcanoes permits the use of ratios of highly incompatible trace elements (Ba/Nb, Th/Nb, Th/La, La/Nb) for identification of distal tephra sources by comparison of these ratios in tephra glass and proximal bulk rock analyses. This method, along with mapped tephra dispersal, has allowed us to link tephras under study to Aniakchak, Semisopochnoi, and Okmok volcanoes, respectively. Our results indicate that tephra Br2 was derived from the ~ 3.6 ka Aniakchak II caldera-forming eruption (Alaska, USA). This is the first ever finding of the Aniakchak II tephra in Bering Sea sediments, which permits enlargement of its tephra volume and eruption magnitude to ~ 100 km3 and 6.8, respectively. Tephra SR2, dated at ~ 12.2 ka, is likely associated with a post-glacial caldera on the Semisopochnoi Island, Aleutians (USA). Tephra SR4 (dated at ~ 64.5 ka), likely was derived from an earlier undocumented eruption from Okmok volcano (Aleutians). All three regionally spread tephra layers are valuable isochrones, which can be used for correlating and dating of Bering Sea sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alekseeva TN, Murdmaa IO, Ivanova EV, Ovsepyan EA, Kuz’mina TG, Seitkalieva EA (2015) Sedimentation in the submarine Shirshov ridge area (Bering Sea) during the last 180–185 ka (Penultimate glaciation-Holocene). Lithol Miner Resour 50(5):341–360

    Article  Google Scholar 

  • Alloway BV, Pillans BJ, Carter L, Naish TR, Westgate JA (2005) Onshore–offshore correlation of Pleistocene rhyolitic eruptions from New Zealand: implications for TVZ eruptive history and paleoenvironmental construction. Quat Sci Rev 24:1601–1622. https://doi.org/10.1016/j.quascirev.2004.07.026

    Article  Google Scholar 

  • Aoki K, Asahi H, Nagatsuma Y, Kurihara K, Fukuoka T, Sakamoto T, Iijima I (2012) Geochemical characters of Quaternary tephra beds and their stratigraphic position in the sedimentary core drilled at the site U1343 in the central Bering Sea. AGU Fall Meeting, San Francisco, CA, pp 3–7 December 2012. Abstract #V43B-2828

    Google Scholar 

  • Arculus RJ (2003) Use and abuse of the terms calcalkaline and calcalkalic. J Petrol 44(5):929–935

    Article  Google Scholar 

  • Bindeman IN, Fournelle JH, Valley JW (2001) Low-δ 18 O tephra from a compositionally zoned magma body: Fisher caldera, Unimak Island, Aleutians. J Volcanol Geotherm Res 111:35–53. https://doi.org/10.1016/S0377-0273(01)00219-0

    Article  Google Scholar 

  • Blockley SP, Bourne AJ, Brauer A, Davies SM, Hardiman M, Harding PR et al (2014) Tephrochronology and the extended intimate (integration of ice-core, marine and terrestrial records) event stratigraphy 8-128 ka b2k. Quat Sci Rev 106:88–100

    Article  Google Scholar 

  • Braitseva OA, Ponomareva VV, Sulerzhitsky LD, Melekestsev IV, Bailey J (1997) Holocene key-marker tephra layers in Kamchatka Russia. Quat Res 47(2):125–139

    Article  Google Scholar 

  • Cameron CE and Nye CJ (2014) Preliminary database of Quaternary vents in Alaska: Alaska Division of Geological & Geophysical Surveys Miscellaneous Publication 153, 11 p. doi:https://doi.org/10.14509/27357

  • Cameron CE, Snedigar SF, Nye CJ (2014) Alaska Volcano Observatory Geochemical Database: Alaska Division of Geological & Geophys Surv Digital Data Series 8, https://www.avo.alaska.edu/geochem/index.php, doi:https://doi.org/10.14509/29120

  • Carson EC, Fournelle JH, Miller TP, Mickelson DM (2002) Holocene tephrochronology of the Cold Bay area, Southwest Alaska peninsula. Quat Sci Rev 21:2213–2228. https://doi.org/10.1016/S0277-3791(02)00023-9

    Article  Google Scholar 

  • Cook E, Portnyagin M, Ponomareva V, Bazanova L, Svensson A, Garbe-Schönberg D (2018) First identification of cryptotephra from the Kamchatka peninsula in a Greenland ice core: implications of a widespread marker deposit that links Greenland to the Pacific northwest. Quat Sci Rev 181:200–206. https://doi.org/10.1016/j.quascirev.2017.11.036

    Article  Google Scholar 

  • Coombs ML, Larsen JF, Neal CA (2018) Postglacial eruptive history and geochemistry of Semisopochnoi volcano, western Aleutian Islands. Alaska: US Geological Survey Scientific Investigations Report 2017–5150:33. https://doi.org/10.3133/sir20175150

    Article  Google Scholar 

  • Costa A, Smith V, Macedonio G, Matthews N (2014) The magnitude and impact of the youngest Toba Tuff super-eruption. Front Earth Sci 2. doi:https://doi.org/10.3389/feart.2014.00016

  • Coulter SE, Pilcher JR, Plunkett G, Baillie M, Hall VA, Steffensen JP, Vinther BM, Clausen HB, Johnsen SJ (2012) Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. J Geophys Res-Atmos 117(D21), 16):D21303. https://doi.org/10.1029/2012JD017698

    Article  Google Scholar 

  • Creager JS, Scholl DW (1973) Initial reports of the deep sea drilling project, V.19. Washington (US Government Printing Office):913

  • Davies SM (2015) Cryptotephras: the revolution in correlation and precision dating. J Quat Sci 30:114–130. https://doi.org/10.1002/jqs.2766

    Article  Google Scholar 

  • Davies LJ, Jensen BJL, Froese DG, Wallace KL (2016) Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quat Sci Rev 146:28–53

    Article  Google Scholar 

  • Delong SE, Perfit MR, McCulloch MT, Ach J (1985) Magmatic evolution of Semisopochnoi Island, Alaska: trace-element and isotopic constraints. J Geol 93(5):609–618. https://doi.org/10.1086/628985

    Article  Google Scholar 

  • Derkachev AN, Portnyagin MV, Ponomareva VV, Gorbarenko SA, Malakhov MI, Nikolaeva NA, Nürnberg D, Shi Xuefa, Liu Yanguang (2015) Marker tephra layers of large explosive eruptions from volcanoes of Aleutian Islands and Alaska in Quaternary deposits of the Bering Sea. Geology of Seas and Oceans Proc XXI Int Conf on Marine Geol Moscow, Russia, November 16–20, 2015, vol I, 107–111 (in Russian) http://geoschool.ocean.ru/index.php/materialy/2017.html

  • Dullo WC, Baranov B, van den Bogaard C (2009) FS Sonne Fahrtbericht/cruise report SO201-2 KALMAR: Kurile-Kamchatka and ALeutian MARginal sea-island arc systems: geodynamic and climate interaction in space and time. Busan/Korea-Tomakomai/Japan 3008-0810:2009 http://oceanrepgeomarde/7135/1/945_Dullo_2009_FsSonneFahrtberichtCruise_Monogr_pubid12967pdf

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102(B7):14991–15019

    Article  Google Scholar 

  • Expedition 323 Scientists (2010) Bering Sea paleoceanography: Pliocene–Pleistocene paleoceanography and climate history of the Bering Sea. IODP Prel Rept 323 doi:https://doi.org/10.2204/iodp.pr.323.2010

  • Finney B, Turner S, Hawkesworth C, Larsen J, Nye C, George R, Bindeman I, Eichelberger J (2008) Magmatic differentiation at an island-arc caldera: Okmok volcano, Aleutian Islands, Alaska. J Petrol 49(5):857–884

    Article  Google Scholar 

  • GEOROC (Geochemistry of Rocks of the Oceans and Continents), http://www.georocmpch-mainzgwdgde/georoc/

  • Gersonde R (2012) The expedition of the research vessel “Sonne” to the Subpolar North Pacific and the Bering Sea in 2009 (SO202-INOPEX), in: Reports on Polar and Marine Research. Alfred Wegener Institute, Bremerhaven, p 323

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag, Berlin-Heidelberg, p 390

    Book  Google Scholar 

  • Gorbarenko SA, Artyomova AV (2003) Chronostratigraphy of the Upper Quaternary sediments of the northwestern Pacific and the Bering Sea, change of the environment and productivity of the region. Tikhookeanskaya Geologiya (Pacific Geology) 22(5):23–38 (in Russian)

    Google Scholar 

  • Gorbarenko SA, Basov IA, Chekhovskaya MP, Southon J (2005) Orbital and millennium scale environmental changes in the southern Bering Sea during last glacial–Holocene: geochemical and paleontological evidences. Deep-Sea Research II 52:2174–2185

    Article  Google Scholar 

  • Gorbarenko SA, Wang P, Wang R, Cheng X (2010) Orbital and suborbital environmental changes in the southern Bering Sea during last 50 kyr. Palaeogeogr Palaeoclimatol Palaeoecol 286:97–106. https://doi.org/10.1016/j.palaeo.2009.12.014

    Article  Google Scholar 

  • Graham RW, Belmecheri S, Choy K, Culleton BJ, Davies LJ, Froese D, Heintzman PD, Hritz C, Kapp JD, Newsom LA, Rawcliffe R (2016) Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. P Nat Acad Sci USA 113:9310–9314. https://doi.org/10.1073/pnas.1604903113

    Article  Google Scholar 

  • Harada N (ed) (2006) Cruise report, MR06–04, leg 1 and 2. JAMSTEC, Japan http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/MR06-04_leg1-2_all.pdf

    Google Scholar 

  • Hart SR, Staudigel H (1982) The control of alkalies and uranium in seawater by ocean crust alteration. Earth Planet Sci Lett 58:202–212

    Article  Google Scholar 

  • Jarosewich EJ, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4(1):43–47

    Article  Google Scholar 

  • Jennings A, Thordarson T, Zalzal K, Stoner J, Hayward C, Geirsdóttir Á, Miller G (2014) Holocene tephra from Iceland and Alaska in SE Greenland shelf sediments. Geol Soc London Spec Pub - Marine Tephrochronol 398(1):157–193

    Article  Google Scholar 

  • Jensen BJL, Froese DG, Preece SJ, Westgate JA, Stachel T (2008) An extensive middle to Late Pleistocene tephrochronologic record from east-Central Alaska. Quat Sci Rev 27(3–4):411–427

    Article  Google Scholar 

  • Jensen BJL, Preece SJ, Lamothe M, Pearce NJG, Froese DG, Westgate JA, Schaefer J, Begét J (2011) The variegated (VT) tephra: a new regional marker for middle to late marine isotope stage 5 across Yukon and Alaska. Quat Int 246(1–2):312–323

    Article  Google Scholar 

  • Jensen BJL, Reyes AV, Froese DG, Stone DB (2013) The palisades is a key reference site for the middle Pleistocene of eastern Beringia: new evidence from paleomagnetics and regional tephrostratigraphy. Quat Sci Rev 63:91–108

    Article  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I (2006) MPI-DING reference glass for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:Q02008. https://doi.org/10.1029/2005GC001060

    Article  Google Scholar 

  • Jochum KP, Nohl U (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253(1):50–53. https://doi.org/10.1016/j.chemgeo.2008.04.002

    Article  Google Scholar 

  • Katoh S, Nagaoka S, WoldeGabriel G, Renne P, Snow MG, Beyene Y, Suwa G (2000) Chronostratigraphy and correlation of the Plio-Pleistocene tephra layers of the Konso formation, southern main Ethiopian rift, Ethiopia. Quat Sci Rev 19(13):1305–1317. https://doi.org/10.1016/S0277-3791(99)00099-2

    Article  Google Scholar 

  • Kaufman DS, Jensen BJL, Reyes AV, Schiff CJ, Froese DG, Pearce NJG (2012) Late Quaternary tephrostratigraphy, Ahklun Mountains, SW Alaska. J Quat Sci 27:344–359. https://doi.org/10.1002/jqs.1552

    Article  Google Scholar 

  • Kay SM, Kay RW (1994) Aleutian magmas in space and time. In: Plafker G, Berg HC (eds) The geology of Alaska, Geological Society of America, doi:https://doi.org/10.1130/DNAG-GNA-G1.687

  • Kelemen PB, Hangøj K, Greene AR (2003a) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Treatise on geochemistry, vol 3 Elsevier, pp 593–659

  • Kelemen PB, Yogodzinski GM, Scholl DW (2003b) Along-strike variations in the Aleutian Island arc: genesis of high Mg# andesite and implications for continental crust. In: Inside the subduction Factory, Geophysical Monograph 138, American Geophysical Union, pp 223–276

  • Kuehn H, Lembke-Jene L, Gersonde R, Esper O, Lamy F, Arz H, Kuhn G, Tiedemann R (2014) Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation. Clim Past 10(6):2215–2236

    Article  Google Scholar 

  • Kutterolf S, Freundt A, Perez W, Morz T, Schacht U, Wehrmann H, Schmincke HU (2008a) Pacific offshore record of plinian arc volcanism in Central America: 1 along-arc correlations. Geochem Geophy Geosy 9. doi:https://doi.org/10.1029/2007gc001631

    Google Scholar 

  • Kutterolf S, Freundt A, Perez W (2008b) Pacific offshore record of plinian arc volcanism in Central America: 2 tephra volumes and erupted masses. Geochem Geophy Geosy 9. doi:https://doi.org/10.1029/2007gc001791

    Google Scholar 

  • Kyle PR, Ponomareva VV, Schluep RR (2011) Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka peninsula, Russia. Int Geol Rev 53(9):1059–1097. https://doi.org/10.1080/00206810903442162

    Article  Google Scholar 

  • Larsen JF, Neal CA, Schaefer JG, Beget J, Nye CJ (2007) Late Pleistocene and Holocene caldera-forming eruptions of Okmok caldera, Aleutian Islands, Alaska. In: Eichelberger J, Gordeev E, Izbekov P, Kasahara M, Lees J (Eds), Volcanism and subduction: the Kamchatka region, American Geophysical Union, Geophys Monograph Ser 172: 343–364

  • Larsen JF, Śliwiński MG, Nye C, Cameron C, Schaefer JR (2013) The 2008 eruption of Okmok volcano, Alaska: petrological and geochemical constraints on the subsurface magma plumbing system. J Volcanol Geotherm Res 264:85–106

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic-rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750

    Article  Google Scholar 

  • Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96(1–2):25–32

    Article  Google Scholar 

  • Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6(2):107–153

    Article  Google Scholar 

  • Lowe DJ, Pearce NJ, Jorgensen MA, Kuehn SC, Tryon CA, Hayward CL (2017) Correlating tephras and cryptotephras using glass compositional analyses and numerical and statistical methods: review and evaluation. Quat Sci Rev 175:1–44

    Article  Google Scholar 

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on earth. Bull Volcanol 66(8):735–748. https://doi.org/10.1007/s00445-004-0355-9

    Article  Google Scholar 

  • Max L, Riethdorf JR, Tiedemann R, Smirnova M, Lembke-Jene L, Fahl K, Nürnberg D, Matul A, Mollenhauer G (2012) Sea surface temperature variability and sea-ice extent in the subarctic Northwest Pacific during the past 15,000 years. Paleoceanogr Paleoceanol 27(3). https://doi.org/10.1029/2012PA002292

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Miller TP, Smith RL (1987) Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska. Geology 15(5):434–438

    Article  Google Scholar 

  • Miyashiro A (1975) Volcanic rock series and tectonic setting. Annu Rev Earth Planet Sci 3(1):251–269

    Article  Google Scholar 

  • Moll-Stalcup EJ (1994) Latest cretaceous and Cenozoic magmatism in mainland Alaska in: Plafker G, Berg HC (eds) the geology of Alaska: Boulder, Colorado, Geological Society of America, The Geology of North America, Volume G-1, pp 589–619

  • Neal CA, Larsen JF, Schaefer J (2009) The July-August 2008 hydrovolcanic eruption of Okmok volcano, Umnak Island, Alaska. Alaska Geol Soc Newslett 39(5):1–3

    Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans 87(C2):1231–1238

    Article  Google Scholar 

  • Nye CJ, Begét JE, Layer PW, Mangan MT, McConnell VS, McGimsey RG, Miller TP, Moore RB, Stelling PL (2018) Geochemistry of some quaternary lavas from the Aleutian Arc and Mt Wrangell: Alaska Division of Geological & Geophysical Surveys Raw Data File 2018–1, 29 doi:https://doi.org/10.14509/29843

  • Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis in: Prichard HM, Alabaster T, Harris NB, Neary CR (eds) magmatic processes and plate tectonics, vol 76 geological society special publication, pp 373–403

    Article  Google Scholar 

  • Pearce C, Varhelyi A, Wastegård S, Muschitiello F, Barrientos N, O’Regan M, Cronin TM, Gemery L, Semiletov I, Backman J, Jakobsson M (2017) The 36 ka Aniakchak tephra in the Arctic Ocean: a constraint on the Holocene radiocarbon reservoir age in the Chukchi Sea. Clim Past 13(4):303–316

    Article  Google Scholar 

  • Pearce NJG, Westgate JA, Preece SJ, Eastwood WJ, Perkins WT (2004) Identification of Aniakchak (Alaska) tephra in Greenland ice core challenges the 1645 BC date for Minoan eruption of Santorini. Geochem Geophys Geosyst 5(3):Q03005. https://doi.org/10.1029/2003GC000672

    Article  Google Scholar 

  • Plunkett G, Coulter SE, Ponomareva VV, Blaauw M, Klimaschewski A, Hammarlund D (2015) Distal tephrochronology in volcanic regions: challenges and insights from Kamchatkan lake sediments. Glob Planet Chang 134:26–40. https://doi.org/10.1016/j.gloplacha.2015.04.006

    Article  Google Scholar 

  • Ponomareva V, Portnyagin M, Derkachev A, Juschus O, Garbe-Schönberg D, Nürnberg D (2013a) Identification of a widespread Kamchatkan tephra: a middle Pleistocene tie-point between Arctic and Pacific paleoclimatic records. Geophys Res Lett 40(14):3538–3543. https://doi.org/10.1002/grl.50645

    Article  Google Scholar 

  • Ponomareva V, Portnyagin M, Derkachev A, Pendea IF, Bourgeois J, Reimer PJ, Garbe-Schönberg D, Krasheninnikov S, Nürnberg D (2013b) Early Holocene M~6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records. Int J Earth Sci 102:1673–1699. https://doi.org/10.1007/s00531-013-0898-0

    Article  Google Scholar 

  • Ponomareva V, Portnyagin M, Pevzner M, Blaauw M, Kyle P, Derkachev A (2015a) Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass. Int J Earth Sci 104(5):1459–1482

    Article  Google Scholar 

  • Ponomareva V, Portnyagin M, Davies S (2015b) Tephra without borders: far-reaching clues into past explosive eruptions. Front Earth Sci/Volcanol 3:83. https://doi.org/10.3389/feart.2015.00083

    Article  Google Scholar 

  • Ponomareva V, Portnyagin M, Pendea F, Zelenin E, Bourgeois J, Pinegina T, Kozhurin A (2017) A full Holocene tephrochronology for the Kamchatsky peninsula region: applications from Kamchatka to North America. Quat Sci Rev 168:101–122. https://doi.org/10.1016/j.quascirev.2017.04.031

    Article  Google Scholar 

  • Ponomareva V, Polyak L, Portnyagin M, Abbott P, Zelenin E, Vakhrameeva P, Garbe-Schönberg D (2018) Holocene tephra from the Chukchi-Alaskan margin. Arctic Ocean: Implications for sediment chronostratigraphy and volcanic history Quat Geochronol 45:85–97. https://doi.org/10.1016/j.quageo.2017.11.001

    Article  Google Scholar 

  • Preece SJ, Westgate JA, Stemper BA, Pewe TL (1999) Tephrochronology of Late Cenozoic loess at Fairbanks. Central Alaska Geol Soc Am Bull 111(1):71–90

    Article  Google Scholar 

  • Preece SJ, Pearce NJG, Westgate JA, Froese DG, Jensen BJL, Perkins WT (2011a) Old crow tephra across eastern Beringia: a single cataclysmic eruption at the close of marine isotope stage 6. Quat Sci Rev 30:2069–2090. https://doi.org/10.1016/j.quascirev.2010.04.020

    Article  Google Scholar 

  • Preece SJ, Westgate JA, Froese DG, Pearce NJG, Perkins WT (2011b) A catalogue of late Cenozoic tephra beds in the Klondike goldfields and adjacent areas, Yukon territory. Yukon geological survey contribution 010. Can J Earth Sci 48:1386–1418. https://doi.org/10.1139/e10-110

    Article  Google Scholar 

  • Pyle DM (1995) Mass and energy budgets of explosive volcanic eruptions. Geophys Res Lett 22:563–566. https://doi.org/10.1029/95GL00052

    Article  Google Scholar 

  • Pyne-O'Donnell SDF, Hughes PDM, Froese DG, Jensen BJL, Kuehn SC, Mallon G, Amesbury MJ, Charman DJ, Daley TJ, Loader NJ, Mauquoy D, Street-Perrott FA, Woodman-Ralph J (2012) High-precision ultra-distal Holocene tephrochronology in North America. Quat Sci Rev 52:6–11. https://doi.org/10.1016/j.quascirev.2012.07.024

    Article  Google Scholar 

  • Rawson H, Naranjo JA, Smith V, Fontijn K, Pyle DM, Mather TA et al (2015) The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, southern Chile. J Volcanol Geotherm Res 299:103–129. https://doi.org/10.1016/j.jvolgeores.2015.04.003

    Article  Google Scholar 

  • Reeder JW (1990) Sugarloaf. Annual report of the world volcanic eruptions in 1987. Bulletin of Vol Erup 27:36

    Google Scholar 

  • Riethdorf J-R, Nürnberg D, Max L, Tiedemann R, Gorbarenko SA, Malakhov MI (2013) Millennial scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr. Clim Past 9(3):1345–1373. https://doi.org/10.5194/cp-9-1345-2013

    Article  Google Scholar 

  • Rocholl A (1998) Major and trace element composition and homogeneity of microbeam reference material: basalt glass USGS BCR-2G. Geostandards Newslett: J Geostandards and Geoanalysis 22:33–45

    Article  Google Scholar 

  • Seliverstov NI, Gavrilenko GM, Kir'yanov VY (1989) Signs of the recent activity of the submarine Piip volcano, Komandorsky Basin. Vulkanologia i Seysmologia (Volcanology and Seismology) 6:3–18 (in Russian)

    Google Scholar 

  • Shane PA (2000) Tephrochronology: a New Zealand case study. Earth Sci Rev 49(1–4):223–259

    Article  Google Scholar 

  • Shane P, Wright IC (2011) Late Quaternary tephra layers around Raoul and Macauley Islands, Kermadec arc: implications for volcanic sources, explosive volcanism and tephrochronology. J Quat Sci 26:422–432. https://doi.org/10.1002/jqs.1468

    Article  Google Scholar 

  • Takahashi K, Ravelo AC, Alvarez Zarikian CA and the Expedition 323 Scientists (2011) Proc IODP, 323: Tokyo (Integrated Ocean Drilling Program Manag Int, Inc) doi:https://doi.org/10.2204/iodp.proc.323.2011

  • Wallace KL, Hayden LA, Neal CA (2017) Major-element glass compositions of tephra from the circa 36 ka eruption of Aniakchak volcano, Alaska peninsula. Alaska: Alaska Division of Geological & Geophysical Surveys Raw Data File 2017-9:9. https://doi.org/10.14509/29777

    Article  Google Scholar 

  • Werner R, Hoernle K, Hauff F, Portnyagin M, Yogodzinski G, Ziegler A (2016) RV SONNE Fahrtbericht / Cruise Report SO249 BERING – Origin and Evolution of the Bering Sea: An Integrated Geochronological, Volcanological, Petrological and Geochemical Approach In, vol GEOMAR Research Centre for Ocean Research Kiel, Kiel, pp 451

  • Westgate JA, Preece SJ, Kotler E, Hall S (2000) Dawson tephra; a prominent stratigraphic marker of Late Wisconsinan age in west-central Yukon, Canada. Can J Earth Sci 37(4):621–627

    Article  Google Scholar 

  • Wirth KR, Grandy J, Kelley K, Sadofsky S (2002) Evolution of crust and mantle beneath the Bering Sea region: evidence from xenoliths and the late Cenozoic basalts. In: Miller EL, Grantz A, Klemperer SL (eds) Tectonic evolution of the Bering shelf - Chukchi Sea- Arctic margin and adjacent landmasses, vol 360. Geological Society of America Special Paper, Boulder, Colorado, pp 167–193

  • Wood, ChA, Kienle J (Eds) (1990) Volcanoes of North America: United States and Canada Cambridge University Press

  • Yogodzinski GM, Volynets ON, Koloskov AV, Seliverstov NI, Matvenkov VV (1994) Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip volcano, Far Western Aleutians. J Petrol 35(1):163–204

    Article  Google Scholar 

  • Yogodzinski GM, Brown ST, Kelemen PB, Vervoort JD, Portnyagin M, Sims KWW, Hoernle K, Jicha BR, Werner R (2015) The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the Western Aleutians. J Petrol 56(3):441–492. https://doi.org/10.1093/petrology/egv006

    Article  Google Scholar 

Download references

Acknowledgements

The tephra samples were obtained during cruises: (i) SO201-2 KALMAR (grant # 03G0672A and B) and SO249 BERING of R/V Sonne funded by the German Federal Ministry for Education and Research (BMBF), (ii) Lv63 of R/V Akademik Lavrentiev supported by grants #41420104005 and #40710069004 from the National Natural Science Foundation of China (NSFC). We acknowledge the GEOMAR Helmholtz Centre for Ocean Research Kiel for funding analytical studies and thank Mario Thöner (GEOMAR) for his assistance with EPMA, and Dieter Garbe-Schönberg and Ulrike Westernströer (both at Kiel University) for their assistance with LA-ICP-MS analyses. Visits by A.D. to Kiel for tephra analyses were funded by the Russian Foundation for Basic Research (RFBR) grant #11-05-00506 and the cooperative NSFC-RFBR grant #16-55-53048. We are grateful to Gene Yogodzinski for sharing his compilation of geochemical data on Aleutian rocks. Work on the manuscript was funded by the Russian Science Foundation grant #16-17-10035. We thank Kristi Wallace, Richard Brown, and Andrew Harris for their useful comments and English editing that substantially improved the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Ponomareva.

Additional information

Editorial responsibility: R.J. Brown

M. I. Malakhov died before publication of this work was completed.

Electronic supplementary material

Online Resource 1

(XLSX 12 kb)

Online Resource 2

(XLSX 335 kb)

Online Resource 3

(XLSX 33 kb)

Online Resource 4

(XLSX 109 kb)

Online Resource 5

(KML 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkachev, A.N., Ponomareva, V.V., Portnyagin, M.V. et al. Widespread tephra layers in the Bering Sea sediments: distal clues to large explosive eruptions from the Aleutian volcanic arc. Bull Volcanol 80, 80 (2018). https://doi.org/10.1007/s00445-018-1254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1254-9

Keywords

Navigation