Skip to main content

Advertisement

Log in

Characterization of miRNA processing machinery in the embryonic chick lung

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Lung development is a very complex process that relies on the interaction of several signaling pathways that are controlled by precise regulatory mechanisms. Recently, microRNAs (miRNAs), small non-coding regulatory RNAs, have emerged as new players involved in gene expression regulation controlling several biological processes, such as cellular differentiation, apoptosis and organogenesis, in both developmental and disease processes. Failure to correctly express some specific miRNAs or a component of their biosynthetic machinery during embryonic development is disastrous, resulting in severe abnormalities. Several miRNAs have already been identified as modulators of lung development. Regarding the spatial distribution of the processing machinery of miRNAs, only two of its members (dicer1 and argonaute) have been characterized. The present work characterizes the expression pattern of drosha, dgcr8, exportin-5 and dicer1 in early stages of the embryonic chick lung by whole mount in situ hybridization and cross-section analysis. Overall, these genes are co-expressed in dorsal and distal mesenchyme and also in growing epithelial regions. The expression pattern of miRNA processing machinery supports the previously recognized regulatory role of this mechanism in epithelial and mesenchymal morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4

Similar content being viewed by others

References

  • Abdelfattah AM, Park C, Choi MY (2014) Update on non-canonical microRNAs. Biomol Concepts 5(4):275–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee A, Schambach F, DeJong CS, Hammond SM, Reiner SL (2010) Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol 40:225–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28:328–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ (2003) Dicer is essential for mouse development. Nat Genet 35:215–217

    Article  CAS  PubMed  Google Scholar 

  • Bhaskaran M, Wang Y, Zhang H, Weng T, Baviskar P, Guo Y, Gou D, Liu L (2009) MicroRNA-127 modulates fetal lung development. Physiol Genomics 37:268–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhaskaran M, Xi D, Wang Y, Huang C, Narasaraju T, Shu W, Zhao C, Xiao X, More S, Breshears M, Liu L (2012) Identification of microRNAs changed in the neonatal lungs in response to hyperoxia exposure. Physiol Genomics 44:970–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carraco G, Gonçalves AN, Serra C, Andrade RP (2014) MicroRNA processing machinery in the developing chick embryo. Gene Expr Patterns 16(2):114–121

    Article  CAS  PubMed  Google Scholar 

  • Carraro G, El-Hashash A, Guidolin D, Tiozzo C, Turcatel G, Young BM, De Langhe SP, Bellusci S, Shi W, Parnigotto PP, Warburton D (2009) miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Dev Biol 333(2):238–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carraro G, Shrestha A, Rostkovius J, Contreras A, Chao CM, El Agha E, Mackenzie B, Dilai S, Guidolin D, Taketo MM, Günther A, Kumar ME, Seeger W, De Langhe S, Barreto G, Bellusci S (2014) miR-142-3p balances proliferation and differentiation of mesenchymal cells during lung development. Development 141(6):1272–1281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dakhlallah D, Batte K, Wang Y, Cantemir-Stone CZ, Yan P, Nuovo G, Mikhail A, Hitchcock CL, Wright VP, Nana-Sinkam SP, Piper MG, Marsh CB (2013) Epigenetic regulation of miR-17 ~ 92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 187(4):397–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong J, Jiang G, Asmann YW, Tomaszek S, Jen J, Kislinger T, Wigle DA (2010) MicroRNA networks in mouse lung organogenesis. PLoS ONE 5(5):e1085

    Article  Google Scholar 

  • Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP, Tizard ML (2008) A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res 18:957–964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272

    Article  CAS  PubMed  Google Scholar 

  • Harris KS, Zhang Z, McManus MT, Harfe BD, Sun X (2006) Dicer function is essential for lung epithelium morphogenesis. Proc Natl Acad Sci USA 103(7):2208–2213

  • Henrique D, Adam J, Myat A, Chitnis A, Lewis J, Ish-Horowicz D (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375:787–790

    Article  CAS  PubMed  Google Scholar 

  • Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development 141(3):502–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hogan BLM (1999) Morphogenesis. Cell 96:225–233

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Cushing L, Ai X, Lü J (2014) miR-326 is downstream of Sonic hedgehog signaling and regulates the expression of Gli2 and smoothened. Am J Respir Cell Mol Biol 51(2):273–283

    PubMed Central  PubMed  Google Scholar 

  • Johanson TM, Lew AM, Chong MM (2013) MicroRNA-independent roles of the RNase III enzymes Drosha and Dicer. Open Biol 3(10):130144

    Article  PubMed Central  PubMed  Google Scholar 

  • Khoshgoo N, Kholdebarin R, Iwasiow BM, Keijzer R (2013) MicroRNAs and lung development. Pediatr Pulmonol 48(8):317–323

    Article  PubMed  Google Scholar 

  • Lü J, Qian J, Chen F, Tang X, Li C, Cardoso WV (2005) Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophys Res Commun 334(2):319–323

    Article  PubMed  Google Scholar 

  • Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL (2007) Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310(2):442–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moura RS, Carvalho-Correia E, daMota P, Correia-Pinto J (2014) Canonical Wnt signaling activity in early stages of chick lung development. PLoS ONE 9(3):e112388

    Article  PubMed Central  PubMed  Google Scholar 

  • Moura RS, Coutinho-Borges JP, Pacheco AP, daMota PO, Correia-Pinto J (2011) FGF signaling pathway in the developing chick lung: expression and inhibition studies. PLoS ONE 6(3):e17660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mujahid S, Logvinenko T, Volpe MV, Nielsen HC (2013) miRNA regulated pathways in late stage murine lung development. BMC Dev Biol 13:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Nana-Sinkam SP, Karsies T, Riscili B, Ezzie M, Piper M (2009) Lung microRNA: from development to disease. Expert Rev Respir Med 3(4):373–385

    Article  CAS  PubMed  Google Scholar 

  • Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouellet DL, Perron MP, Gobeil LA, Plante P, Provost P (2006) MicroRNAs in gene regulation: when the smallest governs it all. J Biomed Biotechnol 2006(4):69616

    PubMed Central  PubMed  Google Scholar 

  • Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–87

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sato T, Liu X, Nelson A, Nakanishi M, Kanaji N, Wang X, Kim M, Li Y, Sun J, Michalski J, Patil A, Basma H, Holz O, Magnussen H, Rennard SI (2010) Reduced miR146a increases prostaglandin E(2) in chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med 182:1020–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887

    Article  CAS  PubMed  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230

    Article  CAS  PubMed  Google Scholar 

  • Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E (2010) Lung organogenesis. Curr Top Dev Biol 90:73–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA (2007) Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn 236(2):572–580

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Kai G, Pu XD, Qing K, Guo XR, Zhou XY (2012) Expression profile of microRNAs in fetal lung development of Sprague–Dawley rats. Int J Mol Med 29(3):393–402

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Raquel P. Andrade for providing the probes used in this manuscript. We also acknowledge Luís Martins and Ana Lima for slide sectioning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rute Silva Moura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, R.S., Vaz-Cunha, P., Silva-Gonçalves, C. et al. Characterization of miRNA processing machinery in the embryonic chick lung. Cell Tissue Res 362, 569–575 (2015). https://doi.org/10.1007/s00441-015-2240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2240-6

Keywords

Navigation