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Age-dependent alteration of TGF-β signalling in osteoarthritis
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Abstract Osteoarthritis (OA) is a disease of articular
cartilage, with aging as the main risk factor. In OA, changes
in chondrocytes lead to the autolytic destruction of
cartilage. Transforming growth factor-β has recently been
demonstrated to signal not only via activin receptor-like
kinase 5 (ALK5)-induced Smad2/3 phosphorylation, but
also via ALK1-induced Smad1/5/8 phosphorylation in
articular cartilage. In aging cartilage and experimental
OA, the ratio ALK1/ALK5 has been found to be increased,
and the expression of ALK1 is correlated with matrix
metalloproteinase-13 expression. The age-dependent shift
towards Smad1/5/8 signalling might trigger the differenti-
ation of articular chondrocytes with an autolytic phenotype.
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Introduction

Osteoarthritis (OA) is the most universal joint disease with an
increasing prevalence in the Western world attributable to the

aging population (Restrepo and Rozental 1994). The primary
characteristic of OA is the destruction of articular cartilage
but synovial inflammation, the formation of osteophytes and
sclerosis of the subchondral bone are features of this common
disease (Loeser 2010). Unfortunately, articular cartilage has a
limited repair capacity and therefore damaged cartilage will
not heal. As a result, loss of articular cartilage in OA is
progressive and will ultimately result in loss of joint function.
Pain, tenderness, joint stiffness, crepitus and synovial
effusions are the most common clinical symptoms. However,
early OA is usually not clinically noticed because of the
absence of innervation in articular cartilage. Pharmalogical
interventions are mainly focused at pain and no therapy that
interferes with the disease process has as yet been
developed. The ultimate “therapy” for OA is the replacement
of damaged joints by artificial ones but artificial joints
have only a limited time span and cannot be applied in all
affected joints.

The cause of OA is, in most cases, unknown (primary OA)
but a number of risk factors have been identified, such as
gender and obesity. However, the main risk factor for primary
OA is age (Zhang and Jordan 2010). In their study in the
USA, Murphy et al. (2008) have estimated that nearly half of
the adults will develop symptomatic knee OA by age
85 years. Many ideas have been put forward to explain the
association between OA and aging. The oldest theory linking
OA with aging is that the cartilage destruction observed in
OA joints is just a result of simple wear and tear processes.
Nevertheless, normal use has not been shown to increase the
risk for OA (Marmor 1969). An alternative explanation is
based on the clear changes that are observed in the
extracellular matrix of aging cartilage. The size of the
proteoglycan responsible for the pressure-resilient properties
of cartilage, namely aggrecan, becomes shorter with age
(Lark et al. 1995). Moreover, cross-linking between the
collagen fibrils and glycation end products significantly
increase in human aging cartilage, making the matrix more
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brittle and more vulnerable to mechanically induced damage
(Verzijl et al. 2001; DeGroot et al. 2004).

The homeostasis of articular cartilage is totally dependent
on the embedded cartilage cells, the chondrocytes, and
therefore, we can anticipate that age-related changes in
chondrocytes are involved in the OA disease process.
Chondrocytes in OA cartilage show markers of apoptosis and
this has been suggested to be related to OA (Blanco et al.
1998). However, human OA is an extremely slow progressive
disease, probably taking decades to become clinically overt,
and this is not in agreement with the high numbers of
apoptotic cells reported in OA cartilage. Loss of chondrocyte
energy supply by degeneration of mitochondrial function has
also been suggested as a causative factor in the loss of
cartilage homeostasis (Martin and Buckwalter 2003). Another
mechanism involving mitochondrial activity is oxidative
stress by reactive oxygen species, since the loss of insulin-
like growth factor (IGF)-I receptor signalling, the main
anabolic factor of articular chondrocytes, is observed during
aging (Fortier and Miller 2006). Oxidative stress has been
suggested to induce chondrocyte senescence and to inhibit
IGF-I receptor signalling (Studer et al. 2000). Alteration in
responses to growth factors other than IGF-I can play a role
in the OA process. We have found that chondrocytes in aged
mice have an altered response to the cytokine transforming
growth factor-β (TGF-β) compared with chondrocytes in
young mice and that this might be causally related to OA
(Scharstuhl et al. 2002b; Fortier and Miller 2006; Blaney
Davidson et al. 2005, 2006b). Therefore, the focus of the
present review is on this age-related change in TGF-β
signalling in OA.

TGF-β signalling via serine/threonine kinase receptors
and Smads

TGF-β signals via heteromeric complexes of transmembrane
serine/threonine type I and type II receptors. The type I
receptors, also termed activin receptor-like kinases (ALKs),
act downstream of type II receptors and determine receptor
specificity (Heldin et al. 1997). TGF-β belongs to a large
family of structurally related cytokines that also includes
bone morphogenetic proteins (BMPs). TGF-β mainly signals
via the broadly expressed type I receptor ALK5. In
endothelial cells, TGF-β has been shown to signal via
ALK1, a feature that recently has been found to be shared
with chondrocytes (Blaney Davidson et al. 2009; Goumans
et al. 2002, 2003b). BMPs signal via ALK1, -2, -3 and −6.
Upon type I receptor activation, intracellular signalling is
initiated by the phosphorylation of receptor-regulated (R)
Smad proteins. Whereas ALK5 stimulates Smad2/3
phosphorylation, ALK1, -2, -3 and −6 mediate the
activation of Smad1/5/8 (Blaney Davidson et al. 2009;

Finnson et al. 2008). Phosphorylated R-Smads form
heteromeric complexes with the common mediator (co)-
Smad4. These heteromeric complexes accumulate in the
nucleus where they, together with co-activators and
repressors, control transcriptional responses (Heldin et al.
1997). Frequently, these two main intracellular Smad
pathways are found to act opposing each other, even
antagonizing each other, for example by forming so-called
mixed Smad2/3-Smad1/5/8 complexes (Daly et al. 2008;
Goumans et al. 2003a, 2003b, 2007). Both the Smad2/3
and Smad1/5/8 signalling cascade have been reported to
control chondrocyte differentiation.

OA and chondrocyte differentiation

Cartilage can be divided into temporary and permanent
cartilage. Articular cartilage is a permanent tissue, whereas
cartilage in the growth plate is only present during
childhood and early adolescence. Cartilage formation
(chondrogenesis), as can be seen in the developing embryo,
is a strictly regulated process (Lefebvre and Bhattaram
2010). Mesenchymal precursor cells condense and initiate
chondrogenic differentiation. Differentiation of precursor
cells into differentiated chondrocytes is characterized by
cell proliferation and the deposition of cartilage-specific
molecules, such as type II collagen and aggrecan. In the
growth plate, the stage of differentiated chondrocytes is
followed by chondrocyte terminal differentiation. This
results in chondrocyte hypertrophy and the breakdown of
cartilage and bone deposition. During terminal differentiation,
chondrocytes enlarge, up to tenfold, and express type X
collagen and matrix metalloproteinase 13 (MMP13). The
latter enzyme is crucial during the degradation of the cartilage
matrix in the growth plate, with loss of this enzyme in
knockout mice resulting in a non-functional growth plate
(Inada et al. 2004). Alternatively, in articular cartilage,
chondrocyte terminal differentiation is inhibited, resulting
in stable cartilage in the synovial joints. However, during OA
development, chondrocytes in articular cartilage undergo
phenotypic changes that bear a close resemblance to the
alteration that occurs in terminally differentiating chondrocytes
in the growth plates (Tchetina et al. 2005). Terminal differen-
tiation of chondrocytes in the growth plate and changes in
articular chondrocytes in OA cartilage cannot be considered as
entirely identical processes, although alterations in these cells
show a number of parallel characteristics (such as the high
expression of MMP13), which are most likely controlled by
similar mechanisms.

TGF-β is involved in all stages of chondrogenesis, from
condensation to terminal differentiation. Data from in vitro
studies of mesenchymal precursor cells indicate that TGF-β is
the main initiator of chondrogenesis in these cells (Iwasaki et

258 Cell Tissue Res (2012) 347:257–265



al. 1993; Mackay et al. 1998). Mesenchymal condensation,
proliferation of chondroblasts and the deposition of cartilage-
specific extracellular matrix molecules is strongly stimulated
by TGF-β.

In the initial stages of chondrocyte differentiation, TGF-β
acts primarily as a stimulator in the progression of chondrocyte
differentiation. However, this is different from the role of TGF-
β in the late stages of differentiation. TGF-β clearly blocks
chondrocyte terminal differentiation (Serra et al. 1997; Yang et
al. 2001). Mice knocked out for Smad3 express elevated
numbers of hypertrophic chondrocytes in articular cartilage
(Yang et al. 2001). Furthermore, TGF-β blocks the expression
of the terminal differentiation marker type X collagen in
cultures of primary mouse limb bud mesenchymal cells
(Zhang et al. 2004). Smad2 and 3 are essential signalling
molecules in the inhibitory effect of TGF-β on chondrocyte
terminal differentiation and Smad3 appears to play a more
prominent role than Smad2 (Alvarez and Serra 2004). These
findings clearly demonstrate that TGF-β stimulates the early
stages of chondrocyte differentiation but blocks chondrocyte
terminal differentiation.

Whereas terminal differentiation is blocked by signalling via
Smad2/3, we and others have shown that terminal differenti-
ation strictly requires Smad1/5/8 signalling (Hellingman et al.
2011). In knockout mice, the loss of both Smad 1 and 5 has
been shown to result in the obstruction of chondrocyte
terminal differentiation and severe cartilage defects. In
addition, the inhibitory Smad6 and Smurf1 and 2 are known
inhibitors of mainly Smad1/5/8 signalling interfering with
Smad signalling and accelerating proteosomal breakdown of
phospho-Smads. Mice overexpressing either Smad6 or
Smurf1 demonstrate inhibition of chondrocyte terminal
differentiation (Horiki et al. 2004). Overexpression of Smurf2
in differentiating chicken chondrocytes stimulates chondrocyte
terminal differentiation and maturation as a result of reduced
Smad2/3 signalling (Wu et al. 2008b).

The transcription factor Runx2 plays a major role in the
control of chondrocyte terminal differentiation. Mice that
lack functional Runx2 also completely lack bone formation,
because chondrocyte terminal differentiation is absent
(Hecht et al. 2007). Runx2 is a central switch that integrates
the signals of both Smad pathways, thereby controlling
chondrocyte terminal differentiation (Javed et al. 2008,
2009; Miyazono et al. 2004; Lian et al. 2003; Leboy et al.
2001). Smads have been reported to modulate chondrocyte
differentiation by a physical interaction with Runx2.
Complex formation of Runx2 with Smad1 is vital for the
function of Runx2, whereas the interaction of Smad3 with
Runx2 inhibits Runx2 functioning (Hjelmeland et al. 2005;
Kang et al. 2005; Javed et al. 2008, 2009; Zheng et al.
2007). Apparently, Runx2 can be switched on or off by
different Smads, thus controlling chondrocyte terminal
differentiation.

Chondrocyte terminal differentiation is thought to play a
major role in OA development and Smad signalling regulates
this process. However, other factors in addition to the Smad
signalling routes can affect chondrocyte differentiation and
play a potential role in OA development. Chondrocytes can be
activated by inflammatory cytokines, by the Wnt signalling
cascade or by extracellular matrix-derived triggers (Blom et al.
2004, 2007, 2009; Goldring et al. 2008; Xu et al. 2007;
Kawaguchi 2009; Zhu et al. 2009). Of note, most of these
factors also influence TGF-β and Smad signalling,
modulating the stability and activity of the various Smad
routes and hence adapting the effect of TGF-β on chondrocyte
differentiation and OA development.

Genetic aspects of TGF-β and OA

A relationship between the genetic variants of TGF-β itself,
TGF-β signalling and binding molecules and OA is reported in
humans. Elevated TGF-β1 activity has been suggested to be
associated with elevated bone mass and OA. Elevated bone
mass is thought to be related to OA development, since the
opposite, osteoporosis, appears to protect against OA (Livshits
et al. 2010). The long bones of patients with Camurati-
Engelmann disease show osteosclerosis. Camurati-Engelmann
disease is associated with a mutation in the TGF-β1 gene,
resulting in elevated TGF-β activity attributable to an altered
binding of lamina-associated polypeptide-1 to mature TGF-β1
(Saito et al. 2001; Wu et al. 2006). Spinal osteophyte
formation, an indication of OA development, is associated
with variants of the TGF-β1 gene in Japanese women
(Yamada 2000; Yamada et al. 2000). This variant also protects
this population from osteoporosis, stressing the inverse
relationship between low bone mass and OA. However, in a
population of German women, no such relationship could be
confirmed between this TGF-β1 variant and bone mass
(Hinke et al. 2001).

Another genetic variant, in this case proposed to result in
decreased TGF-β activity, is reported for asporin, a small
leucine-rich proteoglycan. Asporin is a TGF-β inhibitor
that is highly expressed in articular cartilage. In Asian
populations, the so-called D-14 variant is associated with
OA (Kizawa et al. 2005; Song et al. 2008; Jiang et al.
2006). This D-14 variant is a stronger TGF-β inhibitor than
the common D-13 variant. Reduced TGF-β activity is
proposed to result in decreased synthesis of cartilage-
specific extracellular matrix molecules and thus leads to
OA (Kizawa et al. 2005). However, in Caucasians, an
association between the asporin D-14 variant and OA is
lacking in most of the investigated populations (Atif et al.
2008; Rodriguez-Lopez et al. 2006).

Mutations and genetic variation in the Smad3 gene are
associated with OA (Yao et al. 2003; van de Laar et al.
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2011; Valdes et al. 2010). Increased expression of Smad3 and
several key elements of the TGF-β signalling pathway have
been found by van de Laar et al. (2011). A relationship
between increased Smad3 signalling and OA is unexpected,
since studies in transgenic mice have shown that the loss
of Smad3 results in accelerated chondrocyte terminal
differentiation and OA (Wu et al. 2008a; Yang et al. 2001).
Moreover, overexpression of Smurf2 in mice, leading to the
inhibition of Smad3 signalling, elicits cartilage damage in
vivo (Wu et al. 2008a). This discrepancy can be explained on
the basis that either too much or too little Smad3 activity will
lead to OA or that different mechanism are involved in the
various patient groups. Changes in connective tissues related
to altered Smad3 signalling in patients with an aortic
phenotype can indirectly result in OA attributable to altered
joint stability. On the other hand, genetic variants that will
result in decreased Smad3 signalling will produce OA by
another mechanism, most probably related to changes in
chondrocyte differentiation.

The above-described studies indicate that changes in TGF-
β or TGF-β signalling components are related to OA
development. Since primary OA is a highly common disease,
subtle genetic variations can be expected to contribute to this
aging-related disease but not to play a critical role. Moreover,
genome-wide association studies have been unsuccessful in
detecting genes that have a major contribution to OA in the
general population (Panoutsopoulou et al. 2011). This
indicates that gene variations might not play a major role
in primary OA but that general aging processes might be at
the root of the development of this degenerative disease. We
propose that an age-related alteration in TGF-β signalling
plays a crucial role in the OA disease process.

Shift in ALK1/ALK5 balance in ageing and OA

In our initial studies, comparing the counteracting effect of
TGF-β on interleukin-1-induced cartilage damage in young
and old mice, we observed that TGF-β was able to
counteract the deleterious effect of interleukin-1 in young
mice but not in old ones (Scharstuhl et al. 2002b; van
Beuningen et al. 1994a). This finding encouraged us to
investigate the differences in TGF-β signalling in the
cartilage of young and old animals. An age-related loss of
the TGF-β type I receptor ALK5 and phosphorylation of
Smad2/3 in murine articular cartilage was one of the most
striking findings (Blaney Davidson et al. 2006b). The
expression of non-phosporylated Smad2 or Smad3 was no
different in young and old animals. Since OA development
and aging are highly correlated, we also studied the
relationship between OA and alterations in TGF-β signalling
components in two experimental models of OA. In both
models used, namely the meniscus destabilization model and

STR/ORT mice (spontaneous OA), OA development was
associated with a striking loss of ALK5 expression (Blaney
Davidson et al. 2006b).

In parallel in vitro studies, we have demonstrated that
chondrocytes, like endothelial cells, also use ALK1 as a
TGF-β type I receptor (Blaney Davidson et al. 2009;
Finnson et al. 2008; Goumans et al. 2002). In chondrocytes,
this results in the activation of the Smad1/5/8 route (Blaney
Davidson et al. 2009; Finnson et al. 2008; Goumans et al.
2002). Interestingly, expression of this alternative TGF-β
receptor does not diminish to a comparable extent as ALK5
during aging and experimental OA (Blaney Davidson et al.
2009). As a consequence of the sharp drop in ALK5 and
only a small reduction in ALK1 expression, the ALK1/
ALK5 ratio is strongly elevated in aged and OA articular
chondrocytes. The increased ALK1/ALK5 ratio is reflected
in an increased Id1/PAI1 expression ratio, indicating a shift
from Smad2/3 to Smad1/5/8 signalling during aging and
OA in murine cartilage (Blaney Davidson et al. 2009).

Keeping the regulation of chondrocyte differentiation in
mind, we can anticipate that a shift in TGF-β signalling from
ALK5 to ALK1 will affect chondrocyte differentiation.

A dominant expression of ALK5 will result in mainly
Smad2/3 signalling, whereas ALK1 dominance will lead to
the activation of the Smad1/5/8 pathway. The balance of
these routes has been shown to control chondrocyte
differentiation via Runx2 (see above).

We have further demonstrated that, in chondrocytes, the
overexpression of constitutive active ALK5 (Smad2/3) results
in increased aggrecan expression, whereas constitutive ALK1
(Smad1/5/8) expression leads to increased expression of
MMP13 (Blaney Davidson et al. 2009). Moreover, inhibition
of ALK5 expression by using short interfering RNA causes
the elevated expression of MMP13, the major cartilage
degrading enzyme in OA (Billinghurst et al. 1997). Thus,
MMP13 expression is apparently determined by the balance
in ALK1 (Smad1/5/8) and ALK5 (Smad2/3) signalling. Of
note, the cartilage of human OA knee joints shows a
significant correlation between ALK1 and MMP13
mRNA expression (Blaney Davidson et al. 2009). These
observations indicate that ALK1 signalling stimulates
changes in chondrocyte differentiation that are similar to the
chondrocyte phenotype demonstrated in OA cartilage, a
phenotype characterized by the highly elevated expression
of MMP13 (Billinghurst et al. 1997; Reboul et al. 1996).

We postulate that, because of frequent sub-clinical
micro-traumata to the cartilage matrix, TGF-β is released
from the extracellular matrix. In articular chondrocytes of
young articular cartilage, TGF-β acts as a repair factor,
stimulates the synthesis of matrix molecules and keeps
the cells in a quiescent state by the inhibitory effect of TGF-β,
via Smad2/3, on the progression of chondrocyte differentia-
tion. During the aging of chondrocytes and OA
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development via an until now unknown mechanism,
signalling through ALK1 and Smad1/5/8 is favoured
compared with signalling via ALK5 and Smad2/3. The
dominant Smad1/5/8 signalling triggers the articular
chondrocytes to leave their quiescent state. This stim-
ulates the progression to a chondrocyte phenotype with
characteristics comparable with those of hypertrophic chon-
drocytes normally only found in the growth plates. These
hypertrophic chondrocytes are essential for the removal of the
cartilage matrix, mainly by MMP13, to make bone deposition
possible (Stickens et al. 2004). These chondrocytes have an
autolytic phenotype degrading their surrounding cartilage
matrix, as observed in OA cartilage (Fig. 1).

TGF-β and osteophyte formation

We propose a role for TGF-β not only in the regulation of
chondocyte behaviour and cartilage destruction, but also in
another feature of OA, namely osteophyte formation.
Osteophytes are outgrowths at the margins of the joint
that originate from activated mesenchymal stem-cell-like
periosteal cells lining the articulating joint surface and
can lead to clinical problems (van der Kraan and van den
Berg 2007). We have shown, in murine models, that the
injection of TGF-β or BMPs results in osteophyte
formation in the knee joint (van Beuningen et al. 1994b,
1998, 2000). Cartilaginous osteophytes can be seen within
1 week after injection and, after 1 month, these structure
have ossified and are true osteophytes.

The osteophytes induced by BMPs or TGF-β injection are
not identical. Osteophytes induced by TGF-β originate from
the periosteal cells lining the joint, whereas in the case of BMP-
2-induced osteophytes, cells in the, not yet closed, murine
growth plate contribute to the formation of the osteophytes (van
Beuningen et al. 1994b, 1998). During experimental OA, the
pattern of osteophyte formation closely resembles that of
TGF-β-induced osteophytes but is quite different from the
pattern induced by BMP-2 (Blaney Davidson et al. 2007).
Moreover, the outer layer of osteophytes developing during
experimental OA strongly express TGF-β1 and phospho-
Smad2/3. The latter is not only confined to the surface cells,
but also shows strong positive cells in the deeper layer of the
osteophytes. Smad1/5/8 signalling is mainly observed in
hypertrophic chondrocytes in the late stages of osteophyte
formation (own data, not shown).

To explore further the role of TGF-β in the process of
osteophyte formation, we performed blocking studies using
specific TGF-β inhibitors. TGF-β activity was blocked by
means of a scavenging soluble TGF-β type II receptor
extracellular domain, by intra-articular overexpression of
LAP-1 or by intra-articular overexpression of Smad7. All
three treatments resulted in a significant reduction in osteo-

phyte formation compared with controls. Overexpression of
adenoviral Smad6, targeting mainly the Smad1/5/8 route, was
far less effective than Smad7 overexpression (Scharstuhl et al.
2002a, 2003). In addition, adenoviral overexpression of
gremlin, a BMP inhibitor, fully blocked BMP-2-induced
osteophyte formation. However, the blocking of BMP activity
by gremlin neither inhibited TGF-β-induced nor experimental
OA-associated osteophyte formation (Blaney Davidson et al.
2007). These observations clearly demonstrate that TGF-β
plays a dominant role in the induction of osteophytes, at least
in murine OA models, and that the role of BMPs is limited in
the early stages. The latter finding does not exclude a role for
BMPs during cartilage maturation, as is seen in developing
osteophytes (Lories et al. 2005).

TGF-β is released, and partly activated, from damaged
joint tissues during OA development or by inflammation
accompanying the OA process. Mesenchymal stem cells in
the periosteum are triggered, by the released TGF-β, to initiate
chondrogenic differentiation, as has been shown in vitro by
using periosteum explants (O'Driscoll et al. 1994). The
mesenchymal cells go through a developmental process
similar to that seen in the growth plates. Cartilage deposition
is followed by chondrocytes maturation leading to chondro-
cyte hypertrophy and finally to replacement by bone. This
indicates that TGF-β most likely not only plays a role in
cartilage destruction, but also in the concomitant formation
of new cartilage and bone, namely the osteophytes.

TGF-β and synovial fibrosis

Synovial fibrosis can be often observed in OA-affected joints
(Revell et al. 1988). We have shown that both the injection
and the adenoviral overexpression of TGF-β results in
substantial synovial fibrosis characterized by fibroblast
proliferation and collagen accumulation (Bakker et al. 2001;
van Beuningen et al. 1994b). Moreover, the blocking of TGF-
β itself or of TGF-β signalling results in a significant
decrease in synovial fibrosis in murine experimental OA
models (Blaney Davidson et al. 2006a; Scharstuhl et al.
2003). These findings indicate that TGF-β is an important
driving-force for synovial fibrosis in OA and contributes to
the characteristic stiffness of affected joints.

Concluding remarks and targets for therapy

We postulate that TGF-β plays a central role in OA
development, being a protective factor initially but later
playing a role in OA pathogenesis characterized by
cartilage destruction, osteophyte formation and synovial
fibrosis. In our view, the OA process is driven by the loss of
the Smad2/3 block and acquirement of the Smad1/5/8 push
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Fig. 1 Transforming growth
factor-β (TGF-β) plays a role
in key characteristics of
osteoarthritis (OA): cartilage
damage, osteophyte formation
and synovial fibrosis. TGF-β
is required for the maintenance
of healthy cartilage during
which it signals primarily via
Smad2/3. With age and OA, a
shift in the activin receptor-like
kinase 5 (ALK5):ALK1 ratio is
established, favouring Smad1/5/
8 signalling and leading to a loss
of the cartilage protective role of
Smad2/3. We suggest a role for
this balance shift towards ALK1
in cartilage damage during OA
development. In addition,
TGF-β is a crucial factor in
the onset of osteophyte
development. In later stages
of osteophyte development,
bone morphogenetic proteins
(BMP) might be equally impor-
tant. TGF-β is a major player in
fibrotic diseases and, during
OA, it induces synovial fibrosis
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on chondrocyte differentiation in articular chondrocytes
leading to an advancement of chondrocyte differentiation
and finally an autolytic phenotype. In addition, TGF-β
released by tissue damage and inflammation triggers
periosteal cells to form osteophytes and to stimulate a
fibrotic reaction of the synovial fibroblasts.

Since this view does not regard OA as a simple and
unavoidable result of wear and tear, pharmalogical
interventions should be an option. OA is initially a focal
process and not all chondrocytes will show an OA-like
phenotype. Some cells will have an autolytic phenotype,
whereas other cells will still be in a quiescent healthy
state of differentiation. These cells could be targeted for
therapy to block further progression of the OA process.

A disbalance of ALK1/ALK5 and loss of dominant Smad2/
3 signalling is at the basis of the OA process, in our view.
Specific ALK1 inhibitors that can penetrate cartilage or
compounds specifically stimulating the Smad2/3 route should
be developed and tested in pre-clinical models of OA. To date,
no effective therapy has been developed for OA that interferes
with disease progression. Painkillers and joint replacements are
the only therapeutic options at the moment. The blocking of
the Smad1/5/8 pathway or stimulation of smad2/3 signalling,
combined with the use of MMP13 inhibitors to block the
autolytic phenotype of fully OA chondrocytes, should be
pursued as potential remedies. The proposed treatments would
hit the OA process at its foundation, inhibiting the generation
of chondrocytes with an autolytic phenotype.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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