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Abstract We study the volume distribution of nodal domains of families of naturally
arising Gaussian random fields on generic manifolds, namely random band-limited
functions. It is found that in the high energy limit a typical instance obeys a determinis-
tic universal law, independent of the manifold. Some of the basic qualitative properties
of this law, such as its support, monotonicity and continuity of the cumulative proba-
bility function, are established.

Mathematics Subject Classification 58J50 · 60F99 · 35P20

1 Introduction

A conjecture of Berry [3] was the original motivation for the study of nodal lines of a
random planewave. Nowadays, the study of the nodal lines of random planewaves and
other smooth Gaussian fields is a well developed research area of its own right, also
having numerous connections to other areas ofmathematics andmathematical physics.
We refer to a survey by Nazarov and Sodin [10] for more information. Bogomolny
and Schmit [4] argued that some properties of the nodal domains of random plane
wave behave similarly to the analogous properties of the critical percolation clusters
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corresponding to the square lattice; these include their number and the distribution of
their areas.

It turns out that a lot of techniques could be extended to more general ensembles of
random functions that we will discuss later on. In this paper we discuss the distribution
of nodal domains’ areas and length of their boundaries; we are following the footsteps
of Nazarov and Sodin [9,11], who developed some novel techniques to study the total
number of nodal domains of smooth fields, and Sarnak andWigman [12]who extended
their tools to study finer questions of counting nodal domains of a given topological
type and their mutual positions (“nestings”). Some of the methods in our paper are
similar to these of the aforementioned papers; in particular,we borrow several technical
results from these manuscripts. Somemarked differences from these will be discussed
at the end of the introduction.

Let (M, g) be a compact smooth Riemannian n-manifold. For a smooth function
f : M → R the nodal domains are the connected components of the complement
M\ f −1(0) of the nodal set, and we denote Ω( f ) to be the collection of all nodal
domains of f , and for t > 0 we denote N ( f ; t) to be the number of nodal domains
ω ∈ Ω( f ) of volume

Vol(ω) < t,

where Vol = Voln is the n-dimensional volume on M. We also define

N ( f ) = N ( f ;∞) = |Ω( f )|

to be the total number of nodal domains of f . In this paper we will investigate the
behaviour of N ( f ; t) for several classes of random functions f .

Before introducing the most general result we would like to discuss one particular
case (whose scaling limit is Berry’s random monochromatic waves) which is easy to
explain and is representative in the proof of the general result. It is well-known that
the space of spherical harmonics of degree l is of dimension 2l + 1; let {φl,i }i=1...2l+1
be an arbitrary L2-orthonormal basis. Define a random Gaussian spherical harmonic

fl =
√

1

2l + 1

2l+1∑
i=1

ciφl,i , (1.1)

where ci are i.i.d. standard Gaussian variables. The normalizing constant is chosen so
that

E[| f (z)|2] = 1

for every z ∈ S2.
For the total number of nodal domains of fl Nazarov and Sodin [9,11] proved that

there exists a constant c0 > 0 (“Universal Nazarov–Sodin Constant”) so that

E

[∣∣∣∣N ( fl)

l2
− 4πc0

∣∣∣∣
]

→ 0, (1.2)
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i.e. that N ( fl )
l2

converges to the constant 4π · c0 > 0 in mean, where 4π = Vol2(S2)

is the surface area of the unit 2-sphere. The constant c0 in (1.2) will be denoted
c0 = c(2, 1) as a particular case of a more general situation below [see (1.8)]. Our
first principal result refines this.

Theorem 1 Let fl be the random spherical harmonic of degree l. Then the following
holds:

1. There exists a monotone non-decreasing function

Ψ = Ψ2,1 : (0,∞) → R+,

so that for all continuity points t of Ψ we have

E

[∣∣∣∣N ( fl; t/ l2)
N ( fl)

− Ψ (t)

∣∣∣∣
]

→ 0, l → ∞. (1.3)

(Notation Ψ2,1 will be clear from the formulation of Theorem 2.)
2. Let

t0 = π j20,1 = 18.168 . . .

where j0,1 ≈ 2.4048 is the first zero of the Bessel function J0. Then the function
Ψ defined above vanishes on [0, t0), and is strictly increasing for t > t0.

As amonotone increasing functionΨ is continuous outside a countable set of jumps
T0 = T0;2;1 = {tk}∞k=1; hence (1.3) holds for all t ∈ R>0\T0. The question whether
we should expect for some genuine “distinguished” numbers t ∈ T0 that accumulate
a positive proportion of nodal domain areas with strictly positive probability turned
out to be quite tricky. On one hand, it is a priori possible to construct examples of
spherical harmonics admitting lots of nodal domains of similar volume ≈ t , for some
candidate t > 0 for T0. However, we may show that this situation is unstable w.r.t.
small perturbations of the given spherical harmonics, by evaluating the derivatives of
the volumes of these nodal domains w.r.t. the perturbation, and proving most of them
to be bounded away from 0, with high probability.

The latter procedure seems very difficult to implement in order to rigorously rule
out atoms, since the typical situation is more complicated, so that, even though the
nodal domains of volume ≈ t before perturbation have been perturbed sufficiently,
there might occur other domains, whose volume will be ≈ t after the perturbation.
Nevertheless the above heuristic could serve as an argument in favour of believing in
no “distinguished” areas, accumulating a positive proportions of nodal domain areas,
at all, as in the following conjecture (or at least |T0| < ∞ is finite). This is also
our grounds for believing the analogous conjecture in the more general setting (see
Conjecture 2below); if our intuition is correct, thenΨ is also differentiable everywhere,
both in the restricted case Ψ = Ψ2,1 (see the second part of Conjecture 1), and in the
more general scenario.

Conjecture 1 Let Ψ be the function prescribed by Theorem 1.
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1. The set of jumps of Ψ is empty, i.e. T0 = ∅, and Ψ is continuous.
2. The function Ψ is everywhere differentiable on (t0,∞) and its derivative (the

probability density of the limiting distribution of nodal areas) is strictly positive.

Let us make a few remarks on Theorem 1. The spherical harmonics have a natural
scale 1/ l, hence the natural area scaling is t/ l2; the area of a typical nodal domain
is of order of magnitude 1

l2
. Since the spherical harmonics are eigenfunctions of the

spherical Laplacian, there is deterministic a lower bound on the nodal domains area.
This will follow from the Faber–Krahn inequality which, in the 2-dimensional case,
states that for a domain of area A its first Dirichlet eigenvalue of the Laplacian is at
least π j20,1/A. This implies that Ψ (t) = 0 for t < t0. One may formulate and prove
similar results on the distribution of lengths of nodal domains boundaries (equivalently,
connected components of the nodal set f −1

l (0)), called the nodal components of fl
(see also Sect. 6).

All the other principal results of this paper are in the same spirit as Theorem 1
but in different, less specialized, settings. The two main settings are: Euclidian (or
“scale invariant”) case, and band-limited ensembles on manifolds; one recovers the
former as scaling limits of the band-limited ensembles around every point of the given
manifold. Below we briefly describe the various settings of random ensembles of
functions treated in this paper.

1.1 Euclidian random fields

Here we are interested in centred Gaussian functions F : R
n → R; it is a well

known fact (Kolmogorov’s Theorem) that the distribution of a centred Gaussian field
is completely determined by its covariance kernel

K (x, y) = E[F(x) · F(y)].

We will be interested in isotropic fields i.e. the fields such that

K (x, y) = K (|x − y|),

which means that F is invariant under translations and rotations. From now on we
assume that all our fields on Rn are isotropic, and moreover, we will also assume that
F is normalized so that K (0) = E[F2(x)] = 1.

It is known that the such covariance kernel K can be expressed as the Fourier trans-
form of a measure ρ, called the spectral measure. In many cases it is more convenient
to describe the field F in term of its spectral measure instead of the covariance kernel.
Given the spectral measure, there is an alternative way of constructing the random
function F . It can be constructed as the Gaussian vector in the Hilbert spaceH which
is Fourier image of the symmetric space L2

sym(ρ). In particular this means that if {φk}k
is an orthonormal basis inH, then

F =
∑

ζkφk, (1.4)

123



Volume distribution of nodal domains of random… 457

where ζk are i.i.d Gaussian random variables. This series a.s. diverges in H but,
under suitable assumptions on ρ, converges a.s., pointwise or in some other sense,
to a well-defined function. The nature of the convergence depends on the prop-
erties of ρ; in cases of our most interest the series (1.4) converges locally in Ck

for every k. One of the most important motivational examples is the random plane
wave:

Definition 1 The randomplanewave or themonochromatic wavewith energy E = k2

is the centred Gaussian field on R2 with the covariance kernel

K (x, y) = J0(k|x − y|),

where J0 is the zeroth Bessel function.

Since the spectral measure is supported on the unit circle, the random plane wave
is a solution of Helmholz equation

Δ f + k2 f = 0 (1.5)

on R
2. One may think of the random plane wave as a “random” solution of (1.5). It

is possible to express the random plane wave in terms of an orthonormal basis in the
corresponding Hilbert space via the formula (1.4). A canonical basis for this Hilbert
space is given in terms of Bessel functions Jk , and, in polar coordinates x = reiθ , the
function F could be written as

F(reiθ ) = �
∞∑

n=−∞
cn J|n|(kr)einθ , (1.6)

where the coefficients cn are i.i.d. standard complex Gaussians. More details about
the construction of the random plane wave and its relation to the random spherical
harmonics could be found in [9].

A direct computation shows that the covariance kernel of this function is indeed
K (x, y) = J0(k|x − y|). The spectral measure of F is the normalized Lebesgue
measure on the circle of radius k. Since plane waves with different values of k differ
by the scaling, it is natural to fix k = 1. The description in terms of the spectral
measure has a natural generalization to the higher dimensions:

Definition 2 The random plane wave inRn is the Gaussian field whose spectral mea-
sure is the normalized (n − 1)-dimensional Lebesgue measure on Sn−1 ⊂ R

n .

In Theorem 5 below we will show that under relatively mild conditions on
the spectral measure, an analogue of Theorem 1 holds for F . Theorem 5 will be
proved in great generality, though the most important, relevant for Theorem 1, is
the case of the random monochromatic plane-wave, of significant importance by
itself.
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1.2 Band-limited functions

Let (M, g) be a compact Riemanian n-manifold, then the eigenfunctions of the Lapla-
cian {φi }i≥1 form an orthonormal basis of L2(M). We denote the square roots of
eigenvalues by 0 = t0 ≤ t1 ≤ t2 . . . i.e. satisfying

Δφi + t2i φi = 0.

For a fixed α ∈ [0, 1) and T � 0 a large spectral parameter we define the α-band-
limited functions (corresponding to T )

f (x) = fα;T (x) =
∑

αT≤t j≤T

c jφ j (x). (1.7)

where c j are independent real Gaussian variables of mean 0 and variance 1. For α = 1
we define f1;T by

f (x) = f1;T (x) =
∑

T−η(T )≤t j≤T

c jφ j (x),

where η is a function growing to infinity slower than T , i.e. η(T ) → ∞ as T → ∞
and η(T ) = o(T ).

The random spherical harmonic (1.1) defined above is an α = 1 band-limited
function on the unit sphere S2 with α = 1 and η(T ) = O(T 1/2). For the total number
of nodal domains of the band limited functions Nazarov and Sodin [11,13] proved
that for every α ∈ [0, 1], n ≥ 2 there exist a constant c(n, α) > 0 (“Nazarov–Sodin
constant”1) satisfying

E

[∣∣∣∣NΩ( f )

T n
− c(n, α) · Voln(M)

∣∣∣∣
]

→ 0. (1.8)

Sarnak and Wigman [12] refined the latter result (1.8) for counting the number of
nodal domains (or components) of f of a given topological class; they also found an
elegant way to formulate it in terms of convergence of random probability measures
consolidating all topological types into a universal deterministic probability measure
that conserves all the topologies. Gayet and Welshinger [8] proved lower (and upper)
bounds for the expected number of domains of a given topological class in a different
ensemble of random polynomials in the high degree limit. We will show below that a
result similar to Theorem 1 holds for band-limited functions.

Theorem 2 Let f = fα;T be a band-limited function on some n-dimensional compact
manifold M. There exists a monotone non-decreasing function

Ψ = Ψn;α : (0,∞) → R+,

1 Note the different normalization as compared to [12].
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so that for all continuity points t of Ψ we have

E

[∣∣∣∣NΩ( f ; t/T n/2)

NΩ( f )
− Ψ (t)

∣∣∣∣
]

→ 0, T → ∞. (1.9)

Importantly, the function Ψ prescribed by Theorem 2 depends on dimension n, but
not on the manifold.

1.3 Some properties of the limiting distribution Ψn;α

Here we investigate the most basic property of Ψn;α , i.e. its monotonicity. We need
to distinguish between α < 1, where the corresponding distribution function Ψn;α
is strictly positive and increasing everywhere (Theorem 3), and α = 1, where the
behaviour of the function Ψn;1 is more complicated (Theorem 4).

Theorem 3 For every n ≥ 2, α < 1 the function Ψn;α as above is strictly increasing
on R+.

Theorem 4 For every n ≥ 2 the function Ψn;1 vanishes on [0, t0] where

t0 = t0(n) = πn/2

Γ (n/2 + 1)
jnn/2−1,1

is the volume of the ball of radius jn/2−1,1 – the first zero of the Bessel function Jn/2−1.
Moreover, Ψn;1 is strictly increasing on (t0,∞).

Motivated by similar arguments to Conjecture 1 (see the couple of paragraphs
preceding Conjecture 1) it is only natural to conjecture the following:

Conjecture 2 The function Ψn;α is continuous, everywhere differentiable. For α < 1

the derivative dΨn;α(t)
dt > 0 is everywhere positive, whereas for α = 1 the same holds

for t > t0.

1.4 Main ideas and the plan of the paper

Our general strategy is similar to [11,12]; for a start, in Sect. 2.1 we give the necessary
background on the behaviour of band-limited functions in the semiclassical limit.
Roughly speaking, we show that on small scale bigger than 1/T the rescaled version
fα;T of the band-limited function is well-approximated locally around every point
x ∈ M by its limit gn,α defined on the tangent space TxM. Importantly, gn,α is
universal, i.e. it does not depend on manifold or x , and it is sufficiently explicit for
us to conduct local computations. This will allow us to prove the main results for
gn,α , and then use the effective convergence to deduce the results for the band-limited
functions. In Sect. 2.2 we formulate several Kac–Rice type results that will yield
universal upper bounds on various local quantities like the number of nodal domains
or nodal components.
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InSect. 3wediscuss the behaviour ofGaussianfields onRn .We formulate andprove
Theorem 5, a Euclidean version of Theorem 2, holding under very mild conditions on
a random field, including all of the gn,α . The proof of Theorem 2 is based on a priori
upper bounds via Kac–Rice, and an ergodic theorem, yielding the existence of the
scaling limit of the volume distribution. Towards the end of Sect. 3 where Theorems 6
and 7 on the distribution function Ψn,α are proved; these are Euclidean analogues
of Theorems 3 and 4, covering the generic case α < 1, and α = 1 respectively.
The proofs of Theorems 6 and 7 are rather similar. Here our first goal is establishing
the existence of a deterministic function with nodal domain containing the origin
of volume approximating the given number. Then we show that the same holds for
functions approximating the postulated one in C1-norm (see Lemma 10); finally we
claim that the latter happens with positive probability. The translation invariance of
the underlying random fields yields that, as the claimed result holds near origin with
positive probability, it holds with positive density.

In Sect. 4 we prove that since functions fα;T and gn,α are close to each other
(after coupling and rescaling), their respective numbers of nodal domains of restricted
volume are close with high probability (this is quantified in Proposition 1). In Sect. 5
we prove the main theorems of the paper. The proofs are based on semi-locality of
nodal domains, that is, that most of the nodal domains of fα;T are neither too small
nor too long, i.e. that the semi-local approximation by gn,α captures most of the nodal
domains of fα;T . This allows to infer the results on fα;T from the analogous results
on gn,α . Finally, in Sect. 6 we make some final remarks about the proof, in particular
we explain that with some minor modification our methods imply similar results for
the distribution of the surface volume of the nodal components or even for the joint
distribution of the volumes of nodal domains and boundary volumes.

Despite the fact that our general approach follows the footsteps of Nazarov and
Sodin [11,13] and Sarnak and Wigman [12] (and Canzani and Sarnak [7] for the full
support statement in the monochromatic case α = 1), our case offers new significant
challenges on both the Euclidean stage and the inference of the Riemannian one, and
also for proving the full support statement on the volume distribution. First, as we are
interested in the number of nodal domains of a given approximate volume, we need
to refine the techniques to control the volumes of the perturbed nodal domains rather
than their mere number; though it shares some similarities with [12], the continuous
variable t makes the analysis more challenging as compared to the purely discrete
(and hence atomic) case in [12]. While the more refined technical work is a relatively
standard application of techniques in differential geometry (Lemma 10), if some t > 0
happens to be an atom of the limiting distribution, it does not guarantee that t maintains
its mass after the perturbation. In fact, as a result of the perturbation its mass might
spread in an infinitesimal neighbourhood (t − ε, t + ε) of t ; this is the reason why the
main results are only formulated for continuity points of the limit distribution function
Ψ .

Second, as part of the full support statement for the limit distribution (Theorems 3
and 4), we need to construct a deterministic function in some space of functions with a
nodal domain of a prescribed volume. In themonochromatic case this is only possible if
it obeys the Faber–Krahn inequality; in this casewe show that the converse is also valid,
whence are are building on [7] and refine it for our needs. Finally, while an analogue
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of the ergodic approach of Nazarov and Sodin [11,13] yields the mere existence of
Ψ (t) for every given t > 0 the properties of Ψ are far from being obvious. In fact,
it could be that the atoms of the limit distribution corresponding to Ψ concentrate all
the probability.

2 Necessary background

2.1 Semiclassical properties of band-limited functions and their scaling limits

In this section we introduce a few facts about band-limited functions. The results are
stated without proofs, for more detailed discussion we refer the readers to [12, Section
2.1] and references therein.

For the band-limited function fα;T we have the covariance function

Kα;T (x, y) := E
[
fα;T (x) · fα;T (y)

] =
∑

αT≤t j≤T

φ j (x)φ j (y),

with the same conventions as above for α = 1. The following semiclassical approx-
imation, independent of M, holds (see [12, Section 2.1] with case α = 1 due to
Canzani and Hanin [5,6]):

K̃α(T ; x, y) := 1

Dα(T )
Kα(T ; x, y) = Bn,α(T · d(x, y)) + O

(
T−1

)
, (2.1)

uniformly for x, y ∈ M, where d(x, y) is the (geodesic) distance in M between x
and y,

Dα(T ) = 1

Vol(M)

∫
M

Kα(T ; x, x)d Vol(x),

and for w ∈ R
n

Bn,α(w) = Bn,α(|w|) = 1

|Aα|
∫
Aα

e2π i〈w,ξ〉dξ (2.2)

where Aα = {w : α ≤ |w| ≤ 1} and in the case α = 1 the n-dimensional measure dξ

is replaced by (n − 1)-dimensional surface measure on the unit sphere.
We may differentiate both sides of (2.1) to obtain asymptotic expression for finitely

many derivatives of Kα . By appropriately normalizing fα we may assume w.l.o.g that
K̃α is the covariance of fα and we will neglect this difference from this point on.

Around each point x ∈ M we define the scaled random fields fx;T (we drop
α from notations) on a big ball (after scaling) lying on the Euclidian tangent space
R
n ∼= TxM with the use of the exponential map and an isometry Ix : Rn → TxM,

Φx = expx ◦Ix : Rn → M via

fx;T (u) := fT (Φx (u/T )), (2.3)
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with the covariance function

Kx;T (u, v) := E[ fx;T (u) · fx;T (v)] = KT (Φx (u/T ),Φx (v/T )).

Observe that locally Φx is almost an isometry: for each ξ there exists r0 = r0(ξ)

such that if D ⊆ Bx (r0) is a smooth domain inM, then

|VolM(D) − VolRn (Φ−1
x (D))| < ξ, (2.4)

uniformly w.r.t. x ∈ M (r0 is assumed to be sufficiently small so that the exponential
map is 1 − 1). By the scaling (2.3) we obviously have

N
(
f,

t

T n
; x, R

T

)
≈ N

(
fx;T , t; x, R) ,

the precise meaning will be given in (4.3). This means that studying fα;T and fx;T
is essentially equivalent. Finally, from (2.1) we see that the covariance kernel of fx,T
converges to

rn,α(u, v) = Bn,α(|u − v|).

This suggests to define the local scaling limit gn,α to be a Gaussian function in R
n

with this covariance kernel. Alternatively, it could be defined by its spectral measure
which by (2.2) is the normalized Lebesgue measure on Aα (or the normalized surface
area on A1 for α = 1). It is important to point out that the scaling limit is universal: it
does not depend on x or M, but only on n and α.

From the above it follows that for T sufficiently large, the covariance kernels of
fx,T are asymptotic to those of gn,α . However it is not obvious that this implies that
with high probability fx,T and gn,α are close (which is essential for our approach).
One obstacle we need to overcome is that the random fields fx,T and gn,α are defined
on different probability spaces. However, it is still possible to couple fx,T and gn,α

so that fx,T − gn,α is small in C1 on a ball of arbitrarily big radius. To establish the
latter statement (in a suitable sense to be formulated rigorously) one would restrict
the respective fields on a sufficiently dense grid and use the approximation of the
multivariate distribution to approximate the finite-dimensional Gaussian variables.
One then extends the respective fields to be defined smoothly w.r.t. the continuous
variable on the relevant domain, still maintaining the C1-approximation property. The
above procedure was carried out rigorously in [13, Lemma 4].

Lemma 1 ([13, Lemma 4]) Given R > 0 and b > 0, there exists T0 = T0(R, b) such
that for all T ≥ T0 we have

E

[
‖ fx;T − gn,α‖C1(B(2R))

]
< b.
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2.2 The Kac–Rice premise

In this section we collect a number of local results required below. The Kac–Rice
formula is a powerful tool for computing moments of local quantities, and in principle
it is capable of expressing anymoment of a local quantity of a given random Gaussian
field F in terms of explicit, albeit complicated, Gaussian expectations, or, equivalently,
in terms of the covariance kernel.

Let m ≤ n, F : D → R
m be a smooth random field on a domain D ⊆ R

n , and
Z(F;D) be either the (n − m)-volume of F−1(0) (for m < n), or the number of
the discrete zeros (for m = n). For example, if H : M → R is a random field and
F = ∇H |D : M → R

n is its gradient restricted to a coordinate patch, then Z(F,D)

counts the number of critical points of H on D. We set JF (x) to be the (random)
Jacobi matrix of F at x , and define the “zero density” of F at x ∈ D as the conditional
Gaussian expectation

K1(x) = K1;F (x) = φF(x)(0) · E[| det JF (x)|∣∣F(x) = 0], (2.5)

where φF(x)(0, . . . , 0) is the m-variate Gaussian density of F(x) evaluated at
(0, . . . , 0) ∈ R

m ; if the distribution of F(x) in non-degenerate with covariance matrix
D = D(x), then we have

φF(x)(0, . . . , 0) = 1

(2π)m/2
√
det D

.

With the above notation the Kac–Rice formula (meta-theorem) states that, under
some non-degeneracy condition on F ,

E[Z(F;D)] =
∫
D

K1(x)dx .

Concerning the sufficient conditions that guarantee that (2.5) holds, a variety of results
is known [1,2]. The followingversionofKac–Ricemerely requires the non-degeneracy
of the values of F (vs. the non-degeneracy of (F, JF (x)) in the appropriate sense, as in
some more classical sources), to our best knowledge, the mildest sufficient condition.
All random fields considered in this paper satisfy these assumptions.

Lemma 2 (Standard Kac–Rice [2, Theorem 6.2]) Let F : D → R
m be an a.s. C2-

smooth Gaussian field, such that for every x ∈ D the distribution of the random vector
F(x) ∈ R

m is non-degenerate Gaussian, with zero almost surely not a critical value.
Then

E[Z(F;D)] =
∫
D

K1(x)dx (2.6)

with the zero density K1(x) as in (2.5).
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Condition (iv) of [2, Theorem 6.2] that zero is not a critical level is automatically
satisfied by all C2-smooth Gaussian fields; this is known as Bulinskaya’s Lemma, see
[2, Proposition 6.12].

The following lemma is an upper bound for either the number of critical points
of a random field or its restriction to a hypersphere as a result of an application of
Kac–Rice on coordinate patches.

Lemma 3 ([12, Corollary 2.3]) Let D ⊆ R
m be a domain and F : D → R an a.s.

C2-smooth stationary Gaussian random field, such that for x ∈ D the distribution of
∇F(x) is non-degenerate Gaussian.

1. For r > 0 let A(F; r) be the number of critical points of F inside B(r) ⊆ D.
Then

E[A(F; r)] = O(Vol(B(r))),

where the constant involved in the ‘O’-notation depends on the law of F only.
2. For r > 0 let Ã(F; r) be the number of critical points of the restriction F |∂B(r)

of F to the sphere ∂B(r) ⊆ D. Then

E[Ã(F; r)] = O(Vol(∂B(r))),

where the constant involved in the ‘O’-notation depends on the law of F only.

The following estimate is the upper bound part of the (precise) Kac–Rice formula
applied to the band limited functions.

Lemma 4 ([13, Lemma 2] and [12, Lemma 7.8]) For x ∈ M, r > 0 let
NΩ( fα;T ; x, r) be the number of nodal domains of fα;T entirely lying in B(x, r) ⊆
M: the geodesic ball of radius r centred at x. Then

E[NΩ( fα;T ; x, r)] = O(rn · T n),

with constant involved in the ‘O ′-notation depending on M and α only.

3 Distribution of nodal domain areas for Euclidian fields

3.1 Notation and statement of the main result on Euclidian fields

3.1.1 Notation and basic setup

Let f be a smooth function, t > 0, and R > 0.We denoteN ( f, t; R) to be the number
of domains ω ∈ Ω( f ) of f lying entirely in B(R) of volume

Voln(ω) ≤ t;
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note that

N ( f ; R) = N ( f,∞; R)

is the total number of nodal domains lying inside B(R), as considered by Nazarov and
Sodin [9].

We are interested in the asymptotic distribution2 of the nodal domain volumes, that
is, the asymptotic behaviour of N (F, t; R) as R → ∞, t > 0 fixed; throughout this
section we will tacitly assume that F is stationary, so that its spectral measure makes
sense. We would like to establish the limit

Ψρ(t) := lim
R→∞

N (F, t; R)

N (F; R)
(3.1)

in mean, and, moreover, that Ψρ(t) is a distribution function, i.e.

lim
t→∞ Ψρ(t) = 1.

The latter will follow once having established the former (in the proper sense) via the
obvious deterministic upper bound

N (F; R) − N (F, t; R) ≤ Vol B(R)

t

for the number of domains of volume greater than t .
Following Nazarov and Sodin [11] we assume that the spectral measure ρ of F

satisfies the following axioms:

(ρ1) The measure ρ has no atoms (if and only if the action of the translations is
ergodic by Grenander–Fomin–Maruyama, see [13, Theorem 3]).

(ρ2) For some p > 4, ∫
Rn

|λ|pdρ(λ) < ∞

(this ensures the a.s. C2-smoothness of F).
(ρ3) The spectral support supp ρ does not lie in a linear hyperplane. (This ensures

that the random Gaussian field, together with its gradient is not degenerate.)

For this model Nazarov and Sodin [11] proved that there exists a constant c(ρ) ≥ 0
(the “Nazarov–Sodin constant”) so that

N (F; R)

Vol B(R)
→ c(ρ) (3.2)

both in mean and a.s.

2 To make sense of the distribution ofN (F, ·; ·) it is essential to show that the latter is a random variable,
i.e. a measurable function on the sample space. Fortunately, the proof of a similar statement, given in [12,
Appendix A], is sufficiently robust to cover our case and all the other similar quantities of this manuscript;
from this point on we will neglect any issue of measurability.
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It is shown in [11] that under the additional mild condition the constant c(ρ) is
strictly positive. We do not want to discuss these technicalities, so instead we will use
the assumption

(ρ4) The Nazarov–Sodin constant c(ρ) is positive.

Sometimes we will invoke a stronger axiom:

(ρ4∗) The support of the spectral measure ρ has non-empty interior.

3.1.2 Existence of limiting distribution Ψρ

Theorem 5 Let F : Rn → R be a stationary random field whose spectral measure ρ

satisfies the axioms (ρ1) − (ρ3), then

N (F, t; R)

Vol(B(R))

converges in mean as R → ∞. If we additionally assume the axiom (ρ4), then the
limit

lim
R→∞

N (F; R)

Vol(B(R))
= c(ρ) > 0

does not vanish, so that we can define the normalized limit

Ψρ(t) := lim
R→∞

N (F, t; R)

c(ρ) · Vol(B(R))
. (3.3)

Since the total number of nodal domains of F lying inside B(R) was proven to be
asymptotic to

N (F; R) ∼ c(ρ) · Vol B(R),

[see (3.2)], (3.3) may be equivalently read as

N (F, t; R)

N (F; R)
→ Ψρ(t),

[cf. (3.1)]; this limit could be proven in mean, see the proof of Theorem 2 in Sect. 5.1.
Theorem 5 in particular implies that for every t > 0 the expected numberN (F, t; R)

of nodal domains of F of volume at most t lying in B(R) is

E[N (F, t; R)] = c(ρ) · Ψρ(t) · Vol(B(R))(1 + oR→∞(1)), (3.4)

with concentration: for every ε > 0

lim
R→∞P

{∣∣∣∣N (F, t; R)

Vol B(R)
− c(ρ) · Ψρ(t)

∣∣∣∣ > ε

}
= 0, (3.5)

via Chebyshev’s inequality.
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3.1.3 Some properties of Ψρ(t)

Theorem 6 (Lower bound on domains in the generic case) Assume that the spectral
measure of F satisfies axioms (ρ1) − (ρ3) and (ρ4∗). Then Ψρ(0) = 0, and Ψρ(·) is
strictly increasing on [0,∞); in particular, for every t > 0 we have Ψρ(t) > 0.

For the random plane wave (RPW) the situation is slightly different. Its spectral
measure does not satisfy (ρ4∗) but satisfies (ρ4). The corresponding function Ψ =
ΨRPW vanishes up to a certain explicit threshold. The precise statement is given in
the following theorem.

Theorem 7 Let F = FRPW be the random plane wave inRn. As its spectral measure
satisfies axioms (ρ1)− (ρ4), the functionΨRPW = Ψρ defined as in Theorem 5 exists.
Define

t0 = t0(n) = πn/2

Γ (n/2 + 1)
jnn/2−1,1

as in Theorem 4. Then the following holds:

1. For every nodal domainω of FRPW we haveVol(ω) ≥ t0, and hence, in particular,
we have

ΨRPW (t) = 0, t < t0

2. Moreover, for n = 2 the function Ψ is strictly increasing on [t0,∞)

The remaining part of Sect. 3 is dedicated to the proofs of Theorems 5, 6 and 7.

3.2 Integral-Geometric Sandwich

Let Γ ⊆ R
n be a hypersurface (a curve for n = 2). For u ∈ R

n , r > 0 and t >

0 we denote N (Γ, t; u, r) the number of domains of Γ of n-dimensional volume
bounded by t lying entirely in the radius-r ball Bu(r) centred at u. Similarly, define
N ∗(Γ, t; u, r) by relaxing the condition to domains merely intersecting Bu(r). We
use the shortcuts

N (g, t; u, r) := N (g−1(0), t; u, r),

respectively

N ∗(g, t; u, r) := N ∗(g−1(0), t; u, r),

and N (·, ·; r) := N (·, ·; 0, r) (resp. N ∗(·, ·; r) := N ∗(·, ·; 0, r)), consistent to
Sect. 3.1.1. Finally, let N (g; u, r) = N (g,∞; u, r) be the total number of domains
lying inside B0(r).
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Lemma 5 (cf. [13, Lemma 1]) Let Γ be a closed hypersurface. Then for 0 < r < R,
t > 0,

1

Vol(B(r))

∫
B(R−r)

N (Γ, t; u, r)du ≤ N (Γ, t; R)

≤ 1

Vol(B(r))

∫
B(R+r)

N ∗(Γ, t; u, r)du.

(3.6)

Proof We follow along the lines of the proof of [13, Lemma 1]: For a connected
component γ of Γ denote A(γ ) to be the area of the domain having γ as its outer
boundary.

Let γ be any connected component of Γ . Define

G∗(γ ) =
⋂
v∈γ

Bv(r) = {u : γ ⊆ Bu(r)}

and
G∗(γ ) =

⋃
v∈γ

Bv(r) = {u : γ ∩ Bu(r) �= ∅}.

We have for every v ∈ γ ,

G∗(γ ) ⊆ Bv(r) ⊆ G∗(γ ),

and thus, in particular,

Vol(G∗(γ )) ≤ Vol(Bv(r)) ≤ Vol(G∗(γ )). (3.7)

Summing up (3.7) for all connected components γ ⊆ Γ lying inside B(R), corre-
sponding to domains of volume at most t , we obtain

∑
γ : A(γ )≤t
γ⊆B(R)

Vol(G∗(γ )) ≤ Vol(B(r)) · N (Γ, t; R) ≤
∑

γ : A(γ )≤t
γ⊆B(R)

Vol(G∗(γ )).
(3.8)

Writing the volume as an integral

Vol(G∗(γ )) =
∫

G∗(γ )

du,

and exchanging the order of summation and integration we obtain

∑
γ : A(γ )≤t
γ⊆B(R)

Vol(G∗(γ )) ≥
∫

B(R−r)

⎡
⎢⎢⎣

∑
γ : A(γ )≤t
γ⊆Bu(r)

1

⎤
⎥⎥⎦ du =

∫
B(R−r)

N (Γ, t; u, r)du, (3.9)
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since if u ∈ B(R − r) then Bu(r) ⊆ B(R). Similarly,

∑
γ : A(γ )≤t
γ⊆B(R)

Vol(G∗(γ )) ≤
∫

B(R+r)

⎡
⎢⎢⎢⎣

∑
γ : A(γ )≤t
γ∩Bu(r) �=∅

1

⎤
⎥⎥⎥⎦ du =

∫
B(R+r)

N ∗(Γ, t; u, r)du,

(3.10)
since if γ ⊆ B(R) and for some u, Bu(r) ∩ γ �= ∅, then necessarily u ∈ B(R + r).
The statement of the present lemma then follows from substituting (3.9) and (3.10)
into (3.8), and dividing both sides by Vol B(r). ��

3.3 Proof of Theorem 5

Proof Let t > 0 be given, and fix r > 0; we apply (3.6) to Γ = F−1(0):
(
1 − r

R

)n 1

Vol B(R − r)

∫
B(R−r)

N (F, t; u, r)

Vol(B(r))
du ≤ N (F, t; R)

Vol(B(R))

≤
(
1 + r

R

)n · 1

Vol B(R + r)

∫
B(R+r)

N ∗(F, t; u, r)

Vol(B(r))
du

≤
(
1 + r

R

)n 1

Vol B(R + r)

∫
B(R+r)

N (F, t; u, r) + C(u, r; t, F)

Vol(B(r))
du,

where C(u, r; t, F) is the number of domains ω ∈ Ω(F) intersecting ∂Bu(r), of
volume

Vol(ω) ≤ t,

bounded by the total number of critical points of the restriction F |∂Bu(r) of F to the
hypersphere ∂Bu(r), and

Vol(B(R ± r)) = Vol(B(R)) ·
(
1 ± r

R

)n
.

We rewrite N (F, t; u, r) = N (τu F, t; r), where τu is the translation operator

(τu F)(x) = F(u + x).

Choose r so small that (1 ± r/R)n are ε-close to 1, then we have

(1 − ε)
1

Vol B(R − r)

∫
B(R−r)

N (τu F, t; r)
Vol(B(r))

du ≤ N (F, t; r)
Vol(B(R))

≤ (1 + ε)
1

Vol B(R + r)

∫
B(R+r)

N (τu F, t; r) + C(τu F, t; r)
Vol(B(r))

du. (3.11)

123



470 D. Beliaev, I. Wigman

Note that for every r, t the functional

F �→ Υr;t (F) := N (F, t; r)
Vol(B(r))

(and its translations) is measurable, and since the number of nodal domains is bounded
by the number of critical points, this functional has finite expectation by Lemma 3,
part (1). It then follows from the ergodic theory that both

1

Vol B(R + r)

∫
B(R+r)

N·(τu F, t; r)
Vol(B(r))

du

and

1

Vol B(R − r)

∫
B(R−r)

N·(τu F, t; r)
Vol(B(r))

du

converge to (the same) limit in L1

1

Vol B(R)

∫
B(R)

N·(τu F, t; r)
Vol(B(r))

du → cr;t (ρ) := E[Υr;t ].

(Initially only the existence of the limit is known; it equals the mean value by L1-
convergence.)

Observe that, if we get rid of

C(τu F, t; r)

on the rhs of (3.11) then, up to ±ε, both the lhs and the rhs of (3.11) would converge
to the same limit cr;t (ρ) (in either L1 or a.s.). We will be able to get rid of C(τu F, t; r)
asymptotically for r large; it will yield that as r → ∞, we have the limit cr;t (ρ) →
ct (ρ) satisfying

N (F, t; R)

Vol(B(R))
→ ct (ρ). (3.12)

Setting

Ψρ(t) := ct (ρ)

c(ρ)

with c(ρ) the Nazarov–Sodin constant (3.2) will ensure that Ψρ(t) obeys (3.3) of
Theorem 5. That Ψρ is a distribution function will then follow easily:

t �→ ct (ρ)
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is monotone nondecreasing by (3.12); Ψρ(∞) = 1 since c∞(ρ) = c(ρ) is the
Nazarov–Sodin constant.

To see that indeed we can get rid of C(τu F, t; r) we use the same ergodic argument
as before, now applied to the map

F �→ C(F, t; r)
Vol(B(r))

,

yielding the L1 limit

1

Vol B(R + r)

∫
B(R+r)

C(τu F, t; r)
Vol(B(r))

→ ar;t (ρ),

whence

ar;t (ρ) = E

[C(τu F, t; r)
Vol(B(r))

]
= O

(
1

r

)

by the second part of Lemma 3. Hence (3.11) implies

E

[∣∣∣∣N (F, t; R)

Vol(B(R))
− cr;t (ρ)

∣∣∣∣
]

= O

(
ε + 1

r

)
;

this proves the existence of the limits

ct (ρ) := lim
r→∞ cr;t (ρ),

and, as it was mentioned above,

Ψρ(t) := ct (ρ)

c(ρ)
,

is the distribution function satisfying the L1-convergence (3.3) we were after in The-
orem 5. ��
Remark 1 This proof also shows a.s. convergence but we will not need that for the
rest (i.e. the Riemannian case).

3.4 Proofs of Theorems 6 and 7

Proof of Theorem 6 Since the spectral measure satisfies conditions (ρ1) − (ρ3), the
existence of the limiting distribution Ψ is guaranteed by Theorem 5. We only have to
show that Ψ is strictly increasing.

The proof of Theorem 6 will consist of three steps. First we will construct a deter-
ministic function with nodal domain of given area. After that we will show that the
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probability that there is a random function with almost the same nodal domain is posi-
tive. Finally we show that this implies that the expected density of such nodal domains
is positive.

The first step is essentially the same as the argument in [12, Proposition 5.2]. By
condition (ρ4∗) the interior of the support of ρ is non-empty. Let us assume that
B(ζ0, r0) ⊂ supp ρ. We are going to show that this implies that for every compact Q
the functions from H(ρ) are dense in Ck(Q) for every k.

Let φn be a sequence of positive C∞ functions with supports converging to ζ0
which approximate δ-function at ζ0. Functions ψn(ζ ) = φn(ζ )+φn(−ζ ) and all their
derivatives belong to L2

sym(ρ) and hence their Fourier transforms belong to H. The

Fourier transform of ψn converges to e2π i<ζ0,x> in any Ck(Q) and its derivatives
∂αψn converge to (−2πx)αe2π i<ζ0,x>, where xα = ∏

xαi
i . This proves that we can

approximate any polynomial (times a fixed plane wave). Since the polynomials are
dense in Ck(Q), we have that H is dense in Ck(Q).

In particular, for given t > 0 and ε > 0 we can take a C1 function such that its
nodal domain around the origin is inside some disc B(0, r) and has area t . Moreover,
we can assume that its gradient is bounded away from zero in some neighbourhood
of the boundary of this nodal domain. By approximating this function by a function
from H and applying Lemma 10 we obtain a function ft from H such that its nodal
domain around the origin has area ε-close to t and its gradient is bounded away from
zero on the nodal line. ��

Without loss of generality we may assume that H norm of ft is 1 and extend it to
an orthonormal basis φi . In this basis F could be written as

F = c0 ft + φ,

where c0 is a standardGaussian random variable and φ is a Gaussian function indepen-
dent of c0 (spanned by all additional basis functions φi ). Since ft is non-degenerate,
the probability that

max{c0| f |, c0|∇ ft |} > 1

in some (fixed) neighbourhood of the nodal domain containing the origin is strictly
positive. Let r be such that the nodal domain of ft is in B(0, r), then if C1(B(0, 2r))
norm of φ is sufficiently small (see Lemma 10 for the precise statement), than the
volume of the nodal domain of F is ε-close to that of ft . It is a standard fact (cf.
[9]) that the probability that φ have small norm is strictly positive. This completes the
proof that the area of the nodal domain containing the origin is 2ε close to t is strictly
positive.

We can pack R
2 with infinitely many copies of the disc of radius 2r such that this

covering is locally uniformly finite. By translation invariance, for each disc the proba-
bility that there is a nodal domain of area 2ε-close to t is strictly positive (independently
of the disc). This implies that

N (F, t + 2ε; R) − N (F, t − 2ε; R)

Vol(B(R))
> c > 0
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for some positive c and all sufficiently large R. This prove thatΨ (t+2ε)−Ψ (t−2ε) >

c which means that Ψ is strictly increasing for t > t0. ��
Proof of Theorem 7 The proof of this theorem is almost exactly the same as the proof
of Theorem 6, but the first deterministic step is different. The main difference is that
the spectral measure is supported on the sphere, hence its support has empty interior
and the space H is not dense in Ck(Q).

The fact thatΨ vanishes for t < t0 is completely deterministic and follows from the
Faber–Krahn inequality.Recall that the randomplanewave is a solution toΔ f + f = 0.
Let ω be a nodal component of a plane wave F . Since F has a constant sign in ω it
must be the first eigenfunction of Laplacian in ω. This implies that the first eigenvalue
in ω is 1. By the Faber–Krahn inequality the volume of ω is greater than the volume
of the ball for which the main eigenvalue is also equal to 1. It is a well known fact that
|x |1−n/2 Jn/2−1(|x |) is an eigenfunction of the Laplacian in R

n with eigenvalue 1. Its
nodal domain containing the origin is a ball of radius jn/2−1,1 and area t0. This proves
that the volume of every nodal domain is bounded below by t0.

To prove the last part of the theorem we first claim that for every t ≥ t0 there
is a domain Ωt such that Vol(Ωt ) = t and the main eigenvalue of the Laplacian
is 1. We define ΩL to be the union of the cylinder of length L and radius jn/2−1,1
with two hemispherical caps at both ends. For L = 0 this is the ball of the radius
jn/2−1,1 and as L → ∞ it converges to the infinite cylinder. Since ΩL depends
on L continuously, the main eigenvalue λL changes continuously from λ0 = 1 to
λ∞ = ( j(n−1)/2−1,1/jn/2−1,1)

2 > 0. By rescaling ΩL by
√

λL we obtain a family of
domains such that their main eigenvalue is 1 and their volumes change continuously
from t0 to infinity. Let us relabel this family and say that Ωt is the element of the
family with volume t .

After that we follow the strategy from [7]. By Whitney approximation theorem we
can construct a domainwith analytic boundarywhich is an arbitrary small perturbation
ofΩt . By continuity of themain eigenvaluewe can assume that it is arbitrary close to 1.
By rescaling the domain we obtain a domain with analytic boundary, main eigenvalue
1 and volume ε close to t . Abusing notation we call this domain Ωt as well.

Let gt > 0 be the main eigenfunction of Laplacian in Ωt . Since the boundary is
analytic, it could be extended to a small neighbourhood B of ∂Ωt in such a way that
inf ‖∇gt‖ > 0 in a small tubular neighbourhood of ∂Ωt . By Lax-Malgrange Theorem
for every b > 0 there is a function ft which is a global solution to (1.5) such that
‖ ft − gt‖C1(B) < b. If b is sufficiently small, then by Lemma 10 there is a nodal
domain of ft with volume ε close to Vol(Ωt ). This proves that there is a deterministic
non-degenerate plane wave with a nodal domain such that its volume is 2ε-close to t .
The rest of the proof is exactly the same as in Theorem 6. ��

4 Local results

4.1 Local setting and statement of the local result

Recall that gn,α is the “scaling limit” of fn,α;T as T → ∞, around every point x ∈ M
in the following sense (cf. Sect. 2.1). We know that for T large, their covariance
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functions Kα,T and rn,α are, after scaling, asymptotic to each other, uniformly on a
large ball B(R) ⊆ R

n . By Lemma 1 they could be coupled so that

‖ fx;T − g‖

is arbitrarily small in C1-norm on B(R) (or B(2R)).
For u ∈ M, r > 0 sufficiently small, t > 0 and g : M → R a smooth (deter-

ministic) function denote N (g, t; u, r) (resp. N ∗(g, t; u, r)) the number of domains
ω ∈ Ω(g) of g−1(0) of volume

Vol(ω) ≤ t

lying entirely inside (resp. intersecting) the geodesic ball Bu(r) ⊆ M. Theorem 8, to
follow immediately, states that, with the coupling as above, unless t is a discontinuity
point of the limiting volume distribution (i.e. atoms of the Ψρ obtained from an appli-
cation of Theorem 5 on gn,α), after appropriate rescaling, the nodal domain volumes
of fα;T are locally point-wise approximated by the ones of gn,α . Otherwise, if t0 is an
atom of the saidΨρ (its existence is unlikely, by Conjecture 2), then the corresponding
probability mass may spread in an interval (t0 − ε, t0 + ε) (ε > 0 arbitrarily small)
beyond our control (see the proof of Proposition 1 below).

Theorem 8 (cf. [13, Theorem 5]) Let f (x) = fα;T (x) be the random band limited
functions (1.7), Ψ = Ψn,α the distribution function prescribed by Theorem 5 applied
on gn,α . Then for every continuity point t > 0 of Ψn,α(·), x ∈ M and ε > 0 we have

lim
R→∞ lim sup

T→∞
P
{∣∣∣∣∣

N
(
f, t

T n ; x, R
T

)
c(n, α) · Vol(B(R))

− Ψ (t)

∣∣∣∣∣ > ε

}
= 0, (4.1)

where c(n, α) > 0 is the Nazarov–Sodin constant of gn,α .

The rest of this section is dedicated to giving a proof of Theorem 8.

4.2 Proof of Theorem 8

We formulate the following proposition that will imply Theorem 8. The proof is
postponed till Sect. 4.4 after some preparatory work in Sect. 4.3.

Proposition 1 Let x ∈ M, R > 0, small numbers δ, ξ, η > 0 be given, and t > 0.
Then, for R > 0 sufficiently big, outside of an event of probability at most δ, for all
T > T0(R, δ, ξ) we have

N (gn,α, t − ξ ; R − 1) − η · Rn ≤ N
(
fx;T , t; R)

≤ N (gn,α, t + ξ ; R + 1) + η · Rn .
(4.2)
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Proof of Theorem 8 assuming Proposition 1 Let x ∈ M, ε > 0 be fixed, and ξ, η > 0
be given small numbers. We observe that by the definition (2.3) of the scaled fields
fx;T and (2.4), for T sufficiently big (depending on R) we have

N
(
fx;T , t − ξ ; R) ≤ N

(
f,

t

T n
; x, R

T

)
≤ N

(
fx;T , t + ξ ; R) (4.3)

Hence Proposition 1 together with (4.3) holding for T sufficiently big (depending on
R) imply that for T sufficiently big, outside an event of arbitrarily small probability,

N (gn,α, t − 2ξ ; R − 1) − η · Rn ≤ N
(
f,

t

T n
; x, R

T

)

≤ N (gn,α, t + 2ξ ; R + 1) + η · Rn .

Choose

η <
c(n, α) · ε · Vol B(1)

2
(4.4)

so that

P
{∣∣∣∣∣

N
(
f, t

T n ; x, R
T

)
c(n, α) · Vol B(R)

− Ψ (t)

∣∣∣∣∣ > ε

}

≤ P
{∣∣∣∣N (gn,α, t + 2ξ ; R + 1)

c(n, α) · Vol B(R)
− Ψ (t)

∣∣∣∣ > ε − η

c(n, α) · Vol B(1)

}

+ P
{∣∣∣∣N (gn,α, t − 2ξ ; R − 1)

c(n, α) · Vol B(R)
− Ψ (t)

∣∣∣∣ > ε − η

c(n, α)Vol B(1)

}
. (4.5)

Now, bearing in mind our choice (4.4), we have that ε − η
c(n,α)·Vol B(1) > ε

2 , so that

{∣∣∣∣N (gn,α, t + 2ξ ; R + 1)

c(n, α) · Vol B(R)
− Ψ (t)

∣∣∣∣ > ε − η

c(n, α) · Vol B(1)

}
⊆

{∣∣∣∣N (gn,α, t + 2ξ ; R + 1)

c(n, α) · Vol B(R)
− Ψ (t + 2ξ)

∣∣∣∣ >
ε

2
− (Ψ (t + 2ξ) − Ψ (t))

}
,

and thus

P
{∣∣∣∣N (gn,α, t + 2ξ ; R + 1)

c(n, α) · Vol B(R)
− Ψ (t)

∣∣∣∣ > ε − η

c(n, α) · Vol B(1)

}

≤ P
{∣∣∣∣N (gn,α, t + 2ξ ; R + 1)

Vol B(R)
− Ψ (t + 2ξ)

∣∣∣∣ >
ε

2
− (Ψ (t + 2ξ) − Ψ (t))

}
→ 0

(4.6)
as R → ∞ by Theorem 5, and the continuity of Ψ (·) at t . Similarly, as R → ∞,

P
{∣∣∣∣N (gn,α, t − 2ξ ; R − 1)

c(n, α)Vol B(R)
− Ψ (t)

∣∣∣∣ > ε − η

c(n, α) · Vol B(1)

}
→ 0. (4.7)
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The above proves that for each R > 0 sufficiently large there exists T0 = T0(R), such
that (4.5) holds for T > T0; the latter could be made arbitrarily small by (4.6) and
(4.7). This is precisely the statement of Theorem 8. ��

4.3 Some preparatory results towards the proof of Proposition 1

In course of the proof of Proposition 1 we will need to exclude some exceptional
events. Let δ > 0 be a small parameter that will control the probabilities of the
discarded events, b, β > 0 be small parameters that will control the quality of the
various approximations, η > 0 will control the number of discarded domains, and
M, Q > 0 large parameters. Given R and T big we define

Δ1 = Δ1(R, T ; b) = {‖ fx;T − gn,α‖C1(B(2R)) ≥ b},
Δ2 = Δ2(R, T ; M) =

{
‖ fx,T ‖C2(B(2R)) ≥ M

}
,

Δ3 = Δ3(R; M) =
{
‖gn,α‖C2(B(2R)) ≥ M

}

and the “unstable event”

Δ4(R;β) =
{

min
u∈B(2R)

max{|gn,α(u)|, |∇gn,α(u)|} ≤ 2β

}
.

Moreover let Δ5 be the event

Δ5(R; η, Q)

= {∣∣{components ω ∈ Ω(gn,α) : ω ⊆ B(2R), Voln−1(∂ω) > Q
}∣∣ > ηRn}

that there is a significant number of nodal domains of gn,α entirely lying in B(2R)

whose boundary volume is at least Q. The boundary of such a domain is comprised of
a number of nodal components; below we will argue that, with high probability, each
of the boundary components is of bounded volume and their total number is bounded
(see the proof of Lemma 9).

The following is a simple corollary of Lemma 1.

Lemma 6 For a given sufficiently big R > 0 and small b, δ > 0 there exists T0 =
T0(R, b, δ) so that for T > T0 the probability of Δ1

P(Δ1(R, T ; b)) < δ. (4.8)

The following lemma yields a bound on the probabilities P(Δ2) and P(Δ3).

Lemma 7 1. For every R, δ > 0 there exists M = M(R, δ) > 0 so that

P(Δ3(R; M)) < δ. (4.9)
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2. For R, δ > 0 there exist M(R, δ) > 0 and T0 = T0(R) so that

P(Δ2(R, T ; M)) < δ (4.10)

for all T > T0.

Proof For (4.9) we may choose M to be

M = δ−1
E[‖gn,α‖C2(B(2R))],

and the latter expectation is finite by [1, Theorem 2.1.1]. The estimate (4.9) with this
value of M follows from Chebyshev’s inequality.

In order to establish (4.10) we observe that by “Sudakov-Fernique comparison
inequality” [1, Theorem 2.2.3] and (2.1) applied to both Kx,T and its derivatives, for
all M1 such that

E[‖gn,α‖C2(B(2R))] < M1

there exists T0 = T0(R, M1) such that for all T > T0

E

[
‖ fx,T ‖C2(B(2R))

]
< M1.

Hence we can set M = δ−1M1 and (4.10) will follow from Chebyshev’s inequality as
before.

The event Δ4 means that the nodal set of gn,α is relatively unstable. For small β

the probability of this event can be made arbitrary small. This is Lemma 7 from [11]:

Lemma 8 (cf. [11]) For R > 0 and δ > 0 there exist β > 0 such that

P (Δ4(R, β)) < δ. (4.11)

Finally, for Δ5 we have the following bound:

Lemma 9 For every η > 0 and δ > 0 there exist Q > 0 and R0 = R0(η, δ) such that
for all R > R0 the probability of Δ5 is

P (Δ5(R; η, Q)) < δ. (4.12)

Proof In what follows we argue that most of the domains have a bounded number
of components lying in the boundary, and with high probability, each has bounded
n−1-volume. First, using Nazarov–Sodin’s (3.2), there exists a number A sufficiently
big so that the probability that the total number of nodal domains of gn,α entirely lying
inside B(2R) is bigger than A · Rn is

P(Δ6(A)) := P
{
N (gn,α; 2R) > A · Rn} < δ/2, (4.13)

so we may exclude this unlikely event Δ6 = Δ6(A).
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Now we are going to show that the number of boundary components of most of the
nodal domains of gn,α lying in B(2R) is bounded; outside of Δ6 there are less than
A · Rn . To this end we use the nesting graph introduced in [12]. Let G = (V, E) be
the graph with the set of vertexes V being the collection of all nodal domains

V = {ω ∈ Ω(gn,α) : ω ⊆ B(2R)}

of gn,α lying entirely in B(2R), and an edge e = e(γ ) ∈ E connects between two
domains in V , if they have a common boundary component γ . The graph G is a
subgraph of the nesting tree, same graph with no restriction of the domains to be
contained in B(2R); though G may fail to be a tree, it has no cycles [12, Section
2.4]; a degree d(ω) of a vertex ω ∈ V in V precisely equals to the number of nodal
components lying the boundary of ω we are to bound. We then have

∑
ω∈V

d(ω) = 2|E | ≤ 2(|V | − 1) < 2N (gn,α; 2R),

equivalently
1

N (gn,α; 2R)

∑
ω∈V

d(ω) < 2.

Hence, by Chebyshev’s inequality, outside Δ6(A) as in (4.13), the number of those
ω ∈ V with d(ω) > L is at most

|{ω ∈ V : d(ω) > L}| ≤ 2

L
· N (g; 2R) ≤ 2

L
· ARn, (4.14)

and below we will choose L sufficiently big so that

2A

L
<

η

2
. (4.15)

Next we show that, with high probability, the (n − 1)-volume of most of the com-
ponents is bounded. Let Zgn,α (2R) be the nodal volume of gn,α inside B(2R)

Zgn,α (2R) = Voln−1(g
−1
n,α(0) ∩ B(2R)) =

∑
e(γ )∈E

Voln−1(e). (4.16)

Then, by a standard application of Lemma2 and the stationarity of gn,α , the expectation
of the nodal volume is given by

E[Zgn,α (2R)] = c0 · Rn, (4.17)

where c0 = c0(gn,α) > 0 is a positive constant, that could be evaluated explicitly in
terms of n and α. Hence, by (4.16) and (4.17), and Chebyshev’s inequality, outside of
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event of probability δ/2 the number of those components with large (n − 1)-volume
is bounded:

P(Δ7(Q/L)) := P
{∣∣∣∣
{
γ ∈ E : Voln−1(γ ) >

Q

L

}∣∣∣∣ >
η

4
· Rn

}
<

δ

2
, (4.18)

provided that Q/L is sufficiently big. Since each component is lying in the boundary
of at most two domains ω ∈ V , it follows that outside of Δ7 for all but at most η

2 · Rn

domains ω ∈ V , for all components γ ∈ E lying in the boundary of ω we have

Voln−1(γ ) ≤ Q

L
. (4.19)

Now, given δ > 0 we choose A > 0 sufficiently big so that (4.13) is satisfied. This
forces a choice of L via (4.15), so that the r.h.s. of (4.14) is <

η
2 · Rn , and then we

take Q sufficiently big so that (4.18) is satisfied and

P(Δ6 ∪ Δ7) ≤ P(Δ6) + P(Δ7) < δ.

From the above, outside of Δ6 ∪ Δ7 for all but η · Rn nodal domains ω ∈ V we have
that the number of boundary components of ω is < L , and the (n−1)-volume of each
one of them is bounded by Q

L , and hence the (n− 1)-volume of ∂ω is < Q as claimed
by this lemma. ��

4.4 Proof of Proposition 1

To prove Proposition 1 we need the following lemma which is the uniform version of
an obvious statement that the volume of a nodal domain depends continuously on the
function as long as 0 is not a critical value.

Lemma 10 (cf. [13, Lemmas 6–7]) Let R > 0 and g and h be two (deterministic)
C2-smooth functions on B(2R) ⊂ R

n+1. We assume that:

1. For some β > 0 we have

min
B(2R)

max{|g|, |∇g|} > β.

2. For some M > 0 the C2-norms of both g and h are bounded

‖g‖C2(B(2R)), ‖h‖C2(B(2R)) < M.

3. We have

‖g − h‖C1(B(R)) < b

for some b > 0.
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Then if b is sufficiently small (depending on β and M only) there exists an injective
map γ �→ γ h between connected components γ ⊆ B(R−1) of g−1(0) and connected
components γ h ⊆ B(R) of h−1(0) with the following properties:

1. For every γ as above the components γ and γ h are “uniformly close”: there exists
a smooth bijective map ψγ : γ → γ h so that for all x ∈ γ we have

‖ψγ (x) − x‖∞ = Oβ,M (b) (4.20)

with constants involved in the ‘O‘-notation depending on β and M only.
2. Let Gγ,γ h be the region enclosed between γ and γ h. Its (signed or not) volume

satisfies
|Voln(Gγ,γ h )| = Voln−1(γ ) · Oβ,M (b). (4.21)

The proof of Lemma 10 is postponed until immediately after the proof of Proposi-
tion 1.

Proof of Proposition 1 assuming Lemma 10 We are going to show that the small
exceptional event is

Δ =
5⋃

i=1

Δi .

Outside Δ we have

‖ fx;T − gn,α‖C1(B(2R)) < b,

‖ fx;T ‖C2(B(2R)), ‖gn,α‖C2(B(2R)) < M, (4.22)

and assuming b < β we also have

min
B(2R)

max{| fx;T |, |∇ fx;T |} > β; min
B(2R)

max{|gn,α|, |∇gn,α|} > β. (4.23)

Hence the conditions of Lemma 10 are satisfied with h = fx;T , g = gn,α (or the other
way round) and b, β as above.

By Lemma 10 for each nodal domain of fx;T lying in B(R) there is a unique nodal
domain of gn,α which is O(b) close, hence lying in B(R + 1). Reversing the roles of
f and g we see that the same holds for the nodal domains of g. We are going to prove
the first inequality of (4.2), the proof of the second one is identical.

Let us consider the nodal domains of gn,α that are inside B(R − 1) and of area
at most t − ξ . Their total number is N (gn,α, t − ξ, R − 1). For each of these nodal
domains D there is a unique nodal domain D′ of fx;T which is O(b) close and lies in
B(R). By the estimate (4.21) of Lemma 10 we have

|Vol(D) − Vol(D′)| ≤ Oβ,M (b)Voln−1(∂D).
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Since we excluded Δ5, at most ηRn of nodal domains D have boundary volume
exceeding Q. For all other domains Vol(D′) < t provided that b is so small that have
O(b)Q < ξ . Hence, their number is bounded by N ( fx;T , t, R). This means that

N (gn,α, t − ξ, R − 1) ≤ ηRn + N ( fx;T , t, R)

i.e. the first inequality of (4.2).
Finally we have to show that the probability of Δ could be made arbitrary small,

using Lemmas 6–9. The argument is straightforward but the order in which we have
to choose all constants is a bit fiddly.

Let t, ξ, δ, η > 0 be given. First we use Lemma 9 to choose R and Q sufficiently
large so that P(Δ5) < δ. From now on this value of R is fixed. By Lemma 8 there is
β > 0 such that P(Δ4) < δ. By Lemma 7 we can choose M and T0 large enough so
that probabilities of Δ2 and Δ3 are bounded by δ. Fix some 0 < b < β sufficiently
small, applying Lemma 6 and (possibly) increasing T0 we make sure that P(Δ1) < δ

as well.
All in all, for the above choice of all constants and for all T > T0 we have that the

probability of the exceptional event Δ := ∪5
i=1Δi is bounded by 5δ. Replacing δ by

δ/5 we complete the proof of the proposition. ��
Proof of Lemma 10 Let γ ⊆ B(R) be a connected component of g−1(0) and x ∈ γ be
any point on γ . By the Implicit Function Theorem we can introduce local coordinates
(z, y) such that the surface near x can be parameterized as a graph of a smooth function
p(z). In other words γ around x is given by φ(z) = (z, p(z)) where p is a smooth
function on an open domain U ⊂ R

n−1. Let

N (x) = N (z) = ∇g(x)/|∇g(x)|

be a unit normal vector to γ at x . Since the second derivatives of g are uniformly
bounded, there is a number r0 = r0(β, M) > 0 depending on β and M only so that

N (x) · ∇g(x) > β/2

on an r0-neighbourhood of x in Rn .
Now fix x ∈ γ and consider

ζ(r) = h(x + r N (x)) = g(x + r N (x)) + f (x + r N (x)),

where f = h − g. Obviously

|ζ(0)| = |h(x)| < b,

and

ζ ′(r) > β/2 − b

123



482 D. Beliaev, I. Wigman

for all |r | < r0. For sufficiently small b we then have

ζ ′ > β/4 (4.24)

for all |r | < r0. This means that if 4b/β < r0, which is true for sufficiently small b,
there is a unique r with |r | < 4b/β < r0 such that ζ(r) = 0. We denote it by r(x) or
r(z) with x = φ(z). It is important to notice that r is uniformly bounded in terms of
β and M and for fixed β and M it is O(b).

All in all, for every b sufficiently small (depending on β and M only) the map

x �→ x + r(x)N (x)

maps γ onto γ h , moreover,

r(x) = Oβ,M (b).

Since Gγ,γ h is the domain between two surfaces that are Oβ,M (b) close, the volume of
this domain (signed or unsigned) is bounded by Voln−1(γ )Oβ,M (b). This completes
the proof of Lemma 10. ��

5 Global results

5.1 Proofs of the main results: Theorems 1, 2, 3, and 4

Notation 9 (Global notation)

1. For y ∈ R denote

|y|+ = max{0, y},

and

|y|− = max{0,−y},

so that

| · | = | · |+ + | · |−.

2. Let N ( f ; t) be the total number of nodal domains ω ∈ Ω( f ) of f of volume

Voln(ω) < t.

Proposition 2 Let { f = fα,T }T>0 be the random fields (1.7), c(n, α) the Nazarov–
Sodin constant of gn,α , and t > 0 a continuity point of

Ψ (·) = Ψn,α(·),
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as in the formulation of Theorem 8. Then the following holds:

E

[∣∣∣∣ N ( f, t/T n)

c(n, α)Voln(M) · T n
− Ψ (t)

∣∣∣∣±
]

→ 0, (5.1)

that is, (5.1) is claimed for both | · |+ and | · |−, as in Notation 5.1.

Proposition 2 will be proved in Sect. 5.2.2 for | · |+ only, with the proof for | · |−
following along similar, but easier, lines, with no need to excise the very small and
very long domains (see Sect. 5.2.1).

Proof of Theorem 2 assuming Proposition 2 Combining both estimates (5.1) of
Proposition 2 (i.e, | · |+ and | · |−) implies that for every t > 0 continuity point
of Ψ (·) we have

E

[∣∣∣∣ N ( f, t/T n)

c(n, α)Vol(M) · T n
− Ψ (t)

∣∣∣∣
]

→ 0, (5.2)

which is not quite the same as the statement (1.9) of Theorem 2 as the denominator
needs to be replaced by N ( f ) rather than

c(n, α)Vol(M) · T n .

To this end we use the triangle inequality to write

E

[∣∣∣∣N ( f, t/T n)

N ( f )
− Ψ (t)

∣∣∣∣
]

≤ E

[∣∣∣∣N ( f, t/T n)

N ( f )
− N ( f, t/T n)

c(n, α)Vol(M) · T n

∣∣∣∣
]

+ E

[∣∣∣∣ N ( f, t/T n)

c(n, α)Vol(M) · T n
− Ψ (t)

∣∣∣∣
]

. (5.3)

Since the second summand of the r.h.s. of (5.3) vanishes by (5.2), we only need to
take care of the first one. We have

E

[∣∣∣∣N ( f, t/T n)

N ( f )
− N ( f, t/T n)

c(n, α)Vol(M) · T n

∣∣∣∣
]

= E

[ N ( f, t/T n)

c(n, α)Vol(M) · N ( f )
·
∣∣∣∣N ( f )

T n
− c(n, α)Vol(M)

∣∣∣∣
]

→ 0, (5.4)

by (1.8), as it is obvious that

NΩ( f, t/T n)

N ( f )
≤ 1.

Wefinally substitute (5.2) and (5.4) into (5.3) to yield the statement (1.9) of Theorem2.
��

Proof of Theorem 1 The first assertion of Theorem 1 is a particular case of the state-
ment of Theorem 2withM = S2 the round 2-sphere, andα = 1. The second assertion
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of Theorem 1 is the content of Theorem 4 (which, in this case, follows directly from
Theorem 7). ��
Proofs of Theorems 3 and 4 By Theorem 2 the distribution function is universal and
from (2.2) we know the spectral measures. In the case α < 1 it satisfies the axioms
(ρ1) − (ρ3) and (ρ4∗) and Theorem 3 follows directly from Theorem 6. In the case
α = 1 the limiting field is the random plane wave and Theorem 4 follows from
Theorem 7. ��

5.2 Proof of Proposition 2

5.2.1 Excising the very small and very long domains

Definition 3 Let ξ, D > 0 be parameters.

1. A domain ω ∈ Ω( f ) of f = fα;T is called ‘ξ -small’ if its n-dimensional Rie-
mannian volume in M is

VolM(ω) < ξT−n .

Let Nξ−sm( f ) be the total number of ξ -small domains (components) of f inM.
2. For D > 0, a nodal domain ω ∈ Ω( f ) is D-long if its diameter is > D/T . Let

ND−long( f ) be the total number of the D-long domains of f .
3. Given parameters D, ξ > 0 a nodal domain ω ∈ Ω( f ) is (D, ξ )-normal (or

simply normal), if it is not ξ -small nor D-long. For t > 0 let Nnorm( f, t) be the
total number of (ξ, D)-normal domains of f of volume< t, and for x ∈ M, r > 0
letNnorm( fL , t; x, r) (resp.N ∗

norm( fL , t; x, r)) be the number of those contained
in Bx (r) (resp. intersecting Bx (r)). Finally, if t is omitted, then it is assumed to be
infinite t = ∞, i.e. no restriction on the domain volume is imposed.

By the definition of normal domains, for every t ∈ R ∪ {∞} we have

N ∗
norm( f, t; x, r) ≤ Nnorm

(
f, t; x, r + D

T

)
(5.5)

(as we discarded the very long ovals), and

Nnorm( f ; x, r) ≤ ξ−1T n VolM(Bx (r)), (5.6)

by the natural volume estimate.

Lemma 11 (cf. [13, Lemma 9], see also [12] for a more detailed proof) There exist
constants c,C > 0 so that we have the following estimate on the number of ξ -small
components:

lim sup
T→∞

E[Nξ−sm( fα;T )]
T n

≤ C · ξ c.
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Lemma 12 (cf. [13, Lemma 8]) There exists a constant C > 0 such that the following
bound holds for the number of D-long components:

lim sup
T→∞

E[ND−long( fα;T )]
T n

≤ C · 1

D
.

5.2.2 Proof of Proposition 2

Proposition 3 Let ξ, D > 0 be fixed, and

Ψ = Ψn,α.

Then for every point of continuity t > 0 of Ψ (·) the following holds:

E

[∣∣∣∣ Nnorm( fα;T , t/T n)

c(n, α)Vol(M) · T n
− Ψ (t)

∣∣∣∣+
]

→ 0. (5.7)

The proof of Proposition 3 will be given in Sect. 5.3.

Proof of Proposition 2 assuming Proposition 3 The estimate (5.1) for | · |+ follows
directly from (5.7), lemmas 12–11, and the triangle inequality for | · |+. The proof of
(5.1) for | · |− follows along the same lines, except that in this case we do not need
to excise the very small and very long domains (which makes the proof somewhat
simpler). ��

5.3 Proof of Proposition 3

We need to formulate a couple of auxiliary lemmas.

Lemma 13 (cf. [13] Lemma 1, and Lemma 5 in the scale-invariant case) Given ε > 0,
there exists η > 0 such that for every r < η, t > 0

(1 − ε)

∫
M

Nnorm( fα;T , t; x, r)
Vol(B(r))

dx ≤ Nnorm( fα;T , t)

≤ (1 + ε)

∫
M

N ∗
norm( fα;T , t; x, r)

Vol(B(r))
dx

(5.8)

The proof of Lemma 13 is very similar to the one of Lemma 5 and is omitted here.

Proof of Proposition 3 For convenience in course of this proof we will assume that
M is unit volume

Vol(M) = 1, (5.9)

and recall that f = fα;T are the band-limited random fields (1.7), and that we use the
shorthand
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Ψ (t) = Ψn,α(t)

as in the formulation of Proposition 3. Let ε > 0 be a small number. To bound the
l.h.s. of (5.7) we let R > 0 be sufficiently big, so that both R/T < η as in Lemma 13,
and D/R is sufficiently small, so that the following holds

∣∣∣∣VolM(Bx (R/T ))

Vol(B(R/T ))
− 1

∣∣∣∣ < ε,

Vol(B(R + D))

Vol(B(R))
< 1 + ε (5.10)

uniformly for x ∈ M.
Now apply Lemma 13 with r = R

T and t replaced by t
T n ; by the triangle inequality

for | · |+ we have

E

[∣∣∣∣Nnorm( fα;T , t/T n)

c(n, α) · T n
− Ψ (t)

∣∣∣∣+
]

≤ E

⎡
⎣∫
M

∣∣∣∣(1 + 2ε)
N ∗

norm( fα;T , t/T n; x, R/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣+ dx

⎤
⎦

≤ E

⎡
⎣∫
M

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣+ dx

⎤
⎦

+ O

⎛
⎝ε ·

∫
M

E[Nnorm( fα;T ; x, (R + D)/T )]
Vol B(R + D)

dx

⎞
⎠ , (5.11)

by (5.5) and (5.10). Observe that the integrand

E[Nnorm( fα;T ; x, (R + D)/T )]
Vol B(R + D)

is uniformly bounded by Lemma 4. Hence (5.11) is

E

[∣∣∣∣Nnorm( fα;T , t/T n)

c(n, α) · T n
− Ψ (t)

∣∣∣∣+
]

≤ E

⎡
⎣∫
M

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣+ dx

⎤
⎦+ O(ε).
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It is then sufficient to prove that

E

⎡
⎣∫
M

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣+ dx

⎤
⎦

=
∫
Δ

∫
M

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣+ dxdP(ω) → 0, (5.12)

where Δ is the underlying probability space, and P is the probability measure on Δ.
Now consider the event

ΔT,t;x,R =
{∣∣∣∣N ( fα;T , t/T n; x, R/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣ > ε

}
.

Then, recalling the assumption of Proposition 3 on t (i.e. that Ψ (·) is continuous at t),
Theorem 8 implies that for all x ∈ M

lim
R→∞ lim sup

T→∞
P(ΔT,t;x,R) = 0. (5.13)

We claim that the above implies that there exists a sequence {R j } j→∞ of values
R = R j → ∞ so that the limit (5.13) is almost uniform w.r.t. x ∈ X , that is, for every
ρ > 0 there exists Mρ ⊆ M of volume

VolMρ > 1 − ρ,

such that
lim
R→∞

lim
T→∞ sup

x∈Mρ

P(ΔT,t;x,R+D) = 0. (5.14)

To see (5.14) we first apply an Egorov-type theorem on the limit in (5.13) w.r.t.
R → ∞: working with the sets

En,k =
⋃

R>n integer

{
x ∈ M : P(ΔT,t;x,R+D) >

1

k
for T = Tj → ∞

}

yields that for some Mρ with

Vol(Mρ) > 1 − ρ

2

we have
lim
R→∞ sup

x∈Mρ

lim
T→∞P(ΔT,t;x,R+D) = 0;

this is not quite the same as the claimed result (5.14), as the order of supx∈Mρ
and

the lim sup w.r.t. T → ∞ is wrong. We use an Egorov-type argument once again,
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w.r.t. the limit limT→∞ to mollify this. Fix an integer r > 0, and let R = R(r) > 0
sufficiently big so that

sup
x∈Mρ

lim
T→∞P(ΔT,t;x,R+D) <

1

r
. (5.15)

Define the monotone decreasing sequence of sets

Fm =
⋃
T>m

{
x ∈ Mρ : P(ΔT,t;x,R+D) >

2

r

}
.

Since, by (5.15),

⋂
m≥1

Fm = ∅,

we may find m = m(r) sufficiently big so that Vol(Fm(r)) <
ρ

2r+1 . Therefore the
claimed result (5.14) holds on

Mρ \
⋃
r≥1

Fm(r),

i.e. further excising the set

⋃
r≥1

Fm(r)

of volume <
ρ
2 fromMρ .

We then write the integral (5.12) as

∫
Δ

∫
M

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B((R + D))
− Ψ (t)

∣∣∣∣+ dxdP(ω)

=
∫
M

∫
ΔT,t;x,R+D

+
∫
M

∫
Δ\ΔT,t;x,R+D

. (5.16)

First, on Δ\ΔT,t;x,R+D , the integrand of (5.16) is

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B((R + D)/T )
− Ψ (t)

∣∣∣∣+
≤
∣∣∣∣N ( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B((R + D)/T )
− Ψ (t)

∣∣∣∣ ≤ ε,
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and hence the contribution of this range is

∫
M

∫
Δ\ΔT,t;x,R+D

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B((R + D)/T )
− Ψ (t)

∣∣∣∣+ dP(ω)dx

≤
∫
M

∫
Δ\ΔT,t;x,R+D

εdP(ω)dx ≤ ε. (5.17)

On ΔT,t;x,R+D we use the volume estimate (5.6) yielding uniformly on x ∈ M
∫

ΔT,t;x,R+D

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣+ dP(ω)

≤
∫

ΔT,t;x,R+D

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)

∣∣∣∣+ dP(ω)

≤
∫

ΔT,t;x,R+D

ξ−1T nVolM(Bx ((R + D)/T ))

c(n, α) · Vol B(R + D)
dP(ω)

≤ (1 + ε)ξ−1P(ΔT,t;x,R+D) (5.18)

(where, by the obvious properties of | · |+, to obtain the first inequality we omitted the
non-negative Ψ (t)). Similarly to the above, uniformly for ω ∈ Δ

∫
M\Mρ

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣+ dx ≤ (1 + ε)ξ−1ρ. (5.19)

The uniform estimates (5.18) and (5.19) imply that

∫
M

∫
ΔL ,t;x,R+D

∣∣∣∣Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣+ P(ω)dx

≤ (1 + ε)ξ−1( sup
x∈Mρ

P(ΔT,t;x,R+D) + ρ).

Upon substituting the latter estimate and (5.17) into (5.16), and then to the integral
(5.12), we finally obtain

E

∣∣∣∣∣∣
∫
M

Nnorm( fα;T , t/T n; x, (R + D)/T )

c(n, α) · Vol B(R + D)
− Ψ (t)

∣∣∣∣∣∣
+
dx

≤ ε + (1 + ε)ξ−1( sup
x∈Mρ

P(ΔT,t;x,R+D) + ρ),
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which could be made arbitrarily small for each sufficiently small choice of ξ excising
the very small components, and using (5.14). This concludes the proof of (5.12),
sufficient to yield the conclusion of Proposition 3. ��

6 Final remark: volumes of the nodal components

6.1 Volume distribution of boundary components

We would like to point out that the methods we are using are rather general and with
minimal change onemay prove other results. These in particular include similar results
about the (n − 1) dimensional volumes of nodal components or boundaries of nodal
domains instead of the n dimensional volume of the nodal domains. The analogue of
Theorem5 is proved in exactly the sameway usingKac–Rice for the bound and ergodic
theory for the existence of the limit. Going from the planar case to the Riemannian
one is also straighforward. All these results could be rewritten line-by-line, with the
definition of N essentially the only change.

The only difference is in the results stating that the limit functions are strictly
increasing i.e. Theorems 6 and 7. The main idea is still the same: we have to create a
deterministic example with a nodal component of (approximately) given size, and then
show that small perturbations do not significantly alter its sizewith positive probability.
For α < 1 the argument is essentially the same as for the volume of nodal domains.
In this case the corresponding Hilbert space H is dense in any Ck(Q), hence we can
construct any non-degenerate example. For α = 1, the same family of domains works
for the nodal sets, the minimal volume will be the volume of the surface volume of the
sphere of radius jn/2−1,1 instead of the the n dimensional volume of the corresponding
ball. (This follows from the isoperimetric inequality.) The only real difference is in
Lemma 10: controlling the C1 norm is not sufficient in order to control the change of
the boundary volume. But it is not very difficult to show that if the perturbation has
a small C2-norm b, then the ratio of boundary volumes of the original and perturbed
domains is 1 + O(b) where the constant in O(b) depends only on the C2 norms.

6.2 Coupling between domain boundary volumes

Finally, we point that it is possible to consider the joint distribution of

(Voln(ω),Voln−1(∂ω))

where ω is a nodal domain. The existence of the scaling limit is established via an
identical argument to the above. Constructing a deterministic example in the case
α < 1 also follows along the lines of the argument in this manuscript. This would give
that the limiting distribution Ψ (t, l) is strictly increasing in both t and l for all t > 0
and l > l0(t), where l0(t) is the surface area of a sphere with volume t (follows from
the isoperimetric inequality).

The case α = 1 is more complicated. From the isoperimetric inequality, for each
t > t0, the size of the boundary must be ≥ l0(t). But it is clear that this is not the best
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Fig. 1 Connecting a thin plate by a thin tube

possible lower bound, as otherwise the domain would be a ball and its main eigenvalue
would be larger than 1 unless t = t0. On the other hand, there exists a deterministic
infimum of the boundary volume over all domains that have volume t ≥ t0 and the
main eigenvalue 1. We denote this infimum by l1(t). There exists a domain for which
the boundary is arbitrary close to l1(t). Next we attach to this domain a very thin tube
and at the end of this tube we attach a very thin plate, see Fig. 1. This only slightly
perturbs the volume, does not alter the main eigenvalue significantly, but increases the
boundary volume a lot. After that we take a small perturbation to make the domain real
analytic and use Lax-Malgrange to approximate the main eigenfunction by a plane
wave. This way we can construct a nodal domain with eigenvalue 1, volume arbitrary
close to t ≥ t0 and boundary volume arbitrary close to l ≥ l1(t).
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