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The demonstration of a key lemma in this is only valid in the sense of convergence in
probability instead of in the almost sure sense. However, a refinement of the argument,
which we give here, can be used to give convergence in the almost sure sense.

In this erratum we report an issue in the originally published article that was pointed
out to us by David Renfrew and Sean O’Rourke. Specifically, Lemma 2.3 of that paper
asserts a bound
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to hold in the almost sure sense, but the argument given, which is based on establishing
the second moment bound
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after truncating the atom distribution to be bounded, only establishes convergence in
probability instead of in the almost sure sense (note that 1/n is not absolutely summable
and so the Borel–Cantelli lemma does not apply here). Thus, the main theorems in the

The online version of the original article can be found under doi:10.1007/s00440-011-0397-9.
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originally published article, are only proven in that paper in probability rather than in
the almost sure sense.

However, the almost sure version of Lemma 2.3 can be recovered using the methods
of proof of that lemma by obtaining1 the fourth moment bound
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assuming bounded atom distribution. By Markov’s inequality, this shows that
〈( 1√

n
Xn)mun, vn〉 = O(n−1/16) with probability 1 − O(n−5/4), which by the Borel–

Cantelli lemma gives Lemma 2.3 in the almost sure sense for bounded atom dis-
tribution, and then the case of general atom distributions then follows by the usual
truncation argument.

The bound O(n−3/2) in (1) is not optimal; O(n−2) should be the truth (cf. Propo-
sition 4.1), but we do not attempt to optimise exponents here.

It remains to establish (1). Following the argument for Lemma 2.3 given in the
originally published article, we first consider the case when the real and imaginary
parts of the atom distribution x are independent gaussians. Then, as in the originally
published article, we can reduce to the case when un and vn are real unit vectors, in
which case the distribution of 〈( 1√

n
Xn)mun, vn〉 is in fact independent of un and vn .

In particular, the left-hand side of (1) is then equal to
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where w is a unit real vector drawn uniformly at random on Sn−1 independently
of Xn and un . However, a short computation in cylindrical coordinates (or Levy’s
concentration of measure theorem) shows that for any deterministic vector x , one has
E|〈x, w〉|4 � ‖x‖4/n2 if w is a unit vector drawn uniformly from the sphere. Thus
we may bound (1) by
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By Theorem 1.4, the inner expectation is O(1), and the claim (1) follows in the
Gaussian case.

To handle the non-Gaussian case, we argue as in the originally published article
and establish the bound
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= O(n−3/2).

1 In the case when the atom distribution obeys a log-Sobolev inequality, one could also use concentration
of measure techniques to obtain the desired result, and by matching moments with a distribution with a
log-Sobolev inequality one could largely remove the log-Sobolev hypothesis, although a few distributions
(and in particular Bernoulli distributions) have too rigid of a moment sequence in order to apply this strategy.
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The left-hand side expands as

n−2m
∑

a0,...,am ,b0,...,bm ,c0,...,cm ,d0,...,dm∈{1,...,n}
un,a0vn,am un,b0vn,bm un,c0vn,cm vn,d0vn,dm⎛
⎝E
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xa j ,a j−1 xb j ,b j−1 xc j ,c j−1 xd j ,d j−1

−E
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⎞
⎠

(note that the analogous formula in the originally published article has a typo in that
only one product

∏m
j=1 factor is present instead of two). Arguing as in the originally

published article, we can bound this as
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|un,a0 ||vn,am ||un,b0 ||vn,bm ||un,c0 ||vn,cm ||un,d0 ||vn,dm |
)

where
∑

∗ denotes the sum over all tuples a0, . . . , am, b0, . . . , bm, c0, . . . , cm, d0, . . . ,

dm such that the ordered pairs

(a j−1, a j ), (b j−1, b j ), (c j−1, c j ), (d j−1, d j ) (2)

for j = 1, . . . , m are such that each pair occurs at least twice, and at least one pair
occurs three or more times; in particular there are at most 2m − 1 distinct pairs. Our
task is now to show that

∑
∗

|un,a0 ||vn,am ||un,b0 ||vn,bm ||un,c0 ||vn,cm ||un,d0 ||vn,dm | � n2m−3/2 (3)

Suppose that a0, . . . , am, b0, . . . , bm, c0, . . . , cm, d0, . . . , dm are such that (2) is
of the stated form. Let G be the unordered looped graph G with edges being the
unordered pairs associated to (2) and with vertices being the elements of these pairs,
and let r be the number of connected components of G. Then 1 ≤ r ≤ 4, and G has
at most 2m − 1 edges and thus at most 2m + r − 1 vertices.

We consider first the contribution
∑

∗∗ of those tuples for which G has at most
2m + r − 2 vertices; this is for instance the case if G contains a cycle or a looped
edge, or has strictly fewer than 2m − 1 edges. Then if one fixes a0, b0, c0, d0,
then one has fixed at least one vertex in each component of G, leaving at most
2m − 2 remaining vertices. Thus there are O(22m−2) choices for the remaining data
a1, . . . , am, b1, . . . , bm, c1, . . . , cm, d1, . . . , dm ; summing over a0, b0, c0, d0 using
the fact that un is a unit vector yields that
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∑
∗∗

|un,a0 |2|un,b0 |2|un,c0 |2|un,d0 |2 � n2m−2

and similarly

∑
∗∗

|vn,am |2|vn,bm |2|vn,cm |2|vn,dm |2 � n2m−2

and so by Cauchy–Schwarz the contribution of the
∑

∗∗ tuples to (3) is acceptable.
Now consider the contribution

∑
∗∗∗ of those tuples for which G has exactly 2m +

r −1 vertices, but such that two of the a0, b0, c0, d0 are distinct elements of a common
component of G. Then as in the

∑
∗∗ case, fixing a0, b0, c0, d0 leaves only O(22m−2)

choices for the remaining data, so that

∑
∗∗∗

|un,a0 |2|un,b0 |2|un,c0 |2|un,d0 |2 � n2m−2

while we also have the cruder bound

∑
∗∗∗

|vn,am |2|vn,bm |2|vn,cm |2|vn,dm |2 � n2m−1

so by Cauchy–Schwarz this contribution is also acceptable. Similarly if G has 2m+r −
1 vertices but two of the am, bm, cm, dm are distinct elements of a common component
of G.

The only remaining contribution
∑

∗∗∗∗ comes from the case when G has exactly
2m +r −1 vertices, the a0, b0, c0, d0 agree whenever they lie in a common component
of G, and am, bm, cm, dm agree whenever they lie in a common component of G. As
discussed previously, the requirement that G has exactly 2m + r − 1 vertices forces
G to be a forest (a union of r disjoint trees, with no cycles or looped edges) and to
contain exactly 2m − 1 edges. Among other things, this implies that the tuples (2) do
not contain a loop (a, a), nor do these tuples contain a pair (a, b) together with its
reversal (b, a). If a0, . . . , am and b0, . . . , bm (for instance) lie in the same component
of G, then we must then a0 = b0 and am = bm , and then ai = bi for all 0 ≤ i ≤ m
(otherwise there would be a cycle, looped edge, or a pair (a, b) and its reversal). Thus
each component has m edges, which is only consistent with the total edge count of
2m − 1 if r = 1 and m = 1. But in this case the left-hand side of (3) simplifies to

∑
i 
= j

|un,i |4|vn, j |4

which is easily seen to be O(1), so that (3) easily follows in this case.
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