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Abstract We find an analytical condition characterising when the probability
that a Lévy Process leaves a symmetric interval upwards goes to one as the size
of the interval is shrunk to zero. We show that this is also equivalent to the
probability that the process is positive at time t going to one as t goes to zero
and prove some related sequential results. For each α > 0 we find an analytical

condition equivalent to XTr T
−1/α
r

p−→ ∞ and Xtt−1/α p−→ ∞ as r, t → 0 where
X is a Lévy Process and Tr the time it first leaves an interval of radius r.

Mathematics Subject Classification (2000) 60G51 · 60G17

1 Introduction

Let X be a Lévy Process (LP); that is an R-valued stochastic process with
stationary, independent increments whose paths are taken to be almost surely
right-continuous. (We assume some familiarity with LPs and for an account
refer to Bertoin [2]). It can be shown that there is a one-to-one correspondence
between LPs and infinitely divisible distributions. We have

E(eiλXt) = e−tψ(λ)
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where we will write ψ (the Lévy exponent) as follows:

ψ(λ) = 1
2
σ 2λ2 − iϕλ+

∞∫

−∞

(
1 − eiλx + iλx1{|x|≤1}

)
�(dx); (1)

where σ ,ϕ ∈ R and � (the jump measure) satisfies
∫ ∞
−∞ 1 ∧ |x|2�(dx) < ∞.

In this paper we are interested in results relating to the small-time behaviour
of Lévy Processes, particularly in regard to positivity in probability and exit from
small intervals. We give analytical conditions equivalent to P(XTr > 0) → 1,

P(Xt > 0) → 1, XTr T
−1/α
r

p−→ ∞ and Xtt−1/α p−→ ∞ respectively. Many of
these form analogues to large-time results for Random Walks (RWs). We dis-
cuss when these conditions are satisfied and investigate some related conditions
in their sequential forms.

Note that since a non-zero Brownian component would dominate at small
times we exclude this case. (i.e. We will henceforth assume that σ = 0.) Indeed,
if we let Bt be a standard Brownian Motion and Xt a Lévy Process with zero
Brownian component then it is a consequence of the results in Pruitt [13] (see
Theorem 6 below or [6]) that

Bt

Xt

p−→ ∞ as t → 0,

and thus if X had a non-zero Brownian component then we would have
limt↓0 P(Xt > 0) = limt↓0 P(Bt > 0) = 1/2 etc.

We likewise assume that X is not a compound Poisson process since otherwise
limt↓0 P(Xt = 0) = 1 while the probability that X leaves a small interval upwards
and other quantities of interest are similarly trivial.

For x, r, t > 0 let

Tr = {inf s ≥ 0 : |Xs| > r};
Mt = sup

s≤t
|Xs|;

�+
t = max

s≤t
�Xs (where �Xt is the jump process of X);

�−
t = −(min

s≤t
�Xs);

�t = �+
t ∨�−

t ;

V(x) = �(x, ∞);

W(x) = �(−∞, −x);

L(x) = V(x)+ W(x);

D(x) = V(x)− W(x);

A(x) = ϕ + xD(x)− 1{x<1}
∫

x<|y|≤1

y�(dy)+ 1{x>1}
∫

1<|y|≤x

y�(dy)
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= ϕ + D(1)−
1∫

x

D(y)dy;

U(x) = 2

x∫

0

y L(y)dy;

k(x) = |A(x)|
x

+ U(x)
x2 .

We define X̌r as X with jumps whose moduli are larger than r reduced to
size r. i.e. X̌r

t = Xt − ∑
s≤t �Xs1{|�Xs|>r} + r

∑
s≤t 1{�Xs>r} − r

∑
s≤t 1{�Xs<−r}.

By differentiating characteristic functions we can show

EX̌r
1 = A(r); VarX̌r

1 = U(r). (2)

Compare the following: for r < 1

E

⎛
⎝X1 −

∑
s≤1

1{|�Xs|>r}�Xs

⎞
⎠ = ϕ −

∫

r<|x|≤1

x�(dx) = A(r)− rD(r). (3)

2 Main results

Theorem 1 The following are equivalent as r, t → 0 :

P(XTr > 0) → 1; (4)

P(Xt > 0) → 1; (5)
XTr

�−
Tr

p−→ ∞; (6)

Xt

�−
t

p−→ ∞; (7)

A(r)
rW(r)

→ ∞. (8)

This result has a large time LP analogue [5], derived from a similar result for
RWs [10], which states:

P(Xt > 0) → 1 ⇔ P(XTr > 0) → 1 ⇔ A(r)√
W(r)U(r)

→ ∞ (as r → ∞). (9)

Note that in Theorem 1 A(r)
rW(r) → ∞ may be replaced by A(r)√

W(r)U(r)
→ ∞ (or

vice versa in (9).)
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Moreover, Doney [4] has already proved the equivalence of (5), (7) and (8)
using a direct proof that (5) is equivalent to (8) similar to the one used by
Kesten and Maller [10] to prove the RW version. We proceed here, however,
by first showing that (4) is equivalent to (8) using a proof similar to Griffin
and McConnell [9] for the RW case, before going on to show that (4) is also
equivalent to the other probabilistic conditions.

If X has bounded variation (b.v.) (that is if
∑

t≤1 |�Xt| a.s.
< ∞ or equivalently∫ 1

0 L(x)dx < ∞) then the analytical condition (8) can be somewhat simplified.
In this case the process can be reduced to the sum of the difference of two
(pure-jump) subordinators with a drift d (where d = limr↓0 A(r)). The d �= 0

case is not of interest since we then have Xtt−1 a.s.−→ d (see [2] p. 84). If, on the
other hand, d = 0, then we write

Xt = Yt − Zt

where Yt and Zt are (pure-jump) subordinators wih jump measures 1{x>0}�(dx)
and 1{x>0}�(dx) respectively. Rearranging (8) then yields the following equiv-
alent: ∫ r

0 (V(x)− W(x))dx

rW(r)
→ ∞. (10)

Moreover, it is easily deduced from (10) that for λ > 0

P(Yt > λZt) → 1 ⇔
∫ r

0 (V(λx)− W(x)) dx

rW(r)
→ ∞. (11)

Thus as t,r go to 0 (or ∞) we have

Yt

Zt

p−→ ∞ ⇔
∫ r

0 (V(λx)− W(x)) dx

rW(r)
→ ∞ ∀λ > 0. (12)

It is interesting to compare (10) with the condition for the irregularity of
(−∞, 0). Namely, Bertoin [3] showed that for a b.v. X with zero drift then as
t ↓ 0

1{Xt>0}
a.s.−→ 1 ⇔ Yt

Zt

a.s.−→ ∞ ⇔
1∫

0

x|W(dx)|∫ x
0 V(y)dy

< ∞.

In view of Bertoin’s result it might be wondered if there are any ostensibly
stronger probabilistic conditions equivalent to P(Yt > Zt) → 1. Note however
that (12) is stronger than (10). In fact, the following example shows that it is
possible for P(Yt > Zt) to go to one while P((1 − ε)Yt > Zt) goes to zero for all
ε > 0.
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Example Let

V(r) = 1

r log2 r

(
1 + 3

2
√| log r|

)
; W(r) = 1

r log2 r
;

such that

r∫

0

V(x)dx = 1
| log r|

(
1 + 1√| log r|

)
;

r∫

0

W(x)dx = 1
| log r| .

Then
∫ r

0 (V(x)− W(x))dx

rW(r)
= √| log r|

and thus P(Yt > Zt) goes to one as t goes to 0 by (10).
Whereas for any ε > 0

∫ r
0 (W(x(1 − ε))− V(x)) dx

rV(r)

= (1 − ε)−1 ∫ r(1−ε)
0 W(x)dx − ∫ r

0 V(x)dx

rV(r)

∼ (1 − ε)−1| log r| − | log r|
(

1 + 1√| log r|
)

and hence P((1 − ε)Yt > Zt) goes to zero as t goes to 0 by (11).

If X has unbounded variation (u.b.v.) (and hence is regular for both half-
lines), then first note that (8) implies the prevalence of negative jumps in the
sense that

lim inf
r↓0

A(r) ≥ 0. (13)

As we are now assuming
∫ 1

0 W(x)dx = ∞ the analytical condition (8) further
requires that

lim
r↓0

∫ 1
r W(x)dx

rW(x)
= ∞.

Thus
∫ 1

r W(x)dx must be slowly varying at zero (by Lemma 7). Hence by the
monotone density theorem W(r) is regularly varying with index −1. So X is
of unbounded variation but only just. (i.e. by (13)

∫ 1
r L(x)dx goes to infinity

‘slowly’.) We may compare this with other results where more variation leads
to less extreme (limiting) values of P(Xt > 0). e.g. For spectrally negative
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Lévy processes, P(Xt > 0) → p is equivalent to the Laplace exponent (i.e.
−ϕ(−i ·)) regularly varying with index p−1 (at 0 or ∞ respectively). Note that
in this case limt↓0 P(Xt > 0) → 1 is equivalent to W(r) regularly varying at 0
with index −1. While for a stable process with index α the possible values of
P(X1 > 0) = limt↓0 P(Xt > 0) range over [1 − α−1,α−1]. (See Bertoin (1996)
for more details.)

For more on conditions (6) and (7) see the comments preceding Theorem 4
below.

Theorem 2 For α > 0 the following are equivalent as r, t → 0 :

XTr

T1/α
r

p−→ ∞; (14)

Xt

t1/α
p−→ ∞; (15)

A(r)
rW(r) → ∞, A(r)rα−1 → ∞. (16)

Theorem 2 also provides an analogue to results at large times; see Kesten
and Maller [11] for the RW case and Doney [5] who shows the equivalence of
(14), (15), and (16) for α = 1 as r, t → ∞. The sufficiency of (16) for (15) (as
r, t → 0) when α = 1 was first proved by Doney and Maller [6].

Similarly to above, if X has b.v. and zero drift then the analytical condition
may be rewritten. i.e. (16) becomes

∫ r
0 V(x)− W(x)dx

rW(r)+ r1−α → ∞. (17)

Note that for any α ∈ (0, 1) it is easy to find processes such that (10) holds while
(17) fails. Clearly if α = 1 then the conditions in Theorem 2 are never satisfied
for any b.v. X.

If X has u.b.v. then, since (8) implies that rW(r) is slowly varying as r goes
to 0, it also forces A(r)rα−1 to go to infinity for all α ∈ (0, 1) and hence

X has u.b.v., P(Xt > 0) → 1 ⇒ Xt

t1/α
p−→ ∞ ∀α ∈ (0, 1).

While when α = 1 we have, as t and r go to zero,

Xt

t
p−→ ∞ ⇔ A(r)

1 + rW(r)
→ ∞.

Whereas, since (8) implies A(r) is bounded above by a slowly varying function,
(16) can never hold for α > 1.

This is slightly different to what happens at infinity where no matter how large

we take α we can find X such that Xt/tα
p−→ ∞, while, similarly to what happens
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with u.b.v. X at zero, limt→∞ P(Xt > 0) = 1 implies Xt/tα
p−→ ∞ ∀α ∈ (0, 1)

(see e.g. [6]).

3 Sequential results

Note that the results (and comments) in this section are also valid at infinity.
However, as this can be shown using simple adaptations of the arguments used
below, and in keeping with the tone of the rest of the paper, we will concentrate
on the small-time cases.

Theorem 3 For any sequence rk ↓ 0 the following are equivalent:

W(λrk)

k(λrk)
→ 0 ∀λ > 0; (18)

�−
Trk

rk

p−→ 0; (19)

�XTrk
∧ 0

rk

p−→ 0; (20)

�−
Trk

XTrk

p−→ 0. (21)

This result is related to various earlier theorems concerning the relative
magnitude of overshoots or of biggest jumps at exit times. Indeed, in the full-
sequence case it may be seen as a simpler small-time one-sided analogue to
a result (Theorem 2.1) from Griffin and Maller [7], which gives an analytical

condition equivalent to |STr |r−1 p−→ 1 as r → ∞ for a RW S. The interesting
thing about Theorem 3, however, is that it is in strict sequential form, in which
case it turns out to be appropriate to study relations relative to the size of the

jump at Trk rather than to XTrk
. (i.e. We consider when

�Trk
rk

p→ 0 rather than

when
|XTrk

|
rk

p→ 1 etc.)

Indeed, it is possible to have XTrk
/rk

p→ 1 but not�XTrk
/rk

p→ 0. For exam-
ple, we may construct a pure-jump subordinator X and a sequence rk ↓ 0 such
that (with high probability) X jumps over the small rk with a jump of size
(k + 1)rk/k before the sum of the smaller jumps has reached rk/k. Moreover,
this example is typical in the sense that it can be shown by reasonings very
similar to those used in the proof of (step 2 of) Theorem 3 below that if we

have XTrl
/rl

p→ 1 but there exists ε > 0 such that P(�XTrl
/rl > ε) > 0 then X

is ‘mesh-jumping’ relative to rl: that is, for a subsequence rl of rk, with proba-
bility approaching one as l gets large, X is confined to a set of small (relative
to rl) intervals before Trl , neighbouring intervals being separated by a distance
close to a divisor dl(> 1/ε) of rl (imagine the rungs of a ladder). Consider the
subordinator X and sequence rk in the example above, and note that if we take
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any bounded sequence of integers nk then we similarly have XTnkrk
/nkrk

p→ 1

while �XTnkrk
/nkrk

p
�→ 0.

This in turn explains why X cannot be weakly stable (XTr r
−1 p→ 1) and have

big jumps (in the sense that �−
Tr

r−1 � p→ 0).
It is an immediate consequence of Theorem 3 that P(XTrk

> 0) → 1 implies

XTrk
/�−

Trk

p→ ∞. This may be loosely justified as follows: if P(XTrk
< N�−

Trk
)

(or P(Xtk < N�−
tk)) is bounded away from 0 then we could reason that, since X

has stationary, independent increments, it could have N such jumps before Trk

(or tk) with probability bounded away from 0.
An argument of this kind can be formalised for Xtk , whence we have the

following Theorem.

Theorem 4

(i) For any sequence rk ↓ 0, P(XTrk
> 0) → 1 ⇔ XTrk

�−
Trk

p−→ ∞.

(ii) For any sequence tk ↓ 0, P(Xtk > 0) → 1 ⇔ Xtk
�−

tk

p−→ ∞.

We give an analytical condition that the probability a LP X leaves a sequence
of intervals [−rk, rk] approaches one. The proof is similar to that for Griffin and
McConnell’s [9] analogous result for the RW case.

Theorem 5 For any sequence rk ↓ 0,

P(XTrk
> 0) → 1 ⇔ lim inf

rk↓0

A(λrk)

λrkk(λrk)
> 0,

W(λrk)

k(λrk)
→ 0 ∀λ > 0.

4 Preliminaries and proofs

Our approach will be to first prove the sequential results of Sect. 3 before going
on to deduce the full-sequence results.

We will repeatedly appeal to the following theorem from Pruitt [13] (see also
[6].) It is similarly crucial in the proof of the large-time results.

Theorem 6 There exists C > 0 such that for any LP X and for all a, t > 0 :
(i) P(Mt ≥ a) ≤ Ctk(a);

(ii) P(Mt ≤ a) ≤ C
tk(a)

;

(iii)
1

Ck(a)
≤ ETa ≤ C

k(a)
.

Furthermore for all x > 0, λ > 1

λ−3 ≤ k(λx)
k(x)

≤ 3.
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We also require the following lemma (from e.g. [6]).

Lemma 7 Let f be any positive differentiable function such that

lim
x↓0

xf ′(x)
f (x)

= 0.

Then f is slowly varying at 0.

Proof of Theorem 3 To avoid an overabundance of minus signs later in the
proof we will prove Theorem 3 for −X. Namely, we show that the following are
equivalent (for any sequence ri):

V(λri)

k(λri)
→ 0 ∀λ > 0; (22)

�+
Tri

ri

p−→ 0; (23)

�XTri
∨ 0

ri

p−→ 0; (24)

�+
Tri

XTri

p−→ 0; (25)

�+
Tλri

λri

p−→ 0 ∀λ > 0; (26)

�XTλri
∨ 0

λri

p−→ 0 ∀λ > 0. (27)

We let

Yr
t =

∑
0≤s≤t

1{�Xt>r}.

((22)⇒ (26)) Given ε > 0 we have

P(�+
Tλri

> λriε) ≤ E(Yλriε
Tλri

)

≤ EYλriε
1 ETλri

≤ c
EYλriε

1

k(λriε)

≤ c
V(λriε)

k(λriε)
,

where the second inequality follows by Optional Stopping and the third from
Theorem 6. ((26)⇒ (27))

�+
Tλri

≥ �XTλri
∨ 0.
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((27)⇒ (22)) Since {�XTλri/2
∨ 0 > 3λri/2} implies {�XTλri

∨ 0 > 3λri/2} we
have

P(�XTλri
∨ 0 > λri) ≥ P(�XTλri/2

∨ 0 > 3λri/2)

= E(Y3λri/2
Tλri/2

)

= EY3λri/2
1 ETλri/2

≥ c
V(3λri/2)
k(3λri/2)

,

where we have again used Optional Stopping and Theorem 6. Hence we have
shown that (22), (26) and (27) are equivalent.

We have trivially that

�+
λTri

λri

p−→ 0 ∀λ > 0 ⇒
�+

Tri

ri

p−→ 0 ⇒ �XTri
∨ 0

ri

p−→ 0.

i.e. (26) ⇒ (23) ⇒ (24). Since, given λ > 0,
�+

Tλri
λri

≤ 1
λ

�+
T2nri
ri

for n large enough,
‘(24) ⇒ (26)’ (and hence the equivalence of (26), (23), (24)) would follow if we
could show that

(24) ⇒
�+

T2ri

ri

p−→ 0. (28)

We will prove (28) in the following two steps:-

Step 1: RHS (of (28)) fails ⇒ ∃ n ∈ N s.t.
�XTri/2n ∨ 0

ri
� p→ 0;

Step 2:
�XTri

∨ 0

ri
� p→ 0 ⇒ �XT2ri

∨ 0

ri
� p→ 0.

Thus, the failure of the RHS of (28) will imply
�XTri/2n ∨ 0

ri
� p→ 0 (by Step 1),

whence we deduce (by Step 2) the failure of (24).

Proof of Step 1 Assume ∃ ε > 0, n ∈ N and {rs} ⊆ {ri} such that

P

(
�+

T2rs
>

rs

2n

)
> ε

for all rs.
For all s, let

τ s
0 = 0; τ s

j = inf
(

t > τ s
j−1 :

∣∣∣Xt − Xτ s
j−1

∣∣∣ > rs/2n+1
)

for j ∈ N.
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Then, for any s, any j,

P

(
τ s

2n+4j < T2rs

∣∣∣ τ s
2n+4(j−1) < T2rs

)

≤ 1 − P

(
XTrs/2n+1 > 0

)2n+4

− P

(
XTrs/2n+1 < 0

)2n+4

≤ 1 − (1/2)2
n+4

.

Therefore there exists an integer N such that P(τ s
2n+4N

≤ T2rs) ≤ ε/2 for all s,
and hence

ε

2
≤ P

(
�+

T2rs
>

rs

2n

)
− P

(
τ s

2n+4N ≤ T2rs

)

≤ P

(
�+

T2rs
>

rs

2n , τ s
2n+4N > T2rs

)

≤ P

(
�+
τ s

2n+4N
>

rs

2n

)

≤ 2n+4N × P

(
�+

Trs/2n+1
>

rs

2n

)
.

Thus

P

(
�XTrs/2n+1 > rs/2n

)
≥ ε/(2n+5N)

completing the proof of Step 1.

Proof of Step 2 We assume for contradiction that

�XTri
∨ 0

ri
� p→ 0 (29)

and
�XT2ri

∨ 0

ri

p→ 0. (30)

Thus we must have either {ra} ⊆ {ri}, λ′ > 0, α′ > 0 such that

P
(
XTra

> (1 + λ′)ra
)
> α′ ∀ra, (31)

or {rb} ⊆ {ri}, λ′′ > 0, α′′ > 0 such that

P

(
XTrb

> 0, XTrb− < (1 − λ′′)rb

)
> α′′ ∀rb. (32)
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If (31) holds then by the Markov property applied on entry into [ra(1−λ′/2), ra]
we have

P
(
�XT2ra

> λ′ra/2
) ≥ P

(
X visits

[
ra(1 − λ′/2), ra

]
before T2ra

)
× P

(
XTra

> (1 + λ′)ra
)

,

and thus by (30)

P
(
X visits

[
ra(1 − λ′/2), ra

]
before T2ra

) → 0

as ra ↓ 0. If on the other hand (32) holds then by stopping X when it enters[
rb, rb

(
1 + λ′′/2

)]
we similarly have

P
(
X visits

[
rb, rb

(
1 + λ′′/2

)]
before T2rb

) → 0,

which in turn (by stopping X in [rb
(
1 − λ′′/4

)
, rb] and spotting lim infra P(XT2a

> 0) > 0) implies that

P
(
X visits

[
rb

(
1 − λ′′/4

)
, rb

]
before T2rb

) → 0.

Hence in all cases (when (29) and (30) hold) we may define a positive d such
that

d = sup
{rs}⊆{ri}

sup
{
δ : P

(
X visits

[
rs(1 − δ), rs

]
before T2rs

) → 0
}

.

Now choose ε < 1/50, {rs} ⊆ {ri} and ξ > 0 such that

P
(
X visits

[
rs(1 − d(1 − ε)), rs

]
before Trs

) → 0 (33)

as rs ↓ 0 and

P
(
X visits

[
0 ∨ [

rs(1 − d(1 + ε))
]

, rs(1 − d(1 − ε))
]

before T2rs

)
> ξ (34)

for all rs. Then, by stopping in [2rsdε, rsd(1 − ε)] and considering (34) and (33),
we must have

P
(
X visits

[
2rsdε, rsd(1 − ε)

]
before Trs

) → 0. (35)

Consequently, stopping in
[
2rs − rsd(1 − ε), 2rs − 2rsdε

]
,we deduce from (30)

that
P

(
X visits

[
2rs − rsd(1 − ε), 2rs − 2rsdε

]
before T2rs

) → 0. (36)

Then, noting that,

P
(
X visits[2rs − 2rsdε, 2rs] before T2rs

∣∣XT2rs
> 0

) → 1
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we must have

P
(
X visits

[−rsd(1 − ε), −2rsdε
]

before T2rs

) → 0, (37)

since otherwise (36) would fail. From (35) and (37) we see that the probability
X leaves [−2rsdε, 2rsdε] by a jump with modulus bigger than drs/2 goes to one
as rs goes to 0. For each s we may consider X as the sum of two independent
processes Ys and Zs such that Zs consists of the jumps of X with modulus bigger
than drs/2. By (29) we may choose α > 0 such that

lim inf
rs

P(XTrs
> 0) > α,

and hence we must also have a positve p such that

p = lim inf
s→∞ P

(
the first jump of Zs is positive

)
> 0.

Let

Es = [2rs − rsdε, 2rs]

such that

lim inf
rs

P
(
X visits Es before T2rs

) ≥ lim inf
rs

P
(
XT2rs

> 0
)
> α2.

Hence (by (30)), stopping in Es,

lim inf
s→∞ P

(
Zs jumps before Ys visits (0, ∞)

) → 0. (38)

Thus, if we define

As
cs

= P
(
Ys visits (csrs, ∞) before Zs jumps

)
,

then for each large s, there must exist cs > 0 such that

P
(
As

cs

) ∈ (1/3, 2/3);

to see this spot that P(As
y) decreases as y increases, that P(As

2drsε
) is close to

0 (by (35)), while by (38) ∃χs > 0 s.t. P(As
χs
) is close to one; whereas we can

exclude a discontinuity bridging (1/3, 2/3) since for x > 0, P(As
2x) > P(As

x)
2.

As noted above we have

P
(
X enters Es before T2rs

∣∣XT2rs
> 0

) → 1,
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and hence

lim inf
s→∞ P

(
X enters {Es − csrs} before T2rs

)
≥ lim inf

s→∞ P
(
X enters Es before T2rs

∣∣Acs , XTrs
> 0, XT2rs>0

)
≥ lim inf

s→∞ P
(
Acs , XTrs

> 0, XT2rs
> 0

)

> α2/3.

Thus, finally, we have

lim inf
s→∞ P(�XT2rs

> drs/3) > lim inf
s→∞ P

(
X enters {Es − csrs} before T2rs

)
×P(the first Zs-jump is +ve and occurs before Ys leaves [−2rsdε, csrs])

> α2p/9,

which contradicts (30) and completes the proof of Step 2.
We complete the proof of Theorem 3 by showing the the equivalence of (23)

and (25).
(23) ⇒ (25) is immediate. Now assume (23) fails. Then, by above (24) fails too

and hence there exists {rj} ⊆ {ri}, ε > 0 and c > 0 such that P

(
�XTrj

/rj > c
)
>

ε ∀rj. Thus for each rj we have that with probability greater than ε

�+
Trj

XTrj

≥
�XTrj

�XTrj
+ rj

>
1

1 + c−1

and hence (25) fails. ��
Informally, Theorem 3 shows that if X sometimes has large negative jumps

before Trk then these jumps will on occasions carry it out of the interval [−rk, rk].
Thus when we come to the question of determining when the probability that
X leaves an interval upwards goes to 1 as the interval is shrunk to 0 we may

exclude all processes where �−
Trk

� p→ 0.

Furthermore, it can be deduced from the well known fact that a simple
asymmetric random walk diverges that for a LP with no negative jumps

lim inf
r↓0

P(XTr > 0) = p > 1/2 ⇒ P(XTr > 0) → 1.

Indeed, define a simple RW such that P(S1 = 1) = p = 1 − P(S1 = −1) > 1/2.
We may then find N > 0 such that the probability S leaves an interval [−N, N]
upwards is arbitrarily close to 1. Since X has no negative overshoots

lim inf
r↓0

P(XTr > 0) = lim inf
r↓0

P(XTNr > 0) ≥ P(STN > 0).
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It turns out that a similar reasoning can be applied in this instance, and is used
in the following proof, which is similar to that used in Griffin and McConnell
[9] for the RW case.

Proof of Theorem 5 First note that

P(XTrk
> 0) → 1 ⇒ P(XTδrk

> 0) → 1 ∀δ > 0, (39)

since if δ < 1 then we can let N be the smallest integer ≥ 1/δ and reason via:

P(XTδrk
< 0)N ≤ P(XTrk

< 0);

whereas if δ ≥ 1 then for any integer N ≥ δ we have

P(XTδrk
> 0) ≥ P(XTrk

> 0)N .

Recall that we defined {X̌λrk
t , t ≥ 0} as X with all jumps whose modulus is

bigger than λrk being reduced to a size of λrk. In other words we adjust the
jump measure as follows:

W̌(x) = W(x), V̌(x) = V(x) for x < λrk;

W̌(x) = 0, V̌(x) = 0 for x ≥ λrk.

Let

Yt = X̌λrk
t − EX̌λrk

1 t.

As Y is a (well-behaved) martingale and Ťrk a stopping time (the first time the
process X̌ leaves the interval [−rk, rk]), we have from Optional Stopping that

EX̌λrk

Ťrk

= EX̌λrk
1 EŤrk .

Moreover

EX̌λrk

Ťrk

≥ rkP(X̌λrk

Ťrk

> 0)− (λ+ 1)rkP(X̌λrk

Ťrk

< 0)

≥ (λ+ 2)rkP(X̌λrk

Ťrk

> 0)− (λ+ 1)rk;

while by similar reasoning

EX̌λrk

Ťrk

≤ (λ+ 2)rkP(X̌λrk

Ťrk

> 0)− rk.
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Hence

EX̌λrk
1 EŤrk r−1

k + λ+ 1

λ+ 2
≥ P(X̌λrk

Ťrk

> 0) ≥ EX̌λrk
1 EŤrk r−1

k + 1

λ+ 2
. (40)

If we set λ = 2 then (since any jump with modulus greater than 2rk occurring
before Trk will carry X out of [−rk, rk]) Ťrk = Trk and {X̌Ťrk

> 0} = {XTrk
> 0}.

Therefore, by (40), Theorem 6 and (2)

P(XTrk
> 0) ≤ 1

4
EX̌2rk

1 ETrk r−1
k + 3

4
≤ c

A(2rk)

rkk(2rk)
+ 3

4
. (41)

And so then by (39) and Theorem 3

LHS(of theorem) ⇒
(
�XTrk

∧ 0
)

r−1
k

p−→ 0, P(XTβrk
> 0) → 1 ∀β > 0

⇒ RHS .

We now assume RHS and will proceed from (40) to show that

lim
λ↓0

lim inf
rk↓0

P(X̌λrk

Ťrk

> 0) = 1 (42)

from whence we will immediately have LHS since then by Theorem 3

lim
λ↓0

lim inf
rk↓0

P(X̌λrk

Ťrk

> 0) ≤ lim
λ↓0

lim inf
rk↓0

[
P(XTrk

> 0)+ P(�−
Trk

≥ λrk)
]

≤ lim inf
rk↓0

P(XTrk
> 0).

Given λ ≤ 1/2, define for all rk:

τ
λrk
0 = 0; τ

λrk
j+1 = inf{t > τ

λrk
j : |Xt − Xτj | > λrk} for j = 0, 1, 2, . . .

Then, for any integer n, |X̌λrk

τ
λrk
n

| ≤ 2nλrk and hence if we let s(λ) be the largest

integer less than 1/2λ, Ťrk ≥ τ
λrk
s(λ). Thus

EŤrk ≥ Eτλrk
s(λ) = s(λ)ETλrk

and so

3λEŤrk ≥ ETλrk .
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Then by (40), Theorem 6 and (2) we have

P(X̌λrk

Ťrk

> 0) ≥ cA(λrk)/λrkk(λrk)+ 1
λ+ 2

. (43)

Replacing rk with δrk and λ with λδ−1 we have for δ > 0, λ ≤ δ/2

P

(
X̌λrk

Ťδrk

> 0
)

≥ c1A(λrk)/λrkk(λrk)+ 1
λδ−1 + 2

.

Thus ∃p1 > 1/2 such that ∀δ > 0

lim
λ↓0

lim inf
rk↓0

P(X̌λrk

Ťδrk

> 0) ≥ p1 (44)

As alluded to above, if we consider the Simple Random Walk {Sn, n ∈ N} with
parameter p1 (i.e. P(S1 = 1) = p1, P(S1 = −1) = 1 − p1) then P(STn > 0) → 1
as n → ∞. (We are taking TN for a RW as the first time it leaves [−N, N].)
Hence for ε > 0 we may choose N, H ∈ N such that

P(STN > 0, TN ≤ H) > 1 − ε.

For given λ, rk let Rn be a simple RW such that R1 has the same distribution as
X̌λrk

Ťrk/2N
|X̌λrk

Ťrk/2N
|−1. Then

P

(
X̌λrk leaves [−rk/2 − λrkH, rk/2 − λrkH] upwards

)

≥ P(RTR
N
> 0, TR

N ≤ H)

≥ P(STS
N
> 0, TS

N ≤ H) ≥ 1 − ε.

Therefore for any ξ > 0

lim
λ↓0

lim inf
rk↓0

P(X̌λrk leaves [−rk(1/2 + ξ), rk(1/2 − ξ)] upwards) ≥ 1 − ε,

which implies limλ↓0 lim infrk↓0 P(X̌λrk

Ťrk

> 0) ≥ (1−ε)2 and as epsilon is arbitrary

(42) follows and the proof is complete. ��
Proof of Theorem 4 (i) First note that

RHS ⇒ P(XTrk
> �−

Trk
) → 1 ⇒ LHS,

while the converse follows from Theorem 3 as

P(XTrk
> 0) → 1 ⇒ (−�XTrk

∧ 0)/rk
p−→ 0 ⇒ �−

Trk
/rk

p−→ 0.
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We then have
∣∣∣XTrk

∣∣∣ /�−
Trk

p−→ ∞ and hence XTrk
/�−

Trk

p−→ ∞ from LHS.

(ii) RHS⇒LHS is again immediate. To prove the converse we assume for
contradiction that ∃ tj ↓ 0, k ∈ N and ε > 0 such that

lim
tj

P(Xtj > 0) = 1 and P(Xtj < 2k�−
tj ) > 8ε for all tj. (45)

Let

Ej = {Xtj < 2k�−
tj };

and for each tj choose cj such that

P(Ej,�−
tj ≤ cj) ≥ 2ε (46)

and
P(Ej,�−

tj ≥ cj) ≥ 6ε. (47)

Then (by (47)) we must have either a subsequence {tm, cm, Em} ∈ {tj, cj, Ej} such
that

P(Em,�−
tm > 2cm) ≥ 2ε ∀m (48)

or a subsequence {tn, cn, En} ∈ {tj, cj, Ej} such that

P(En, cn ≤ �−
tn ≤ 2cn) ≥ 4ε ∀n. (49)

First assume that (48) holds and for each m let

Xt = Ym
t + Zm

t

where Zm
t consists of all the jumps smaller than −2cm by time t. (i.e. Zm

t =∑
0≤s≤t �Xs1{�Xs<−2cm}.) Further let

Nm
t =

∑
0≤s≤t

1{�Xs<−2cm},

the number of jumps of Zm
t by time t. Then since we have P

(
Nm

tm ≥ 1
) ≥ 2ε

(from (48)) and P
(
Nm

tm = 0
) ≥ 2ε (from (46)) the parameters, say pm, of the

Poisson distributions Nm
tm must be bounded uniformly away from 0 and ∞ for

all m. Therefore ∃ ξ > 0 such that for all large m

P
(
Nm

tm ≥ k
)
> e−pm pk

m/k! > ξ .

From (45) and (46)

P
(
Ym

tm ∈ (0, 2kcm), Zm
tm = 0

)
> ε
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for all large m and as Ym
tm and Zm

tm are independent we have (for all large m)

P
(
Xtm < 0

) ≥ P
(
Ym

tm ∈ (0, 2kcm), Nm
tm ≥ k

)
= P

(
Ym

tm ∈ (0, 2kcm)
)
P

(
Nm

tm ≥ k
)

> εξ ,

which gives the required contradiction (when (48) holds).
If on the other hand (49) holds then we now let Xt = Yn

t + Zn
t where

Zn
t =

∑
0≤s≤t

�Xs1{�Xs≤−cn}

and define

Nn
t = 1{�Xs≤−cn}.

By (45) and (49) we then have for all large n

3ε < P
(
Xtn ∈ (0, 4ckn),�−

tn ≥ cn
)

=
∞∑
α=1

P
(
0 < Yn

tn + Zn
tn < 4kcn, Nn

tn = α
)

=
∞∑
α=1

P
(−Zn

tn < Yn
tn < 4kcn − Zn

tn

∣∣ Nn
tn = α

)
P

(
Nn

tn = α
)

.

Similarly to above, each Nn
tn has a Poisson distribution with parameter say pn

(where pn = tn�(−∞, −cn]). Since for all n P
(
Nn

tn ≥ 1
) ≥ 4ε the pn must be

uniformly bounded away from 0. (i.e. lim infn pn > 0.) For the moment we will
assume that they are also uniformly bounded away from infinity. Thus we may
choose C ∈ N and ς > 0 such that for all n

P
(
Nn

tn > C
)
< ε and

P
(
Nn

tn = α + 4k
)

P
(
Nn

tn = α
) = p4k

n α!
(α + 4k)! > ς ∀α ≤ C.

Thus, as Yn
tn and Zn

tn are independent, we have for all large n

P
(
Xtn < 0

)
>

C∑
α=1

P
(−Zn

tn < Yn
tn < 4kcn − Zn

tn

∣∣ Nn
tn = α

)
P

(
Nn

tn = α + 4k
)

>

C∑
α=1

P
(−Zn

tn<Yn
tn<4kcn−Zn

tn

∣∣Nn
tn=α)

P
(
Nn

tn = α
) P

(
Nn

tn=α+4k
)

P
(
Nn

tn=α)

> 2ες ,
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which gives a contradiction (under the assumption that lim supn pn < ∞.) Thus
we may now suppose without loss of generality that pn → ∞. But then

sup
m∈N

P
(
Nn

tn ∈ [m, m + 4k]) → 0 as n → ∞.

Therefore (by (45) and (49)) for all large n there exists Hn ∈ N such that

P
(
Xtn ∈ (0, 4kcn), Nn

tn ∈ [1, Hn]) > ε, P
(
Nn

tn > Hn + 4k
)
> ε,

and hence

P
(
Xtn < 0

) ≥ P
(

Xtn ∈ (0, 4kcn)
∣∣ Nn

tn ≤ Hn
)
P

(
Nn

tn > Hn + 4k
)
> ε2

for all large n, which completes the proof. ��
We now move on to the relation between the probability X is positive at

small times and the probability X leaves small intervals upwards. We use a
proof similar to that used by Kesten and Maller [11] to prove the analogous
result for RW.

Proposition 8 (i) lim supt↓0 P(Xt > 0) = 1 ⇔ lim supr↓0 P(XTr > 0) = 1.
(ii) limt↓0 P(Xt > 0) = 1 ⇔ limr↓0 P(XTr > 0) = 1.

(iii) For α > 0, Xt
tα

p−→ ∞ as t ↓ 0 ⇔ XTr
Tαr

p−→ ∞ as r ↓ 0.

Proof Recall that we have assumed that X is not a compound Poisson process
and so

P(Xt = 0) = 0 ∀t > 0; lim
r↓0

k(r) = ∞.

Choose large l > 0, and then for each r > 0 define

t(r) = l
k(r)

.

Note that t(r) → 0 (continuously) as r ↓ 0 and so

lim inf
s↓0

P(Xs > 0) = lim inf
r↓0

P(Xt(r) > 0).

By Theorem 6 we have C > 0 such that

P

(
t(r)
l2

≤ Tr ≤ t(r)
)

≥ 1 − P(M1/lk(r) ≥ r)− P(Ml/k(r) ≤ r)

≥ 1 − 2C/l. (50)



Limiting behaviour of Lévy processes at zero 123

For r > 0 we let

τ r
0 = 0; τ r

j = inf
{

s > τ r
j−1 :

∣∣∣Xs − Xτ r
j−1

∣∣∣ > r
}

for j ∈ N.

Proof of (i) and (ii) For ∀r > 0, applying the Markov property

P(Xt(r) ≤ 0) ≥ P

(
Xτ r

j+1
− Xτ r

j
≤ −r, ∀j ≤ l2 − 1, τ r

1 ≤ t(r) ≤ τ r
l2

)

≥
(

P

(
t(r)
l2

≤ τ r
1 ≤ t(r), Xτ r

1
≤ −r

))l2

≥ ([
P(XTr < 0)− 2C/l

] ∨ 0
)l2 by (50).

Hence

lim inf
r↓0

P(Xt(r) ≤ 0) = 0 ⇒ lim inf
r↓0

P(XTr < 0) ≤ 2C/l,

lim
r↓0

P(Xt(r) ≤ 0) = 0 ⇒ lim
r↓0

P(XTr < 0) ≤ 2C/l

and since l is arbitrary we have ‘(⇒)’ for (i) and (ii).
Similarly to above we have

P(Xt(r) ≥ 0) ≥ P

(
Xτj+1 − Xτj ≥ r for all j ≤ 2l2, τ r

1 ≤ t(r) ≤ τ r
2l2

)

≥ P(XTr > 0)2l2 − C
l

− P
(
τ2l2 < t(r)

)
.

Now, letting Z(n, p) be a random variable with binomial distribution B(n, p),

P
(
τ2l2 < t(r)

) ≤ P

⎛
⎝ 2l2∑

j=1

1
{
τj+1 − τj ≥ t(r)l−2

}
≤ l2

⎞
⎠

= P

(
Z(2l2, P(Tr < t(r)l−2)) ≥ l2

)

≤ P(Z(2l2, Cl−1) ≥ l2).

And thus by Chebyshev’s inequality

P
(
τ2l2 < t(r)

) ≤ 2C
l3

+ 4C2

l2
≤ C1

l
,

and ‘(⇐)’ follows trivially.
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Proof of (iii) Assume RHS (and hence by (ii) that lims↓0 P(Xs > 0) = 1). Thus
for given K > 0, we have by (50) and the strong Markov property

lim inf
s↓0

P(Xs > Ksα) ≥ lim inf
r↓0

P(Xt(r) > Kt(r)α)

≥ lim inf
r↓0

P(XTr > Kl2αTαr , t(r)l−2

≤ Tr ≤ t(r), Xt(r) − XTr > 0)

≥ lim inf
r↓0

P(XTr > Kl2αTαr )− 2C/l

≥ 1 − 2C/l,

and LHS follows as l is arbitrary.
Now assume LHS. For given K > 0, l ∈ N and any t > 0 we have

P(Xt(r) ≤ Kl2t(r)α) ≥ P({E1} ∩ {E2})

where

{E1} = {0 ≤ Xτj − Xτj−1 ≤ K(τj − τj−1)
αfor j = 1, 2, . . . , l2};

{E2} = {t(r)l−2 ≤ τj − τj−1 ≤ t(r) for j = 1, 2, . . . , l2}.

Thus

lim sup
r↓0

(
P(0 ≤ XTr ≤ KTαr )− 2C/l

)l2 ≤ 0,

and RHS follows easily. ��

Proof of Theorem 1 The equivalence of (4), (5), (6) and (7) is immediate from
Theorem 4 and Proposition 8. From Theorem 5 and (41) we have

(4) ⇔ lim inf
r↓0

A(r)
rk(r)

> 0, lim
r↓0

W(r)
k(r)

= 0.

It thus remains to show that

lim
r↓0

A(r)
rW(r)

= ∞ ⇔ lim
r↓0

W(r)
k(r)

= 0, lim inf
r↓0

A(r)
rk(r)

> 0. (51)

Assume RHS (of (51)). Then LHS follows easily as

lim
r↓0

A(r)
rW(r)

= lim
r↓0

k(r)
W(r)

A(r)
rk(r)

= ∞.
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Now assume LHS (of (51)). First note that k(r)
W(r) ≥ A(r)

rW(r) and hence

lim
r↓0

W(r)
k(r)

= 0.

Then since limr↓0
A(r)

rW(r) = ∞ implies A(r) > 0 for small r we have

lim inf
r↓0

A(r)
rk(r)

> 0 iff lim sup
r↓0

U(r)
rA(r)

< ∞. (52)

For any ε > 0 we have εA(x) > xW(x) for all small x. Thus, given ε, we have
(for small r)

r∫

0

xW(x)dx ≤ ε

r∫

0

A(x)dx

≤ ε

⎛
⎝rϕ + rD(1)−

r∫

0

1∫

x

D(y)dydx

⎞
⎠

≤ ε

⎛
⎝rϕ + rD(1)−

r∫

0

y∫

0

D(y)dxdy −
1∫

r

r∫

0

D(y)dxdy

⎞
⎠

≤ εrA(r)− ε

r∫

0

yV(y)dy + ε

r∫

0

yW(y)dy. (53)

Thus

r∫

0

xW(x)dx(1 − ε)ε−1 ≤ rA(r).

Furthermore, setting ε = 1 in (53), we see that

r∫

0

xV(x)dx ≤ rA(r).

Hence we must have c > 0 such that for small r

U(r)/2 =
r∫

0

x(W(x)+ V(x))dx ≤ crA(r).

��
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Before proving Theorem 2 we need the following Lemma.

Lemma 9 For α > 0 the following are equivalent as rn ↓ 0:

Mrαn

rn

p−→ ∞; (54)

rαnk(rn) → ∞; (55)
rαn
Trn

p−→ ∞. (56)

Proof ((54) ⇒ (55)) For any K ∈ N we have

P(Mrαn ≥ Krn) → 1,

which implies

P
(
Mrαn/K ≥ rn

) → 1,

and hence

lim inf
rn

CK−1rαnk(rn) ≥ 1

by Theorem 6.
((55) ⇒ (56)) Assume (56) fails. Then ∃ p, K > 0 and {rm} ∈ {rn} such that for
all rm

p ≤ P(rαm/Trm < K)

≤ P
(
Mrαm/K ≤ rm

)

≤ CK
rαmk(rm)

.

Thus

lim inf
rn

rαnk(rn) ≤ CK/p

and so (55) also fails.
((56) ⇒ (54)) Given K ∈ N we have P(Trn < rαn/K) → 1. Thus P(Mrαn/K >

rn) → 1 and hence P(Mrαn > rnK) → 1. ��
Proof of Theorem 2 We have ‘(14) ⇔ (15)’ from Proposition 8.

Assume that (16) holds. But then as A(r)rα−1 → ∞ implies rαk(r) → ∞ we

have rT−1/α
r

p−→ ∞ from Lemma 9. Thus since P(XTr > 0) → 1 by Theorem 1,
(14) holds.
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Now assume that (15) holds. We have from Lemma 9 that rαk(r) → ∞ while
from (51) lim infr↓0

A(r)
rk(r) > 0. Hence as r ↓ 0

A(r)rα−1 = A(r)
rk(r)

rαk(r) → ∞.

��
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