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Abstract Peanut, found to be relatively drought tolerant
crop, has been the choice of study to characterize the genes
expressed under gradual water deWcit stress. Nearly 700
genes were identiWed to be enriched in subtractive cDNA
library from gradual process of drought stress adaptation.
Further, expression of the drought inducible genes related
to various signaling components and gene sets involved in
protecting cellular function has been described based on dot
blot experiments. Fifty genes (25 regulators and 25 func-
tional related genes) selected based on dot blot experiments
were tested for their stress responsiveness using northern

blot analysis and conWrmed their nature of diVerential regu-
lation under diVerent Weld capacity of drought stress treat-
ments. ESTs generated from this subtracted cDNA library
oVered a rich source of stress-related genes including sig-
naling components. Additional 50% uncharacterized
sequences are noteworthy. Insights gained from this study
would provide the foundation for further studies to under-
stand the question of how peanut plants are able to adapt to
naturally occurring harsh drought conditions. At present
functional validation cannot be deemed in peanut, hence as
a proof of concept seven orthologues of drought induced
genes of peanut have been silenced in heterologous N.
benthamiana system, using virus induced gene silencing
method. These results point out the functional importance
for HSP70 gene and key regulators such as Jumonji in
drought stress response.
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Abbreviations
AhWSI Arachis hypogaea water stress induced library
ARP Auxin repressed protein
bHLH Basic helix loop helix protein
BRH1 Brassinosteroid-responsive
EST Expressed sequence tag
FC Field capacity
HSP Heat shock protein
JMJC Jumonji class
Lea Late embryogenesis abundant protein
FC Field capacity
PDS Phytoene desaturase
RWC Relative water content
TRV Tobacco rattle virus
VIGS Virus-induced gene silencing
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Introduction

Peanut or groundnut (Arachis hypogaea L.) is the fourth
most important oil seed in the world, cultivated mainly in
tropical, subtropical and warm temperate climates (FAO
2004). It adapts to wide range of environments. It is culti-
vated in about 8 million hectares in India. Once estab-
lished, rainfall of 500 to 1,000 mm will allow commercial
production of peanut, although crop can be produced on as
little as 300–400 mm of rainfall. Recent physiological
studies provide hints that peanut is a relatively drought tol-
erant crop having improved water use eYciency mecha-
nisms (Nautiyal et al. 2002). Drought is one of the most
important abiotic stresses that cause adverse eVects on the
productivity of crops (Boyer 1982). Its multigenic, incom-
pletely penetrant, quantitative nature makes it diYcult to
breed for drought tolerance. In response to environmental
extremes plants have developed several adaptive mecha-
nisms, which allow them to survive adverse conditions.
The evolved adaptive mechanisms are displayed by diVer-
ent degrees of tolerance, largely determined by their
genetic plasticity.

One of the major molecular responses that plants exhibit
to drought stress is altered expression of genes, related to
diVerent pathways associated with stress perception, signal
transduction, regulators and synthesis of a number of com-
pounds (Ramanjulu and Bartels 2002; Sreenivasulu et al.
2007). Several hundred genes that respond to drought stress
at the transcriptional level have been identiWed in model
crop Arabidopsis by microarray technology and other
means (Seki et al. 2002; Shinozaki and Yamaguchi-
Shinozaki 2007). The adaptive mechanisms under stress are
a net eVect of altered cell metabolism resulting from regulated
expression of stress responsive genes. The resurrection
plants have better capabilities to cope with severe drought
conditions; hence, several studies have been conducted to
discover what key genes are involved in enabling these
plants to survive desiccation. The molecular aspects of des-
iccation tolerance in resurrection plants such as Cratero-
stigma plantagineum (Bartels et al. 1990; Bartels and
Salamini 2001; Phillips et al. 2002; Bartels 2005), Xero-
phyta viscosa (Mundree et al. 2000; Mowla et al. 2002;
Dahlia et al. 2003), Xerophyta humilis (Collett et al. 2003),
Sporobolus stapWanus (Neale et al. 2000) and Selaginella
lepidophylla (Iturriaga et al. 2000) reveal complex mecha-
nisms of desiccation tolerance (Bernacchia and Furini
2004).

Although some mechanisms of stress response are
common to all cells, there exist major diVerences in strate-
gies adopted by plants to cope with desiccation stress
(Ramanjulu and Bartels 2002; Smith-Espinoza et al. 2003).
Realizing this, it would be more rewarding to explore crop
species with higher levels of stress tolerance at molecular

level. Evidences support the fact that stress responsive
genes from tolerant species provide better protection to cel-
lular structures due to existence of genes that code for
structurally and/or functionally eYcient stress proteins
associated with stress adaptation (Waditee et al. 2002;
Majee et al. 2004; Dastidar et al. 2006). There is tremen-
dous amount of biological diversity among diVerent plant
species that necessitates sampling of other plant genome
sequences, to understand the diversity of gene content and
basic functional resolution of the plant genomes in general.
To identify stress speciWc genes, it would be more reward-
ing to isolate the diVerentially expressed genes providing a
clear picture of the transcriptome under stress from
relatively drought tolerant crop. There are a number of
approaches to identify the diVerentially expressed genes
and to enrich stress-responsive genes from model crop spe-
cies whose genome size is relative large. These include
diVerential display (Liang and Pardee 1992; Cho et al.
2001), subtractive hybridization, suppressive subtractive
hybridization (Diatchenko et al. 1996), cDNA-AFLP
(Kivioja et al. 2005) etc.

The main objective of this study was to identify, isolate
and characterize the genes expressed during gradual
drought stress acclimation in peanut. At present it is diY-
cult to Wnd answers for important questions like how
plants such as peanut are able to cope with drought stress.
The Wrst step in this quest, as well as in many other biolog-
ical investigations, is to construct a cDNA library enriched
for diVerentially expressed transcripts, and eventually to
annotate them to gain preliminary insights of drought tol-
erance. In this direction, a cDNA library enriched for pea-
nut genes expressed speciWcally in response to gradual
drought stress was constructed and determined for their
DNA sequences to functionally annotate these drought
stress induced expressed sequence tags (ESTs). Character-
ization of their stress responsive nature indicated that
many of the genes isolated are involved in drought stress
response. For subset of drought induced peanut genes, its
orthologues were identiWed in N. benthamiana and func-
tionally validated them by VIGS approach. These results
further conWrm their potential involvement in water deWcit
stress tolerance.

Materials and methods

Plant growth conditions and drought stress imposition

The seeds of all crop species was procured form the Uni-
versity of Agricultural Science (UAS) farm, Bangalore.
The plants were grown, with recommended dose of fertil-
izer and appropriate prophylactic measures. Plants were
cultivated at 12 h light/12 h dark cycles with maximum
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temperature of 28°C by mid day and minimum temperature
of 18°C during night with light intensity reaching maxi-
mum of 1,000–1,200 �mol m¡2 s¡1. The amount of water
the soil can hold is expressed as mass percentage, and it is
considered as 100% Weld capacity (FC) of soil. Twenty-Wve
days old peanut plants, maintained at 100% FC were
stressed by decreasing the soil water status gradually
(decreasing water status by approximately 10% FC/day).
Plants were maintained at speciWc FC (100, 80, 70, 60, 50,
40, 30 and 20% FC) for 5 days, and stress was monitored
by gravimetrically weighing the pots twice a day. Fully
expanded leaves were collected, at the end of stress period,
from both stressed and non-stressed plants (100% FC) for
RNA isolation and leaf water relation studies. At the time
of collecting leaf samples, the exact soil water potential
was calculated using a WP4 dewpoint potentiometer (Deca-
gon Devices Inc., Washington, DC, USA). At 40% FC, the
soil water potential was ¡0.73 MPa and at 20% FC it was
¡1.22 MPa, conWrming that the plants were stressed. Rela-
tive water content (RWC), leaf solute potential, osmotic
adjustment and electrolyte leakage were analysed as a mea-
sure of leaf water relation.

Leaf water relations

The RWC was calculated as percentage, as described by
Barrs and Weatherly (1986); leaf solute potential of leaf
sap was estimated as described by Govind (2006) using
vapour pressure osmometer (VAPRO) (Wescor Inc.,
Logan, UT, USA). The values obtained in mmols Kg¡1

was converted to MPa and calculated �S = ¡mols Kg¡1

(RK), where R = 0.008314 and K = 2950.
�S100 = (�s £ RWC)/100. Using RWC and solute poten-
tial, extent of osmotic adjustment in leaves was derived
(Flower and Ludlow 1986; Subbarao et al. 2000) which
were in osmotic adjustment (OA) = drought leaf
�S100 ¡ irrigated leaf �S100. Electrolyte leakage was esti-
mated following protocol modiWed from Tripathy et al.
(2000), using conductivity meter (Elico-India, CM183,
EC-TDS analyser). The loss of membrane integrity was
determined as percentage leakage.

Assessing stress damage using seedling survival test, leaf 
area retention, chlorophyll damage in leaf disc assay

For seedling survival test, 1-week-old seedlings were
stressed by withholding water for 3 days and allowed to
alleviate at the end of stress for 48 h. The percentage of
seedlings surviving was recorded. Leaf area retention test
was carried out for 20-day-old plants. Stress was imposed
by withholding irrigation for 1 week and alleviated at the
end of stress for 48 h. Leaf area was measured using leaf
area meter (Delta-T, Delta T Devices Ltd, England) and

expressed as percent leaf area retention compared to the
control plants (Fig. 1a). Ten leaf discs from fully expanded
leaves of 25-day-old plants were soaked in either water or
PEG (¡1.8 MPa) or NaCl (400 mM) for 48 h under contin-
uous light of 350 �Em-2s-1 for leaf disc assay. Pigments
were isolated using acetone:DMSO (1:1) mix and absor-
bance recorded at 553 nm to estimate pheophytin (Govind
2006). For all the experiments, Wve replications were main-
tained, and the data was subjected to two-tailed t test at 5%
level of signiWcance.

Peanut subtracted drought stress cDNA library 
construction—ModiWed SMART kit protocol

RNA isolated from freshly collected leaves maintained at
100% FC was used as driver and 40–20% FC (¡0.73 to
¡1.22 MPa) pooled sample as tester in subtraction. Total
RNA was isolated from plant materials using Trizol reagent
(Invitrogen, Carlsbad, CA, USA), according to the manu-
facture’s instructions. The quantity and quality of total
RNA was evaluated by spectrophotometry (OD260/280)
and formaldehyde–1% agarose gel electrophoresis. cDNA
library was constructed using the SMART cDNA synthesis
kit in pTriplEx2 (Clontech, Palo Alto, CA, USA). To per-
form subtraction using this kit, primers for driver were syn-
thesized in such a way that the sequence of the primers was
randomized without altering the GC content and the for-
ward primer was biotinylated, and for tester the primers
provided in the kit was used. First strand of driver and
tester was carried out using kit protocol. The driver cDNA
pool was ampliWed using oligo dT and biotinylated Gcap
ampliWcation primers. The biotinylated strand was captured
using streptavidin coated magnetic beads after denaturing
double stranded DNA at 95°C for 5 min and by immedi-
ately cooling on ice. Single stranded tester cDNA was
allowed to hybridize with biotinylated driver cDNA pool at
65°C for 3 h. Two rounds of hybridizations were carried
out to normalize and subtract driver transcripts. After plac-
ing the tubes in a magnetic separator, the stress speciWc
pool was isolated. The resulting cDNA was packed into �
phages using the Gigapack III Gold packaging kit (Strata-
gene, La Jolla, CA, USA). The pTriplEx2 phagemid clones
in Escherichia coli were obtained using the mass in vivo
excision protocol according to the manufacture’s instruc-
tions (Clontech, USA). The white clones grown on screen-
ing LB medium (Carbencillin/IPTG/X-Gal) were recovered
by random colony selection.

Primers used:
Driver: Reverse primer: 5�agatgctgacgagtcgagtagcg
ccgc(t)303�

Forward primer: 5�gaacgatgctagcgtaagtccagtcagtgaa
cggccggg3� biotnylated at 5�
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Tester: Reverse primer: 5�aagcagtggtctagaaccaagtg
gccattacggccggg3�

Forward primer: 5�attcgagctctagaggccgaggcggccgac
atg(t)303�

Dot blot/reverse northern analysis

Only clones with insert size of 400 bp or higher were used for
expression study. PCR product (2 ng) of recombinant clones
and vector control (negative control) was blotted onto nylon
membrane and cross-linked using UV. Two such membranes
were probed with labelled control and stress cDNA, respec-
tively. Labelling was carried out during Wrst strand cDNA
synthesis, primed by oligo dT, using MMLV reverse trans-
criptase. Hybridization was carried out at 60°C, and signals
captured on a phosphoimager. RNA isolated from plants
maintained at 100% FC and 40–20% FC (pooled sample)
were used to prepare control and stress probes, respectively.
The blots were quantitatively scored using phosphoimager.
The resulted expression values were normalized using median
centring normalization method according to Sreenivasulu
et al. (2006) and heat maps were developed for the same.

Sequencing and annotation

Only clones found to be stress responsive by dot blot analy-
sis were sequenced. Approximately 200 ng/�l of the col-
umn puriWed plasmid was used for sequencing using ABI
prism. The vector sequences were trimmed and the resulted
clean EST sequences were subjected to annotation using
NCBI database—BlastX (translated query vs. protein data-
base) against non-redundant SWISS PROT database.

Northern/RNA blot analysis

Northern blot hybridizations were carried out according to
Sambrook and Russell (2001). RNA (15 �g) from each
sample was separated in formaldehyde denaturing gel and
transferred to Hybond nylon membrane and Wxed by UV
(1,200 �J for 60 s) in a UV cross-linker. The blots were
probed with respective inserts, prepared by labelling with
[32P] dCTP (3,000 Ci mmol¡1) during PCR. Pre-hybridiza-
tion was carried out at 42°C for 2 h and hybridization at
60°C overnight with blocking solution (0.5 M sodium–
phosphate buVer, pH 7.2, 1 mM EDTA and 7% SDS). High

Fig. 1 Screening diVerent crop 
species for a seedling survival 
and leaf area retention after 
drought stress; b chlorophyll 
damage in leaf discs exposed to 
drought and salinity. Mean val-
ues and standard error was cal-
culated from Wve independent 
experiments. Within each set of 
experiment, bars with diVerent 
letters were signiWcantly diVer-
ent at 0.05% level
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stringent washes were carried out according to Sambrook
and Russell (2001). Ouvrard group kindly provided the
known stress responsive genes, which were shown in their
study to be stress responsive (Ouvrard et al. 1996). The
blots were exposed to phosphoimager plate for 2 days; the
intensity of band was quantiWed and normalized for varia-
tion in RNA loaded. The extent of expression under stress
was presented as percent increase over control, considering
expression under control as 100%. The expression was cal-
culated using formula: (absolute value under stress £ 100/
absolute value under control) ¡ 100.

Characterization of N. benthamiana VIGS plants

A few selected peanut water deWcit induced genes were
selected and identiWed their orthologous sequences from N.
benthamiana and silenced them using VIGS approach
(refer Senthil-Kumar et al. 2007). The control plants were
maintained at 100% FC. Two sets of plants were main-
tained as controls, while one set of plants were mock
treated [wild type, TRV2 alone (mock), the other set of
plants with TRV2-gene was maintained under non-stress
condition. For water deWcit stress, three replications were
maintained. Gradual stress was imposed by decreasing the
soil water status over a period of 1 week to speciWc FC of
50% and maintained for 2 days at 50% FC. Water status
was monitored gravimetrically by weighing the pots at reg-
ular intervals. At the end of stress, leaf samples were col-
lected from both stressed and non-stressed plants. The
extent of pheophytin accumulation under stress, as a mea-
sure of chlorophyll damage, was recorded by measuring
absorbance of the pigments isolated using acetone: DMSO
mix at 553 nm. Total chlorophyll was estimated, by record-
ing absorbance at 663, 652 and 645 nm. Pheophytin to
chlorophyll ratio was calculated as a measure of stress
index. The results presented are from three independent
experiments.

Results

Identifying peanut as relatively drought tolerant crop based 
on screening of several crop species

A number of crop species such as peanut, sunXower, cow-
pea, beans, horse gram, tomato, Wnger millet and maize
were screened, for their extent of stress tolerance, at seed-
ling and later stages of growth. Among the crop species
tested for seedling survival, under drought stress imposition
for 3 days, peanut, horse gram and Wnger millet were found
to be most tolerant with nearly 90% survivability. On the
contrary sunXower, beans and tomato were found to be
highly susceptible to drought with only 20% survival rate

(Fig. 1a). Similar trend was found among the crops species
with respect to leaf area retention under stress. Further, we
measured pheophytin content to estimate the chlorophyll
degradation in leaf discs of 20-day-old plants from control
and drought stress treatments (¡1.8 MPa). While the pheo-
phytin content has slightly increased in peanut, horse gram
and Wngermillet from 0.5 to 1.0 mg/g between control and
drought stress conditions, we noticed a substantial increase
of pheophytin content (up to 2.0 mg/g) in drought suscepti-
ble varieties such as sunXower, beans and tomato under
drought stress (Fig. 1b). Based on these parameters, we
designated peanut as relatively drought tolerant crop and
considered for further molecular studies of drought toler-
ance.

Optimization of gradual water deWcit stress induction 
protocol

Twenty days old peanut plants were subjected to water deW-
cit stress. Stress maintained by gravimetric approach was
conWrmed by measuring soil water potential, where in soil
� reached ¡1.22 MPa in soil maintained at 20% FC. Mea-
surement of leaf osmotic potential and RWC, of plants sub-
jected to diVerent levels of soil FC, indicated that peanut
plants reached critical RWC of 50% only at 20% FC. Leaf
osmotic potential increased from 358 to 935 mmol/kg
under 20% FC. Such an increase in osmotic potential may
be explained to some extent by osmotic adjustment,
increasing from 0.1007 at 60% FC to 0.377 at 20% FC. No
drastic loss in membrane integrity was observed in plants
exposed to severe stress, probably because of an alteration
in cell metabolism under stress leading to maintenance of
membrane integrity (Table 1). A few known stress respon-
sive genes coding for ELIP, LEA2 and nsLTP known to be
highly expressed under stress were used as probes, to iden-
tify the water deWcit stress level required for maximum
expression of stress genes in peanut. Northern analysis indi-
cated that during the process of gradual water stress in pea-
nut, maximum expression of stress genes occurs across a
wide range of stress level between 40 and 20% FC (Fig. 2).
Hence, genes diVerentially expressed under stress (40–20%
FC) were isolated based on subtractive cDNA library and
identiWed the genes induced by gradual water deWcit stress,
which probably play role in imparting tolerance under
water deWcit.

Isolation and characterization of gradual water deWcit stress 
induced genes in peanut

During library construction the cDNA subtraction hybrid-
ization procedure was employed between mRNA popula-
tions of drought treated (pooled 40–20% FC) and control
(100% FC) samples (see “Materials and methods” for
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further details) to normalize and subtract control tran-
scripts. As a result the mRNA pool enriched for water deW-
cit treatments from peanut plants were isolated and the
resulted cDNA library (in house naming: AhWSI—Arachis
hypogaea water stress induced library) not only represent
drought induced gene set but also ensured elimination of
constitutively expressed abundant transcripts. By doing so,
we have successfully eliminated housekeeping and non-tar-
get genes. The clones were further screened by dot blot to
conWrm stress responsive nature of these clones. More than
700 clones are found to be drought-responsive in peanut.
Normalization of expression data obtained from two repli-
cated experiments was used to verify reproducibility. Aver-
age expression ratio was calculated between control and
drought stress treatments, and subjected the log trans-
formed expression values for producing heat maps as
described earlier according to Sreenivasulu et al. (2006).

All the stress responsive clones validated from dot blot
experiments were sequenced to generate peanut water
stress induced ESTs. Upon sequencing and quality check
performance, nearly 500 sequences have been deposited in
NCBI gene bank (Acc. No. EC268400–EC268685;
EC365167–EC365455). The library comprises many diVer-
ent categories of genes, encompassing many classes of gene
products that are induced by water deWcit. These genes can

be classiWed into diVerent classes based on their predicted
protein function (Supplemental Table 1). Of the total 693
clones, functional categorization was carried out for 350
clones based on BLAST output with cut oV score value of
50 (Supplemental Table 1, Fig. 3). The remaining clones
were considered as unassigned or unknown with no similar-
ity or with no BLAST hit result.

The overrepresented stress induced clones were broadly
classiWed into several functional categories involved in (a)
Metabolism: photosynthesis (4.3%), amino acid metabo-
lism (2.3%), carbohydrate metabolism (3.4%), nucleic acid
metabolism (1.4%), fatty acid metabolism (1.4%), metal
handling related (2.9%), energy related (1.4%) and second-
ary metabolism (1.4%), (b) cellular processes: cell cycle
(1.7%), protein synthesis (4.9%), post translational process
related (4.9%), protein degradation (6.9%), (c) protecting
cellular structures: biotic stress (3.1%), abiotic stress
(11.7%), oxidative stress (2.0%) and (d) regulators: regula-
tion of transcription (8.3%), hormone regulated (3.4%)
(Supplemental Table 1, Fig. 3).

Among the genes isolated, major share was occupied by
genes related to protecting cellular structures under abiotic
stress (11.7%) followed by genes regulating transcription
contributing nearly 8.3% and hormone/signaling related
6.8%. The gene sets mentioned in afore mentioned catego-
ries are discussed in detail. Heat maps were developed after

Fig. 2 a Phenotype of plants exposed to diVerent levels of water deW-
cit and b northern analysis of known stress responsive genes under
diVerent levels of water deWcit stress
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Table 1 Extent of osmotic adjustment and membrane damage in
leaves of peanut plants exposed to diVerent levels of water deWcit
conditions

Parameters Soil water status

100% FC 60% FC 40% FC 30% FC 20% FC

OA – 0.1007 0.151 0.305 0.377

EC (�s) 12.89 14.99 15.25 17.96 18.61

Fig. 3 Functional classiWcation of peanut clones identiWed from sub-
tractive cDNA library enriched for drought response. ClassiWcations
of 693 clones into diVerent functional categories as per the MapMan
vocabulary were performed based on their putative function predicted
from BLAST output
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quantifying and normalizing the intensities of expression
from dot blot experiment for regulators as well for abiotic
stress related transcripts depicted in Figs. 4 and 5. To fur-
ther validate and study their regulation under diVerent
water stress, expression pattern of selected transcripts were
studied in peanut plants maintained at diVerent levels of
soil water status by northern analysis. Obtained data also
shed light into further details of how these categories of
genes are regulated at diVerent levels of drought stress
(Figs. 6, 7).

Drought induced regulatory genes

One of the main objective of the present study is identifying
regulatory genes (includes transcription factors, kinases,
phosphatases, hormone inXuenced and secondary messen-
gers all contributing in signal perception and signal trans-
duction) which are induced under water deWcit treatments
from drought tolerant legume plant, peanut. Many families
of transcription factors including AP2/EREBP (AhWSI
279), bHLH (AhWSI 111, AhWSI 40), bZIP (AhWSI 20),
CCAAT box (AhWSI 117), Homeobox (AhWSI6 11),
Jumonji (AhWSI 72, AhWSI 116), NAC (AhWSI 153,

AhWSI 308) and several zinc Wnger protein transcripts are
preferentially induced under drought treatments in peanut
plants (Fig. 4; Supplemental Table 2). Also among the
upstream signaling components we observed induction of
transcripts of calmodulins (AhWSI 227, AhWSI 228), G
protein (AhWSI 551), MAPKK (AhWSI 28) and several
receptor kinases during drought treatments. In addition, we
also noticed speciWc upregulation of hormone responsive
genes such as auxin-repressed proteins (AhWSI 306,
AhWSI 468, AhWSI 467), brassinosteroid responsive
BRH1 (AhWSI 36), cytokinin-repressed protein CR9
(AhWSI 465), GA like proteins (AhWSI 291, AhWSI 464)
during drought treatments (Fig. 4; Supplemental Table 2).

Twenty-Wve clones coding for putative regulatory genes
involved in signal perception, signal transduction and regu-
lation of gene expression by transcription factors were con-
sidered to test their stress responsiveness under diVerent FC
of drought stress treatments. Of the 25 clones studied, 21
clones accumulated maximum transcripts under severe
stress, and the remaining 5 clones (AhWSI 153, AhWSI 63,
AhWSI 115, AhWSI 147, AhWSI 58) were highly
expressed under moderate stress (60–40% FC) (Fig. 6).
These include NAC transcription factor, enhancer protein,

Fig. 4 Expression proWles of 
selected regulatory genes in-
duced under drought stress from 
dot blot experiments were 
shown as heat maps. Expression 
values are given in logarithmi-
cally scaled (base 2) signal 
intensities: red high expression, 
yellow moderate expression, 
blue low expression. Clone iden-
tity, putative BLAST description 
and deWned functional classes 
are provided on the right side 
of Wgure
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probable helicase, 5-hydroxy tryptamine receptor and CBS
domain containing proteins which show high expression
under moderate stress, but decline with increase in severity
of stress. Transcription factors like DNA binding enhancer
protein, SNF family protein and HTH transcription factor
had maximum transcripts at severe stress of 20% FC. Most
of the signaling associated genes showed an increase in
expression with increase in severity of drought stress,
except for hydroxyl tryptamine receptor. Though many reg-
ulatory genes are induced under stress to moderate level,
here, we found some exceptional cases. SpeciWcally among
them, four genes Calcineurin like phosphoesterase family
protein (AhWSI 17), TRF1 interacting kinase (AhWSI 60),
DNA binding enhancer protein (AhWSI 63) and Zn Wnger
protein (AhWSI 285), were found to be highly induced by
stress, with transcripts level increasing more than 100–200%
in comparison to their respective controls (Fig. 6).

Drought induced genes involved in protecting cellular 
function

The proteins encoded by this category of genes are basi-
cally involved in protecting cellular macromolecules and

structures under stress. The most abundant in our library
were those belonging to late embryogenesis abundant pro-
teins, heat shock proteins, DnaJ like proteins, aldehyde
reductase, proline rich protein and defensins, which are
known for their stress responsive nature (Fig. 5; Supple-
mental Table 2). LEA proteins have considerable hydro-
phylicity and are known to have important function in
protecting cells from damage under desiccation. Heat shock
proteins and DnaJ like proteins function mainly as chaper-
ones. Very little is known regarding the role of proline rich
proteins under stress. Though defensins are majorly known
to be upregulated in response to biotic stress, here, we
noticed their induction under abiotic stress such as drought.
Its functional relevance under drought is yet to be deter-
mined.

Additional twenty-Wve clones belongs to selected
groups like abiotic stress related, metabolism associated,
transporters and protein modiWcation/chaperonins have
been tested for their temporal regulation under gradual
water deWcit ranging from 60 to 20% FC. All the clones
tested are induced under mild stress, and their expressions
are either maintained under moderate or severe stress
(Fig. 7). Among the broad category of abiotic stress

Fig. 5 Expression proWles of 
selected abiotic and biotic stress 
responsive genes induced under 
drought stress from dot blot 
experiments were shown as heat 
maps. Expression values are giv-
en in logarithmically scaled 
(base 2) signal intensities: red 
high expression, yellow moder-
ate expression, blue low expres-
sion. Clone identity, putative 
BLAST description and deWned 
functional classes are provided 
on the right side of Wgure

Abiotic and Biotic stress responsive genes

ABIOTIC HEAT & DESICCATION

ABIOTIC
METALLOTHIONEIN

BIOTIC
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regulated proteins, HSPs, Drought induced protein and
LEAs were highly expressed when plants were subjected
to moderate levels of stress (60% FC). Among the metabo-
lism related ones, those associated with amino acid and
lipid metabolism were highly upregulated under moderate
stress. On the other hand carbon metabolism and second-
ary metabolism related genes were maintained high even
under severe drought stress. Notably, genes coding for
aldehyde reductase, salt induced protein and ferritin were
upregulated under severe drought stress of 40–20% FC.
Interestingly, the two transporters selected for the study
displayed high levels of expression only under sever stress
of 20% FC.

Characterization of selected N. benthamiana virus induced 
gene silencing (VIGS) plants

We have considered seven VIGS plants out of previously
characterized 25 VIGS plants from N. benthamiana (Sen-
thil-Kumar et al. 2007) based on the criteria that water deW-
cit induced genes identiWed in the present study from
peanut should have more than 80% nucleotide similarity
with N. benthamiana. Functional relevance of these seven
orthologous genes has been tested in N. benthamiana by
measuring pheophytin content from control and drought
stress treatments (Fig. 8) and discussed their relevance in
the context of drought tolerance. This biochemical trait

Fig. 6 Levels of transcripts of AhWSI clones coding for putative reg-
ulatory sequences diVerentially accumulated under diVerent levels of
water deWcit stress measured using Northern blot analysis method.
The values obtained from control samples considered as 100% and

respective induction or repression of expression under diVerent levels
of water deWcit stress is calculated (see “Materials and methods” for
further details) and indexed above northern blots

AhWSI 285-(Zn finger
protein)

0     189    211    207

AhWSI 63-(DNA binding
enhancer protein)

0       9    130    37

AhWSI 40-(bHLH)

0     62     69    62

AhWSI 153-(NAC domain
containing protein)

0     98     75    53

AhWSI 20-(Far upstream
binding protein)

0      25      35     36

AhWSI 72-(JMJC 
transcription factor)

0      11      27     -8

AhWSI 170-(SNF7 family
protein)

0      19     35     39

AhWSI 14-(5 hydroxy
tryptamine receptor)

AhWSI 17-
(calcineurin-like)

0     91      0      0

0     97     90    109

AhWSI 28-(MAPKK 
Kinase)

0      15     38    80

AhWSI 125-
(Phospholipase)

0      50     49    42

AhWSI 88-(CDC42 kinase 1)

0       24     57    73

AhWSI 115-(Tyrosine 
protein kinase PR2)

0      37     35     39

AhWSI 147-(Probable 
helicase)

0     82     64     59

AhWSI 36-(BRI 1)

0     65     66    71

AhWSI 76-(EREBP 6)

0      28      35    41

AhWSI 18-(WRKY 16)

0     29     51     47

AhWSI 69-(HTH TF )

0      38     35     72

AhWSI 130-(brachyury
transcription factor )

0     75     76    69

AhWSI 105-(protein
kinase)

0    -10     -8      30

AhWSI 58-(CBS domain-
containing protein)

0     93     41      45

AhWSI 60-(TRF1 
interacting kinase)

0     42    107    225

AhWSI 82-(GKAP 
interacting protein)

0     27      66    61

AhWSI 48-(Rhodopsin)

0     18     23     15

100     60     40    20% FC

100     60      40     20% FC 

Transcription
related  

Chromatin 
structure

Hormone 
regulated

Signaling
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AhWSI 174-(Histidine 
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turned out to be useful in assessing stress tolerance index
where we compared several species in our studies and pro-
vided evidence that peanut is a relatively drought tolerant
crop (Fig. 1). Hence, we used this biochemical trait to char-
acterize seven VIGS plants. These include silencing of
drought induced Lea5, HSP20 and HSP70, which belongs
to broad group of chaperone proteins, having protective
function under stress. However, only HSP70 showed higher
pheophytin levels under drought stress in comparison to
mock treated plants (Fig. 8). Our results conWrmed that
HSP70 seems to play an important role in conferring
drought tolerance. Besides, another most interesting aspect
noticed is down-regulation of Jumonji (JMJC), bHLH, and
Zinc Wnger regulatory genes which made the transgenic
tobacco plants more tolerant to drought, and these silenced

plants showed lower chlorophyll degradation under severe
water deWcit conditions. These results suggest that these are
negative regulators, in particular JMJC having positive
eVect in conferring drought tolerance.

Discussion

Until the genome sequence information is available for all
the crops, researchers have to rely on information generated
by studying model crops and explore EST sequences from
crop species (Ewing et al. 1999). There is overwhelming
evidence that stress genes from adapted species are eVec-
tive in the perception of stress signal and eventually trigger
down stream structurally and functionally eYcient proteins,

Fig. 7 Levels of transcripts of AhWSI clones coding for putative
functional proteins diVerentially accumulated under diVerent levels of
water deWcit stress measured using northern blot analysis method. The
values obtained from control samples considered as 100% and the

respective induction or repression of expression under diVerent levels
of water deWcit stress is calculated (see “Materials and methods” for
further details) and indexed above northern blots

AhWSI 81-(HSP 20)
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shown to be involved in protecting cellular structures and
molecules under stress (Waditee et al. 2002; Majee et al.
2004; Dastidar et al. 2006). Our physiological studies
revealed that peanut is a relatively drought tolerant crop in
comparison to sunXower, beans and tomato. In spite of
drastic decrease in leaf water potential and RWC reaching
critical levels of 50% under severe drought stress, the
extent of chlorophyll degradation was less (Fig. 1). This
could be because peanut plants are able to maintain turgor
driven process as a result of osmotic adjustment, in turn
leading to maintenance of cellular metabolism. There are a
couple of drought stress cDNA library already generated in
A. hypogaea, but they correspond to genes expressed in
immature pods (Luo et al. 2005; Devaiah et al. 2007).
There is one library, which catalogues the genes expressed
in a wild Arachis species (A. stenosperma) under non-stress
condition (Proite et al. 2007). In our study, a peanut sub-
tracted drought stress cDNA library was constructed from
late stages of plant development, i.e. 25-day-old plants
exposed to gradual drought stress, mimicking stress occur-
ring under Weld condition. Expression analysis of known
stress responsive genes (ELIP, LEA2 and nsLTP) indicated
that optimum stress could be imposed by the above men-
tioned stress protocol (Fig. 2), and this leads to maximum
expression of stress genes during the process of gradual
imposition of severe drought stress.

Though from model species like Arabidopsis, several
regulatory genes have been found to be expressed within a

few hours of exposure to stress during early stages of plant
development (Abe et al. 2003; Kang et al. 2002), there is a
dearth in knowledge of regulatory cascades operating dur-
ing later stages of plant development exposed to abiotic
stresses. One of the important tasks we chose to investi-
gate in the present study is to gain preliminary insights
about up-stream signaling related genes preferentially
induced in drought tolerant peanut plant under water deW-
cit. Expression analysis of regulatory genes revealed that
most of these genes were stress responsive, showing
diverse expression between moderate to severe stress.
Among the drought induced gene set, we identiWed several
proteins involved in the synthesis or perception of diVerent
hormones. Among them several auxin-repressed proteins
(ARP) are preferentially induced under drought treatments
(Fig. 4), indicating that drought stress response trigger
ARP in peanut. Though many auxin-induced genes are
reported from plants, ARP gene function in stress adapta-
tion is less known. Interestingly, ARP genes are known to
be preferentially expressed during pollen maturation
(Steiner et al. 2003) and during strawberry fruit maturation
(Reddy and Poovaiah 1990). Afore mentioned develop-
mental processes are connected with natural desiccation
mechanism. In this context, we propose that ARP might
play an important role in desiccation tolerance in peanut.
Also cytokinin-repressed CR9 and counteracting brassi-
nosteroid-responsive BRH1 genes were induced under
drought treatments.

Fig. 8 Chlorophyll degradation levels from seven selected N. benthamiana VIGS palnts (its orthologues from peanut have been found to be sig-
niWcantly induced under water deWcit treatments in peanut from the present study)
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Genes encoding several proteins involved in signaling
cascades were also found to be induced under drought in
peanut. These include calcium binding proteins (calmodu-
lins), calcineurin and calcium dependent protein kinases
(CDPK) (Figs. 4, 6), which are potentially induced due to
altered free calcium levels in the cytosol as one of the earli-
est abiotic stress responses. Also serine/threonine protein
kinase (Seki et al. 2001; Zhu 2002), phospholipase D
(Maarouf et al. 1999; Wang and Wang 2001; Guo et al. 2006),
cAMP binding protein (Pascual-Ahuir et al. 2001) are
known to be induced under stress. In accordance, here, we
observed the upregulation of several down stream signaling
related MAPKK, receptor kinases as well as secondary
messengers such as phospholipase D and rhodopsins which
are preferentially induced under drought treatments
(Figs. 4, 6).

In the present study, we also identiWed key transcription
factor related genes diVerentially expressed under diVerent
water deWcit conditions from relatively drought tolerant
crop peanut (Figs. 4, 6; Supplemental Table 2). Among
them of special interest is induction of two Jumonji tran-
scription factors in drought treated plants. Recently, jum-
onji domain containing proteins have been shown to act as
demethylases, shown to involve in chromatin structure and
gene expression (Chen et al. 2006). The most highly repre-
sented TF families which are induced to drought in peanut
are the zinc Wngers, WRKY, AP2, Myb and NAC. Several
members of these families were previously identiWed as
being responsive to various stresses, which includes
EREBP, Helicase (Gong et al. 2002, 2005; Sanan-Mishra
et al. 2005; Owttrim 2006), bHLH (Abe et al. 2003; Wang
et al. 2003; Li et al. 2006) and Zn Wnger protein (Dhundy
et al. 1998; Cheong et al. 2002; Kreps et al. 2002;
Mukhopadhyay et al. 2004; Davletova et al. 2005) (Fig. 6).
In addition, many of the stress responsive genes identiWed
from our present study have previously not been reported
under stress, in plants. A few of them are reported to be
involved in pathways usually occurring under non-optimal
conditions of animal cells. For example, TRF2 (TTAGGG
repeat binding factor 2), a Myb related protein is involved
in protecting the telomere ends in humans (Broccoli et al.
1997; Agata et al. 2000). NCK2 interacting kinases are usu-
ally known for initiating downstream signaling pathways
regulating cytoskeleton assembly and remodeling (Cowan
and Henkemeyer 2002).

It is presumed that the genes expressed during the course
of gradual stress in tolerant species are responsible for
altering the cellular metabolism, leading to adaptation
under severe stress. Among the well known examples are
genes encoding proteins related to protection of cellular
structures and denaturation of proteins and enzymes. These
classes of proteins encode LEA/dehydrins; many of them
are known to accumulate during dehydration response and

also known to accumulate during embryo desiccation toler-
ance (Ingram and Bartels 1996; Sreenivasulu et al. 2006).
Genes encoding these proteins are over-represented in our
diVerential expressed gene set. Also in our drought-respon-
sive ESTs, collection of large number of putative HSP
encoding genes, which are known to act as molecular chap-
erones, proteins protecting against stress damage (Wang
et al. 2004) are represented. In addition, other functional
genes include ferritin (Lobréaux et al. 1993; Allen 1995;
Goto et al. 2001), extensin (Yoshiba et al. 2001), peroxi-
dase (Nakano and Asada 1981; Agnès et al. 2006), which
are also found to be stress-responsive (Fig. 5). Taken
together, peanut plants are able to regulate expression of
genes known to impart tolerance by protecting macromole-
cules like membranes, proteins etc. and thereby maintain-
ing optimal membrane integrity under drought. There are a
number of genes in our library which are also expressed in
wild relative of Arachis (A. stenosperma) for example PR
proteins, ADH, proline rich proteins, metallothionien etc.
Also among the overrepresented functional category of
enriched sequences we noticed the expression of proteases
and its inhibitors from drought treated peanut library (Sup-
plemental Table 2).

Besides these well known genes, we observed preferen-
tial expression of aquaporin related PIP genes (AhWSI 304,
AhWSI 305) under water deWcit conditions (Supplemental
Table 2), which play an important role in plant water rela-
tionship. Surprisingly, we also noticed induction of few
transcripts related to photosynthesis such as RuBisCO-
interacting proteins, chloroplast chaperones and compo-
nents related to photosystem I and II under drought in pea-
nut (Supplemental Table 2). Very few studies have
documented the modulation of PSI under stress conditions.
The PSI components are largely integrated and composed
of many subunits making it energetically expensive for the
cell to produce under stress. Hence, the over-expression of
genes related to PSI components under drought could be
part of integrated response of a tolerant plant to reduce pho-
toinhibition as well as to maintain energy balance. Similar
situation is reported with respect to enhanced expression of
photosynthesis related transcripts for another drought toler-
ant horsegram plant (Reddy et al. 2008).

Taken together the results of our Wndings, we conclude
that cDNA subtraction method applied here to enrich
drought-responsive genes from drought tolerant peanut
plant resulted in identifying several hundred genes coding
for stress adaptation and complex signaling components.
Notably, many of the drought-responsive genes (50%) cod-
ing for unknown genes identiWed from peanut plants did not
showed signiWcant similarity to Arabidopsis genome
sequences. Thereby provide further platform to characterize
functional relevance of these genes in the context of
drought stress adaptation in near future. As of now we
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cannot deem of implementing VIGS system in peanut for
functional validation due to the lack of eYcient transforma-
tion system. Hence in the present study, we have chosen
seven peanut drought induced genes, identiWed the corre-
sponding orthologues which have been silenced in N.
benthamiana using VIGS approach (see Senthil-Kumar
et al. 2007) and estimated pheophytin content to measure
tolerance index. Using this approach, we investigated the
role of N. benthaminana Lea5, HSP20 and HSP70 genes
involved in protecting cellular function and conWrmed that
only HSP70 seems to play potential role in drought toler-
ance. Although HSP20 and Lea5 have been shown to be
responsive in the present study as well in other species
(Galau et al. 1993), its suppression did not result in suscep-
tibility. Another most interesting aspect is down-regulation
of Jumonji (JMJC) made the transgenic tobacco plants
more tolerant to drought. These silenced plants showed
lower chlorophyll degradation under severe water deWcit
conditions suggesting that JMJC might act as negative
regulators in imparting drought tolerance. These data, lead
us to conclude that recruitment of HSP70 and JMJC in
tolerance against drought might be conserved between
dicotyledonous plant species such as peanut and tobacco
and further demonstrates that VIGS is a useful approach to
dissect tolerance for highly conserved genes in a geneti-
cally intractable plant species. In conclusion, our study sug-
gests that peanut can eVectively re-programme globally its
complex signalling networks to activate regulated expres-
sion of several genes to mitigate the stress induced cellular
damage. These results could also facilitate the understand-
ing of cellular mechanisms involving groups of gene prod-
ucts that act in coordination in response to stimuli of water
withhold.
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