Skip to main content

Advertisement

Log in

Pathogenic endoparasites of the spotted seatrout, Cynoscion nebulosus: patterns of infection in estuaries of South Carolina, USA

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Six types of pathogenic endoparasites in an economically important fish, spotted seatrout Cynoscion nebulosus, were studied in order to test whether prevalence of infection and assemblage richness varied with season, host sex, host size, or host age. Fish were collected from South Carolina estuaries, USA, over 12 months (n = 216; total lengths 15–663 mm). They were screened histologically for presence of Henneguya cynoscioni (Myxozoa) and Cardicola spp. (Digenea) in the heart, Kudoa inornata (Myxozoa) in the skeletal muscle, Sinuolinea dimorpha (Myxozoa) in the urinary system, Ichthyophonus sp. (Mesomycetozoea) in the kidney, and an unidentified microsporidian in the liver. Prevalence of infection was 29.8, 38.6, 47.2, 41.2, 13.6, and 2.8%, respectively. All factors had significant, but varying effects on the parasites. Parasite infections were more prevalent in winter than other seasons for Cardicola spp. and H. cynoscioni, more prevalent in winter and spring for Ichthyophonus sp., and more prevalent in male fish than female fish for K. inornata, S. dimorpha, and Ichthyophonus. Prevalence of infection by the three myxosporeans and Cardicola spp. increased with fish length, whereas prevalence of Ichthyophonus increased with length among young fish, but decreased with length among older fish. None of the factors affected the liver microsporidian, although statistical power was low due to its rareness. Assemblage richness varied between 0 and 5, was greater during winter and in male fish, and increased with fish length and fish age. Our results demonstrate that spotted seatrout are commonly co-infected by multiple pathogenic endoparasites, suggesting these parasites likely play an import role in controlling fish population numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Baki A-AS, Sakran T, Zayed E, Al-Quraishy S (2014) Seasonal fluctuation and histopathology of Henneguya ghaffari (Myxozoa: Myxosporea) infection in the gills of the Nile perch, Lates niloticus, in the River Nile: a new locality record. Parasitol Res 113:1459–1463. doi:10.1007/s00436-014-3786-z

  • Aiken HA, Hayward CJ, Nowak BF (2015) Factors affecting abundance and prevalence of blood fluke, Cardicola forsteri, infection in commercially ranched southern bluefin tuna, Thunnus maccoyii, in Australia. Vet Parasitol 210:106–113

    Article  PubMed  Google Scholar 

  • Alama-Bermejo G, Šima R, Raga JA, Holzer AS (2013) Understanding myxozoan infection dynamics in the sea: seasonality and transmission of Ceratomyxa puntazzi. Int J Parasitol 43:771–780

    Article  PubMed  Google Scholar 

  • Álvarez-Pellitero P, Sitjà-Bobadilla A (1993) Population dynamics of Ceratomyxa spp. (Protozoa: Myxosporea) infection in wild and cultured sea bass, Dicentrarchus labrax (L.) from the Spanish Mediterranean area. J Fish Biol 42:889–901

    Article  Google Scholar 

  • Anweiler KV, Arnott SA, Denson MR (2014) Low-temperature tolerance of juvenile spotted seatrout in South Carolina. Trans Am Fish Soc 143:999–1010

    Google Scholar 

  • Arnott SA, Roumillat WA, Archambault JA, Wenner CA, Gerhard JI, Darden TL, Denson MR (2010) Spatial synchrony and temporal dynamics of juvenile red drum (Sciaenops ocellatus) populations in South Carolina, USA. Mar Ecol Prog Ser 415:221–236

    Article  Google Scholar 

  • Barber I, Huntingford FA (1995) The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus. Behaviour 132:1223–1240

    Article  Google Scholar 

  • Barber I, Poulin R (2002) Interactions between fish, parasites and disease. In: Handbook of fish biology and fisheries; Volume 1: fish biology. Blackwell Science Ltd., Oxford

  • Barber I, Berkhout BW, Ismail Z (2016) Thermal change and the dynamics of multi-host parasite life cycles in aquatic ecosystems. Int Comp Biol 56:561–572. doi:10.1093/icb/icw025

    Article  Google Scholar 

  • Barber I, Hoare D, Krause J (2000) Effects of parasites on fish behaviour: a review and evolutionary perspective. Rev Fish Biol Fish 10:131–165

    Article  Google Scholar 

  • Bartholomew JL (1998) Host resistance to infection by the myxosporean parasite Ceratomyxa shasta: a review. J Aquat Anim Health 10:12–20

    Article  Google Scholar 

  • Belem AMG, Pote LM (2001) Portals of entry and systemic localization of proliferative gill disease organisms in channel catfish Ictalurus punctatus. Dis Aquat Org 48:37–42

    Article  CAS  PubMed  Google Scholar 

  • Benesh DP, Kalbe M (2016) Experimental parasite community ecology: intraspecific variation in a large tapeworm affects community assembly. J Anim Ecol 85:1004–1013

    Article  PubMed  Google Scholar 

  • Binuramesh C, Prabakaran M, Steinhagen D, Michael RD (2006) Effect of sex ratio on the immune system of Oreochromis mossambicus (Peters). Brain Behav Immun 20:300–308

    Article  CAS  PubMed  Google Scholar 

  • Bjork SJ, Bartholomew JL (2009) Effects of Ceratomyxa shasta dose on a susceptible strain of rainbow trout and comparatively resistant Chinook and coho salmon. Dis Aquat Org 86:29–37

    Article  PubMed  Google Scholar 

  • Bjork SJ, Bartholomew JL (2010) Invasion of Ceratomyxa shasta (Myxozoa) and comparison of migration to the intestine between susceptible and resistant fish hosts. Int J Parasitol 40:1087–1095

    Article  PubMed  Google Scholar 

  • Blaylock RG, Overstreet RM (2003) Parasites and diseases of spotted seatrout. In: Bortone SA, Boca Raton FL (eds) Biology of the spotted seatrout. CRC Press, New York U.S.A., pp 197–226

    Google Scholar 

  • Bortone SA (2003) In: Bortone SA, Boca Raton FL (eds) Biology of the spotted seatrout. CRC Press, New York U.S.A.

    Google Scholar 

  • Buchmann K, Lindenstrøm T (2002) Interactions between monogenean parasites and their fish hosts. Int J Parasitol 32:309–319

    Article  PubMed  Google Scholar 

  • Bullard SA, Overstreet RM (2002) Potential pathological effects of blood flukes (Digenea: Sanguinicolidae) on pen-reared marine fishes. Proc. 53rd Gulf and Carib. Fish. Inst., Fort Pierce, Florida: 10–25

  • Callihan JL, Cowan JH, Harbison MD (2013) Sex differences in residency of adult spotted seatrout in a Louisiana estuary. Mar Coast Fish 5:79–92

    Article  Google Scholar 

  • Cirtwill AR, Stouffer DB, Poulin R, Lagrue C (2016) Are parasite richness and abundance linked to prey species richness and individual feeding preferences in fish hosts? Parasitology 143:75–86

    Article  PubMed  Google Scholar 

  • Christe P, Arlettaz R, Vogel P (2000) Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett 3:207–212

    Article  Google Scholar 

  • Constenla M, Montero FE, Padrós F, Cartes JE, Papiol V, Carrassón M (2015) Annual variation of parasite communities of deep-sea macrourid fishes from the western Mediterranean Sea and their relationship with fish diet and histopathological alterations. Deep Sea Res Part I 104:106–121

    Article  CAS  Google Scholar 

  • Cox FEG (2001) Concomitant infections, parasites and immune responses. Parasitology 122:S23–S38

    Article  PubMed  Google Scholar 

  • Crespo S, Grau A, Padrós F (1992) Sanguinicoliasis in the cultured amberjack Seriola dumerili Risso, from the Spanish Mediterranean area. Bull Eur Assoc Fish Pathol 12:157–159

    Google Scholar 

  • Cribb TH, Adlard RD, Hayward CJ, Bott N, Ellis D, Evans D, Nowak B (2011) The life cycle of Cardicola forsteri (Trematoda: Aporocotylidae), a pathogen of ranched southern bluefin tuna, Thunnus maccoyi. Int J Parasitol 41:861–870

    Article  PubMed  Google Scholar 

  • Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21:153–160

    Article  CAS  PubMed  Google Scholar 

  • Dennis MM, Landos M, D’Antignana T (2011) Case–control study of epidemic mortality and Cardicola forsteri–associated disease in farmed southern bluefin tuna (Thunnus maccoyii) of south Australia. Vet Pathol 48:846–855

    Article  CAS  PubMed  Google Scholar 

  • Dittmar J, Janssen H, Kuske A, Kurtz J, Scharsack JP (2014) Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus). J Anim Ecol 83:744–757

    Article  PubMed  Google Scholar 

  • Diamant A (1997) Fish-to-fish transmission of a marine myxosporean. Dis Aquat Org 30:99–105

    Article  Google Scholar 

  • Diamant A, Ram S, Paperna I (2006) Experimental transmission of Enteromyxum leei to freshwater fish. Dis Aquat Org 72:171–178

    Article  CAS  PubMed  Google Scholar 

  • Dyková I, de Buron I, Fiala I, Roumillat WA (2009) Kudoa inornata sp. n. (Myxosporea: Multivalvulida) from the skeletal muscles of Cynoscion nebulosus (Teleostei: Sciaenidae). Folia Parasitol 56:91–98

    Article  PubMed  Google Scholar 

  • Dyková I, de Buron I, Roumillat WA, Fiala I (2011) Henneguya cynoscioni sp. n. (Myxosporea: Bivalvulida), an agent of severe cardiac lesions in the spotted seatrout, Cynoscion nebulosus (Teleostei: Sciaenidae). Folia Parasitol 58:169–177

    Article  PubMed  Google Scholar 

  • Dyková I, Kodádková A, de Buron I, Fiala I, Roumillat WA (2013) Sinuolinea infections in the urinary system of Cynoscion species (Sciaenidae) and phylogenetic position of the type species of Sinuolinea Davis, 1917 (Myxozoa: Myxosporea). Int J Parasitol Parasites Wildl 2:10–17. doi:10.1016/j.ijppaw.2012.11.004

    Article  PubMed  Google Scholar 

  • El-Matbouli M, Hoffmann RW (1991) Effects of freezing, aging, and passage through the alimentary canal of predatory animals on the viability of Myxobolus cerebralis spores. J Aquat Anim Health 3:260–262

    Article  Google Scholar 

  • Ezenwa VO, Jolles AE (2011) From host immunity to pathogen invasion: the effects of helminth coinfection on the dynamics of microparasites. Int Comp Biol 51:540–551. doi:10.1093/icb/icr058

    Article  Google Scholar 

  • Fenton A, Brockhurst MA (2008) The role of specialist parasites in structuring host communities. Ecol Res 23:795–804

    Article  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Foo YZ, Nakagawa S, Rhodes G, Simmons LW (2016) The effects of sex hormones on immune function: a meta-analysis. Biol Rev. doi:10.1111/brv.12243

    PubMed  Google Scholar 

  • Garner MM, Atkinson SD, Hallett SL, Bartholomew JL, Nordhausen RW, Reed H, Adams L, Whitaker B (2008) Renal myxozoanosis in weedy sea dragons, Phyllopteryx taeniolatus (Lacepede), caused by Sinuolinea phyllopteryxa n. sp. J Fish Dis 31:27–35

    Article  CAS  PubMed  Google Scholar 

  • George-Nascimento M, Oliva ME (2015) Fish population studies using parasites from the southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities. Parasitology 142:25–35

    Article  PubMed  Google Scholar 

  • Gómez D, Bartholomew J, Sunyer JO (2014) Biology and mucosal immunity to myxozoans. Dev Comp Immunol 43:243–256

    Article  PubMed  CAS  Google Scholar 

  • Goodman BA, Johnson PTJ (2011) Disease and the extended phenotype: parasites control host performance and survival through induced changes in body plan. PLoS One 6:e20193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godwin SC, Dill LM, Reynolds JD, Krkosek M (2015) Sea lice, sockeye salmon, and foraging competition: lousy fish are lousy competitors. Can J Fish Aquat Sci 72:1113–1120. doi:10.1139/cjfas-2014-0284

    Article  Google Scholar 

  • Gozlan RE, Marshall WL, Lilje O, Jessop CN, Gleason FH, Andreou D (2014) Current ecological understanding of fungal-like pathogens of fish: what lies beneath? Front Microbiol. doi:10.3389/fmicb.2014.00062

    PubMed  PubMed Central  Google Scholar 

  • Granath WO Jr, Vincent ER (2010) Epizootiology of Myxobolus cerebralis, the causative agent of salmonid whirling disease in the rock creek drainage of west-central Montana: 2004–2008. J Parasitol 96:252–257. doi:10.1645/GE-2285.1

    Article  PubMed  Google Scholar 

  • Gregg JL, Powers RL, Purcell MK, Friedman CS, Hershberger PK (2016) Ichthyophonus parasite phylogeny based on ITS rDNA structure prediction and alignment identifies six clades, with a single dominant marine type. Dis Aquat Org 120:125–141. doi:10.3354/dao03017

    Article  PubMed  Google Scholar 

  • Gregg JL, Grady CA, Friedman CS, Hershberger PK (2012) Inability to demonstrate fish-to-fish transmission of Ichthyophonus from laboratory infected Pacific herring Clupea pallasii to naive conspecifics. Dis Aquat Org 99:139–144

    Article  CAS  PubMed  Google Scholar 

  • Griffin MJ, Pote LM, Camus AC, Mauel MJ, Greenway TE, Wise DJ (2009) Application of a real-time PCR assay for the detection of Henneguya ictaluri in commercial channel catfish ponds. Dis Aquat Org 83:223–233

    Article  CAS  Google Scholar 

  • Gustafson PV, Rucker RR (1956) Studies on an Ichthyosporidium infection in fish: transmission and host specificity. US Department of the Interior, Fish and Wildlife Service, Special Sci Rep Fish 166

  • Haas W (1992) Physiological analysis of cercarial behavior. J Parasitol 78:243–255

    Article  CAS  PubMed  Google Scholar 

  • Hallett SL, Ray RA, Hurst CN, Holt RA, Buckles GR, Atkinson SD, Bartholomew JL (2012) Density of the waterborne parasite Ceratomyxa shasta and its biological effects on salmon. Appl Environ Microbiol 78:3724–3731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haaparanta A, Valtonen ET, Hoffmann RW (1994) Pathogenicity and seasonal occurrence of Henneguya creplini (Protozoa, Myxosporea) on the gills of perch Perca fluviatilis in central Finland. Dis Aquat Org 20:15–22

    Article  Google Scholar 

  • Hamoutene D, Mitchell JS, Murray HM, Eaves A, Marshall K, Belley R, George S (2016) The effect of light regimen on settlement patterns of sea lice, Lepeophtheirus salmonis, on Atlantic salmon, Salmo salar, post-smolts while taking into account fish size and fin erosion in a static tank system. Aquaculture 465:1–6

    Article  Google Scholar 

  • Hatcher MJ, Dick JTA, Dunn AM (2014) Parasites that change predator or prey behaviour can have keystone effects on community composition. Biol Lett 10:20130879. doi:10.1098/rsbl.2013.0879

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawlena H, Abramsky Z, Krasnov BR (2005) Age-biased parasitism and density-dependent distribution of fleas (Siphonaptera) on a desert rodent. Oecologia 146:200–208

  • Hershberger PK, Stick K, Bui B, Carroll C, Fall B, Mork C, Perry JA, Sweeney E, Wittouck J, Kocan RM (2002) Incidence of Ichthyophonus hoferi in Puget Sound fishes and its increase with age of Pacific herring. J Aquat Anim Health 14:50–56

    Article  Google Scholar 

  • Hershberger PK, Hart LM, MacKenzie AH, Yanney ML, Conway CM, Elliott DG (2015) Infecting Pacific herring with Ichthyophonus sp. in the laboratory. J Aquat Anim Health 27:217–221. doi:10.1080/08997659.2015.1095809

    Article  CAS  PubMed  Google Scholar 

  • Holzer AS, Sommerville C, Wootten R (2003) Tracing the route of Sphaerospora truttae from the entry locus to the target organ of the host, Salmo salar L., using an optimized and specific in situ hybridization technique. J Fish Dis 26:647–655

    Article  CAS  PubMed  Google Scholar 

  • Jones SRM, Dawe SC (2002) Ichthyophonus hoferi Plehn & Mulsow in British Columbia stocks of Pacific herring, Clupea pallasi Valenciennes, and its infectivity to Chinook salmon, Oncorhynchus tshawytscha (Walbaum). J Fish Dis 25:415–421

    Article  Google Scholar 

  • Jones S, Kim E, Bennett W (2008) Early development of resistance to the salmon louse, Lepeophtheirus salmonis (Krøyer), in juvenile pink salmon, Oncorhynchus gorbuscha (Walbaum). J Fish Dis 31:591–600

    Article  CAS  PubMed  Google Scholar 

  • Jones SRM, Cho S, Nguyen J, Mahony A (2016) Acquired resistance to Kudoa thyrsites in Atlantic salmon Salmo salar following recovery from a primary infection with the parasite. Aquaculture 451:457–462

    Article  Google Scholar 

  • Kallert DM, Ponader S, Eszterbauer E, El-Matbouli M, Haas W (2007) Myxozoan transmission via actinospores: new insights into mechanisms and adaptations for host invasion. Parasitology 134:1741–1750

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, O’Dwyer K, Nakagawa S, Poulin R (2014) What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol Rev 89:123–134. doi:10.1111/brv.12046

    Article  PubMed  Google Scholar 

  • Katahira H, Mizuno K, Nagasawa K (2011) Host size and habitat-dependent intensity of Heuconema longissimus (Nematoda: Physalopteridae) in the Japanese eel (Anguilla japonica). J Parasitol 97:994–998

    Article  PubMed  Google Scholar 

  • Kocan RM, Hershberger PK, Mehl T, Elder N, Wildermuth BD, Stick K (1999) Pathogenicity of Ichthyophonus hoferi for laboratory-reared Pacific herring Clupea pallasi and its early appearance in wild Puget Sound herring. Dis Aquat Org 35:23–29

    Article  CAS  PubMed  Google Scholar 

  • Kocan RM, Hershberger PK, Winton JR (2004) Ichthyophoniasis: an emerging disease of Chinook salmon in the Yukon River. J Aquat Anim Health 16:58–72

    Article  Google Scholar 

  • Kocan RM, LaPatra S, Gregg J, Winton JR, Hershberger PK (2006) Ichthyophonus-induced cardiac damage: a mechanism for reduced swimming stamina in salmonids. J Fish Dis 29:521–527

    Article  CAS  PubMed  Google Scholar 

  • Koie M (1982) The redia, cercaria and early stages of Aporocotyle simplex Odhner, 1900 (Sanguinicolidae). A digenetic trematode which has a polychaete annelid as the only intermediate host. Ophelia 21:115–145

    Article  Google Scholar 

  • Koprivnikar J, Lim D, Fu C, Brack SH (2010) Effects of temperature, salinity, and pH on the survival and activity of marine cercariae. Parasitol Res 106:1167–1177

    Article  PubMed  Google Scholar 

  • Kupschus S (2004) A temperature-dependent reproductive model for spotted seatrout (Cynoscion nebulosus) explaining spatio-temporal variations in reproduction and young-of-the-year recruitment in Florida estuaries. ICES J Mar Sci 61:3–11

    Article  Google Scholar 

  • Kurtz J, Kalbe M, Langefors A, Mayer I, Milinski M, Hasselquist D (2007) An experimental test of the immunocompetence handicap hypothesis in a teleost fish: 11-ketotestosterone suppresses innate immunity in three-spined sticklebacks. Am Nat 170:509–519

    PubMed  Google Scholar 

  • Lafferty KD (2009) Calling for an ecological approach to studying climate change and infectious diseases. Ecology 90:932–933. doi:10.1890/08-1767.1

    Article  PubMed  Google Scholar 

  • Layland LE, Specht S (2014) Helpful or a hindrance: co-infections with helminths during malaria. In: How helminths alter immunity to infection. Advances in Experimental Medicine and Biology (Eds W. Horsnell) 828:99–129. doi: 10.1007/978-1-4939-1489-0_5

  • Lester RJG, McVinish T (2016) Does moving up a food chain increase aggregation in parasites? J R Soc Interface 13:20160102. doi:10.1098/rsif.2016.0102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leung TLF, Poulin R (2008) Size-dependent pattern of metacercariae accumulation in Macomona liliana: the threshold for infection in a dead-end host. Parasitol Res 104:177–180. doi:10.1007/s00436-008-1166-2

    Article  PubMed  Google Scholar 

  • Levsen A, Paoletti M, Cipriani P, Nascetti G, Mattiucci S (2016) Species composition and infection dynamics of ascaridoid nematodes in Barents Sea capelin (Mallotus villosus) reflecting trophic position of fish host. Parasitol Res 115:4281–4291. doi:10.1007/s00436-016-5209-9

  • Lima LB, Bellay S, Giacomini HC, Isaac A, Lima DP Jr (2016) Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain. Parasitology 143:343–349. doi:10.1017/S003118201500164X

    Article  CAS  PubMed  Google Scholar 

  • Llanso RJ, Bell SS, Vose FE (1998) Food habits of red drum and spotted seatrout in a restored mangrove impoundment. Estuaries 21:294–306

    Article  Google Scholar 

  • Louhi K-R, Sundberg L-R, Jokela J, Karvonen A (2015) Interactions among bacterial strains and fluke genotypes shape virulence of co-infection. Proc R Soc B 282:2015–2097. doi:10.1098/rspb.2015.2097

    Article  CAS  Google Scholar 

  • Lutterschmidt WI, Schaefer JF, Fiorillo RA (2007) The ecological significance of helminth endoparasites on the physiological performance of two sympatric fishes. Comp Parasitol 74:194–203. doi:10.1654/4248.1

    Article  Google Scholar 

  • McElroy EJ, George AB, de Buron I (2015) The muscle dwelling myxozoan, Kudoa inornata, enhances swimming performance in the spotted seatrout, Cynoscion nebulosus. Parasitol Res. doi:10.1007/s00436-015-4441-z

    PubMed  Google Scholar 

  • McMichael RH Jr, Peters KM (1989) Early life history of spotted seatrout, Cynoscion nebulosus (Pisces: Sciaenidae), in Tampa Bay, Florida. Estuaries 12:98–110

    Article  Google Scholar 

  • McNab V, Barber I (2012) Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Glob Change Biol 18:1540–1548

    Article  Google Scholar 

  • McVay MJ, Bakenhaster MD, Bullard SA (2011) Cardicola laruei Short, 1953 (Digenea: Aporocotylidae) from heart of seatrouts, Cynoscion spp. (Perciformes: Sciaenidae) in the Gulf of Mexico and Atlantic Ocean: taxonomic redescription, first observations of egg and miracidium, and comments on geographic distribution and host specificity. Comp Parasitol 78:291–305

    Article  Google Scholar 

  • Miwa S, Kamaishi T, Hirae T, Murase T, Nishioka T (2011) Encephalomyelitis associated with microsporidian infection in farmed greater amberjack, Seriola dumerili (Risso). J Fish Dis 34:901–910

    Article  CAS  PubMed  Google Scholar 

  • Moran JDW, Kent ML (1999) Kudoa thyrsites (Myxozoa: Myxosporea) infections in pen-reared Atlantic salmon in the northeast Pacific Ocean with a survey of potential nonsalmonid reservoir hosts. J Aquat Anim Health 11:101–109

    Article  Google Scholar 

  • Moran JDW, Margolis L, Webster JM, Kent ML (1999) Development of Kudoa thyrsites (Myxozoa: Myxosporea) in netpen-reared Atlantic salmon determined by light microscopy and a polymerase chain reaction test. Dis Aquat Org 37:185–193

    Article  CAS  PubMed  Google Scholar 

  • Morand S, Cribb TH, Kulbicki M, Rigby MC, Chauvet C, Dufour V, Faliex E, Galzin R, Lo CM, Lo-Ya A, Pichelin S, Sasal P (2000) Endoparasite species richness of New Caledonian butterfly fishes: host density and diet matter. Parasitology 121:65–73

    Article  PubMed  Google Scholar 

  • Moravec F, de Buron I, Roumillat WA (2006) Two new species of Philometra (Nematoda: Philometridae) parasitic in the perciform fish Cynoscion nebulosus (Sciaenidae) in the estuaries of South Carolina, USA. Folia Parasitol 53:63–70

    Article  PubMed  Google Scholar 

  • Morris DJ, Adams A, Richards RH (2000) In situ hybridization identifies the gill as a portal of entry of PKX (phylum Myxozoa) the causative agent of proliferative kidney disease in salmonids. Parasitol Res 86:950–956

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Egusa S (1986) Two new species of Paradeontacylix McIntosh, 1934 (Trematoda: Sanguinicolidae) from the vascular system of a cultured marine fish, Seriola purpurascens. Fish Pathol 21:15–19

    Article  Google Scholar 

  • Ogawa K, Fukudome M (1994) Mass mortality caused by blood fluke (Paradeontacylix) among amberjack (Seriola dumerili) imported to Japan. Fish Pathol 29:265–269

    Article  Google Scholar 

  • Ogawa K, Nagano T, Akai N, Sugita A, Hall KA (2007) Blood fluke infection of cultured tiger puffer Takifugu rubripes imported from China to Japan. Fish Pathol 42:91–99

    Article  Google Scholar 

  • Padros F, Zarza C, Crespo S (2001) Histopathology of cultured sea bream Sparus aurata infected with sanguinicolid trematodes. Dis Aquat Org 44:47–52

    Article  CAS  PubMed  Google Scholar 

  • Palenzuela O, Sitjà-Bobadilla A, Álvarez-Pellitero P (1997) Ceratomyxa sparusaurati (Protozoa: Myxosporea) infections in cultured gilthead sea bream Sparus aurata (Pisces: Teleostei) from Spain: aspects of the host-parasite relationship. Parasitol Res 83:539–548

    Article  CAS  PubMed  Google Scholar 

  • Palenzuela O, Alvarez-Pellitero P, Sitjá-Bobadilla A (1999) Glomerular disease associated with Polysporoplasma sparis (Myxozoa) infections in cultured gilthead sea bream, Sparus aurata L. (Pisces: Teleostei). Parasitology 118:245–256

    Article  PubMed  Google Scholar 

  • Pasternak AF, Huntingford FA, Crompton DWT (1995) Changes in metabolism and behaviour of the freshwater copepod Cyclops strenuus abyssorum infected with Diphyllobothrium spp. Parasitology 110:395–399

    Article  PubMed  Google Scholar 

  • Patterson JEH, Ruckstuhl KE (2013) Parasite infection and host group size: a meta-analytical review. Parasitology 140:803–813

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen AB, Fenton A (2006) Emphasizing the ecology in parasite community ecology. Trends Ecol Evol 22:133–139

    Article  PubMed  Google Scholar 

  • Perry JA, Kocan RM, Winton JR, Hershberger PK (2004) High doses of corticosteroid suppress resistance to Ichthyophonus in starry flounder. J Aquat Anim Health 16:45–49

    Article  Google Scholar 

  • Pickering AD, Pottinger TG (1989) Stress responses and disease resistance in salmonid fish: effects of chronic elevation of plasma cortisol. Fish Physiol Biochem 7:253–258. doi:10.1007/BF00004714

  • Postawa T, Nagy Z (2016) Variation of parasitism patterns in bats during hibernation: the effect of host species, resources, health status, and hibernation period. Parasitol Res 115:3767–3778

    Article  PubMed  PubMed Central  Google Scholar 

  • Poulin R (2000) Variation in the intraspecific relationship between fish and length and intensity of parasitic infection: biological and statistical causes. J Fish Biol 56:123–137

    Article  Google Scholar 

  • Rahkonen R, Koski P (1998) Occurrence of cestode larvae in brown trout after stocking in a large regulated lake in northern Finland. Dis Aquat Org 31:55–63

    Article  Google Scholar 

  • Ray RA, Holt RA, Bartholomew JL (2012) Relationship between temperature and Ceratomyxa shasta-induced mortality in Klamath river salmonids. J Parasitol 98:520–526

    Article  PubMed  Google Scholar 

  • Redondo MJ, Palenzuela O, Riaza A, Macias A, Álvaez-Pellitero P (2002) Experimental transmission of Enteromyxum scophthalmi (Myxozoa), an enteric parasite of turbot Scophthalmus maximus. J Parasitol 88:482–488

    Article  PubMed  Google Scholar 

  • Rohde K (1993) The ecology of marine parasites. CAB International, Wallingford, 298 pp

    Google Scholar 

  • Roumillat WA, Brouwer MC (2004) Reproductive dynamics of female spotted seatrout (Cynoscion nebulosus) in South Carolina. Fish Bull 102:473–487

    Google Scholar 

  • Sato T, Watanabe K, Tokuchi N, Kamauchi H, Harada Y, Lafferty KD (2011) A nematomorph parasite explains variation in terrestrial subsidies to trout streams in Japan Oikos 120:1595–1599. doi: 10.1111/j.1600-0706.2011.19121.x

  • Scharf FS, Juanes F, Rountree RA (2000) Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar Ecol Prog Ser 208:229–248. doi:10.3354/meps208229

  • Scharsack JP, Franke F, Erin NI, Kuske A, Büscher J, Stolz H, Samonte IE, Kurtz J, Kalbe M (2016) Effects of environmental variation on host–parasite interaction in three-spined sticklebacks (Gasterosteus aculeatus). Zoology 119:375–383

    Article  PubMed  Google Scholar 

  • Schmidt-Posthaus H, Wahli T (2015) Host and environmental influences on development of disease. In: Okamura B, Bartholomew J, Gruhl A (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 281–293. doi:10.1007/978-3-319-14753-6

  • Schmidt-Posthaus H, Bettge K, Forster U, Segner H, Wahli T (2012) Kidney pathology and parasite intensity in rainbow trout Oncorhynchus mykiss surviving proliferative kidney disease: time course and influence of temperature. Dis Aquat Org 97:207–218. doi:10.3354/dao02417

    Article  PubMed  Google Scholar 

  • Shirakashi S, Ogawa K (2016) Blood fluke infections in marine cultured fish. Fish Pathol 51:92–98

    Article  Google Scholar 

  • Shirakashi S, Tani K, Ishimaru K, Shin SP, Honryo T, Uchida H, Ogawa K (2016) Discovery of intermediate hosts for two species of blood flukes Cardicola orientalis and Cardicola forsteri (Trematoda: Aporocotylidae) infecting Pacific bluefin tuna in Japan. Parasitol Int 65:128–136. doi:10.1016/j.parint.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  • Short RB (1953) A new blood fluke, Cardicola laruei n. g., n. sp., (Aporocotylidae) from marine fishes. J Parasitol 39:304–309

    Article  CAS  PubMed  Google Scholar 

  • Silveira TS, Calegaro-Marques C (2016) Helminth parasite diversity discloses age and sex differences in the foraging behaviour of southern lapwings (Vanellus chilensis). Austral Ecol 41:549–558. doi:10.1111/aec.12344

    Article  Google Scholar 

  • Šimková A, Lafond T, Ondračková M, Jurajda P, Ottová E, Morand S (2008) Parasitism, life history traits and immune defence in cyprinid fish from central Europe. BMC Evol Biol 8:29. doi:10.1186/1471-2148-8-29

  • Sitjà-Bobadilla A, Palenzuela O, Riaza A, Macías MA, Alvarez-Pellitero P (2007) Protective acquired immunity to Enteromyxum scophthalmi (Myxozoa) is related to specific antibodies in Psetta maxima (L.) (Teleostei). Scand J Immunol 66:26–34

  • Sollid SA, Lorz HV, Stevens DG, Bartholomew JL (2003) Age-dependent susceptibility of Chinook salmon to Myxobolus cerebralis and effects of sustained parasite challenges. J Aquat Anim Health 15:136–146

    Article  Google Scholar 

  • Steinbach-Elwell LC, Kerans BL, Rasmussen C, Winton JR (2006) Interactions among two strains of Tubifex tubifex (Oligochaeta: Tubificidae) and Myxobolus cerebralis (Myxozoa). Dis Aquat Org 68:131–139

    Article  Google Scholar 

  • St-Hilaire S, Ribble C, Whitaker DJ, Kent ML (1998) Prevalence of Kudoa thrysites in sexually mature and immature pen-reared Atlantic salmon (Salmo salar) in British Columbia, Canada. Aquaculture 162:69–77

    Article  Google Scholar 

  • Su Z, Segura M, Morgan K, Loredo-Osti JC, Stevenson MM (2005) Impairment of protective immunity to blood-stage malaria by concurrent nematode infection. Infect Immun 73:3531–3539. doi:10.1128/IAI.73.6.3531-3539.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, White RWG (1996) Frequency distribution and host-parasite relationships of Zschokkella leptatherinae (Myxozoa: Myxiidae), a parasite of atherinid fishes. Aust J Zool 44:97–106

    Article  Google Scholar 

  • Sugihara Y, Yamada T, Tamaki A, Yamanishi R, Kanai K (2014) Larval stages of the bluefin tuna blood fluke Cardicola opisthorchis (Trematoda: Aporocotylidae) found from Terebella sp. (Polychaete: Terebellidae). Parasitol Int 63:295–299

    Article  PubMed  Google Scholar 

  • Sugihara Y, Yamada T, Ogawa K, Yokoyama F, Matsukura K, Kanai K (2015) Occurrence of the bluefin tuna blood fluke Cardicola opisthorchis in the intermediate host Terebella sp. Fish Pathol 50:105–111

    Article  Google Scholar 

  • Sures B (2008) Host-parasite interactions in polluted environments. J Fish Biol 73:2133–2142

    Article  Google Scholar 

  • Sures B, Knopf K, Kloas W (2001) Induction of stress by the swimbladder nematode Anguillicola crassus in European eels, Anguilla anguilla, after repeated experimental infection. Parasitology 123:179–184

    CAS  PubMed  Google Scholar 

  • Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite community drive infection risk in a wildlife population. Science 330:243. doi:10.1126/science.1190333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas F, Poulin R, Brodeur J (2010) Host manipulation by parasites: a multidimensional phenomenon. Oikos 119:1217–1223

    Article  Google Scholar 

  • Timi JT, Lanfranchi AL (2013) Ontogenetic changes in heterogeneity of parasite communities of fish: disentangling the relative role of compositional versus abundance variability. Parasitology 140:309–317. doi:10.1017/S0031182012001606

    Article  CAS  PubMed  Google Scholar 

  • Timi JT, MacKenzie K (2015) Parasites in fisheries and mariculture. Parasitology 142:1–4

    Article  CAS  PubMed  Google Scholar 

  • Vaumourin E, Vourch G, Gasqui P, Vayssier-Taussat M (2015) The importance of multiparasitism: examining the consequences of coinfections for human and animal health. Parasit Vector 8:545. doi:10.1186/s13071-015-1167-9

    Article  Google Scholar 

  • Voutilainen A, Figueiredo K, Huuskonen H (2008) Effects of the eye fluke Diplostomum spathaceum on the energetics and feeding of the Arctic charr Salvelinus alpinus. J Fish Biol 73:2228–2237

    Article  Google Scholar 

  • Wagner E, Arndt R, Brough M (2002) Comparison of susceptibility of five cutthroat trout strains to Myxobolus cerebralis infection. J Aquat Anim Health 14:84–91

    Article  Google Scholar 

  • Warren MB, Orélis-Ribeiro R, Ruiz CF, Dang BT, Arias CR, Bullard SA (2017) Endocarditis associated with blood fluke infections (Digenea: Aporocotylidae: Psettarium cf. anthicum) among aquacultured cobia (Rachycentron canadum) from Nha Trang Bay, Vietnam. Aquaculture 468:549–557. doi:10.1016/j.aquaculture.2016.11.009

    Article  Google Scholar 

  • Watson MJ (2013) What drives population-level effects of parasites? Meta-analysis meets life-history. Int J Parasitol Parasites Wildl 2:190–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegner KM, Kalbe M, Milinski M, Reusch TBH (2008) Mortality selection during the 2003 European heat wave in three-spined sticklebacks: effects of parasites and MHC genotype. BMC Evol Biol 8:124. doi:10.1186/1471-2148-8-124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wenner C, Archambault J (1996) Spotted seatrout natural history and fishing techniques in South Carolina. Marine Resources Research Institute South Carolina Department of Natural Resources, educational report 18

  • White VC, Morado JF, Friedman CS (2014) Ichthyophonus-infected walleye pollock Theragra chalcogramma (Pallas) in the eastern Bering Sea: a potential reservoir of infections in the North Pacific. J Fish Dis 37:641–655

    Article  CAS  PubMed  Google Scholar 

  • Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, Blakeslee AMH (2007) Parasites alter community structure. Proc Natl Acad Sci U S A 104:9335–9339. doi:10.1073/pnas.0700062104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright HA, Wootton RJ, Barber I (2006) The effect of Schistocephalus solidus infection on meal size of three-spined stickleback. J Fish Biol 68:801–809. doi:10.1111/j.1095-8649.2006.00966.x

    Article  Google Scholar 

  • Yokota M, Watanabe S, Hatai K, Kurata O, Furihata M, Usui T (2008) Transmission of the parasite Ichthyophonus hoferi in cultured rainbow trout and comparison of epidemic models. J Aquat Anim Health 20:207–214

    Article  PubMed  Google Scholar 

  • Yokoyama H, Kawakami H, Yasuda H, Tanaka S (2003) Henneguya lateolabracis sp. n. (Myxozoa: Myxosporea), the causative agent of cardiac henneguyosis in Chinese sea bass Lateolabrax sp. Fish Sci 69:1116–1120

    Article  CAS  Google Scholar 

  • Yokoyama H, Itoh N, Tanaka S (2005) Henneguya pagri n. sp. (Myxozoa: Myxosporea) causing cardiac henneguyosis in red sea bream, Pagrus major (Temminck & Schlegel). J Fish Dis 28:479–487

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Grabner D, Shirakashi S (2012) Transmission biology of the Myxozoa, health and environment in aquaculture, Carvalho E (Ed.). doi:10.5772/29571

  • Yong RQY, Cutmore SC, Miller TL, Adlard RD, Cribb TH (2013) The ghost of parasites past: eggs of the blood fluke Cardicola chaetodontis (Aporocotylidae) trapped in the heart and gills of butterflyfishes (Perciformes: Chaetodontidae) of the Great Barrier Reef. Parasitology 140:1186–1194

    Article  PubMed  Google Scholar 

  • Zajac RN (1991) Population ecology of Polydora ligni (Polychaeta, Spionidae). 2. Seasonal demographic variation and its potential impact on life-history evolution. Mar Ecol Prog Ser 77:207–220. doi:10.3354/meps077207

    Article  Google Scholar 

  • Zuo S, Huwer B, Bahlool Q, Al-Jubury A, Christensen N, Korbut R, Kania P, Buchmann K (2016) Host size-dependent anisakid infection in Baltic cod Gadus morhua associated with differential food preferences. Dis Aquat Org 120:69–75. doi:10.3354/dao03002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaure de Buron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnott, S.A..., Dyková, I., Roumillat, W.A. et al. Pathogenic endoparasites of the spotted seatrout, Cynoscion nebulosus: patterns of infection in estuaries of South Carolina, USA. Parasitol Res 116, 1729–1743 (2017). https://doi.org/10.1007/s00436-017-5449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5449-3

Keywords

Navigation