Skip to main content
Log in

Gray matter responsiveness to adaptive working memory training: a surface-based morphometry study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Here we analyze gray matter indices before and after completing a challenging adaptive cognitive training program based on the n-back task. The considered gray matter indices were cortical thickness (CT) and cortical surface area (CSA). Twenty-eight young women (age range 17–22 years) completed 24 training sessions over the course of 3 months (12 weeks, 24 sessions), showing expected performance improvements. CT and CSA values for the training group were compared with those of a matched control group. Statistical analyses were computed using a ROI framework defined by brain areas distinguished by their genetic underpinning. The interaction between group and time was analyzed. Middle temporal, ventral frontal, inferior parietal cortices, and pars opercularis were the regions where the training group showed conservation of gray matter with respect to the control group. These regions support working memory, resistance to interference, and inhibition. Furthermore, an interaction with baseline intelligence differences showed that the expected decreasing trend at the biological level for individuals showing relatively low intelligence levels at baseline was attenuated by the completed training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Colom et al. (2013b) reported the behavioral results for this same sample.

  2. Analyses were also computed with repeated ANOVA 2 × 2 (Time × Group) and the results found were similar to those obtained after ANCOVA analyses.

References

  • Ad-Dab’bagh Y, Lyttelton O, Muehlboeck JS, Lepage C, Einarson D, Mok K, Ivanov O, Vincent RD, Lerch J, Fombonne E, Evans AC (2006) The CIVET image processing environment: A fully automated comprehensive pipeline for anatomical neuroimaging research. In: Corbetta M (ed) Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping NeuroImage. Florence, Italy

    Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends in cognitive sciences 8:170–177

    Article  PubMed  Google Scholar 

  • Au J, Sheehan E, Tsai N, Duncan GJ, Buschkuehl M, Jaeggi SM (2014) Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic bulletin and review, pp 1–12

  • Blanton RE, Levitt JG, Thompson PM, Narr KL, Capetillo-Cunliffe L, Nobel A, Toga AW (2001) Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Res Neuroimag 107:29–43

    Article  CAS  Google Scholar 

  • Bueti D, Lasaponara S, Cercignani M, Macaluso E (2012) Learning about time: plastic changes and interindividual brain differences. Neuron 75:725–737

    Article  CAS  PubMed  Google Scholar 

  • Burgaleta M, Johnson W, Waber DP, Colom R, Karama S (2014) Cognitive ability changes and dynamics of cortical thickness development in healthy children and adolescents. NeuroImage 84:810–819

    Article  PubMed  Google Scholar 

  • Burgess GC, Gray JR, Conway AR, Braver TS (2011) Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. J Exp Psychol Gen 140:674–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschman TJ, Siegel M, Roy JE, Miller EK (2011) Neural substrates of cognitive capacity limitations. Proc Natl Acad Sci 108:11252–11255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100

    Article  PubMed  Google Scholar 

  • Chance SA, Casanova MF, Switala AE, Crow TJ (2008) Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain 131:3178–3192

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Gutierrez ED, Thompson W, Panizzon MS, Jernigan TL, Eyler LT, Dale AM (2012) Hierarchical genetic organization of human cortical surface area. Science 335:1634–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CH, Fiecas M, Gutiérrez ED, Panizzon MS, Eyler LT, Vuoksimaa E, Kremen WS (2013) Genetic topography of brain morphology. Proc Natl Acad Sci 110:17089–17094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chklovskii DB, Mel BW, Svoboda K (2004) Cortical rewiring and information storage. Nature 431:782–788

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112:155–159

    Article  CAS  PubMed  Google Scholar 

  • Colom R, Jung RE, Haier RJ (2007) General intelligence and memory span: evidence for a common neuroanatomic framework. Cognit Neuropsychol 24:867–878

    Article  Google Scholar 

  • Colom R, Quiroga M, Solana AB, Burgaleta M, Román FJ, Privado J, Karama S (2012) Structural changes after videogame practice related to a brain network associated with intelligence. Intelligence 40:479–489

    Article  Google Scholar 

  • Colom R, Burgaleta M, Román FJ, Karama S, Álvarez-Linera J, Abad FJ, Haier RJ (2013a) Neuroanatomic overlap between intelligence and cognitive factors: morphometry methods provide support for the key role of the frontal lobes. Neuroimage 72:143–152

    Article  PubMed  Google Scholar 

  • Colom R, Román FJ, Abad FJ, Shih PC, Privado J, Froufe M, Jaeggi SM (2013b) Adaptive n-back training does not improve fluid intelligence at the construct level: Gains on individual tests suggest that training may enhance visuospatial processing. Intelligence 41:712–727

    Article  Google Scholar 

  • Deary IJ, Weiss A, Batty GD (2010) Intelligence and personality as predictors of illness and death how researchers in differential psychology and chronic disease epidemiology are collaborating to understand and address health inequalities. Psychol Sci Publ Interest 11:53–79

    Article  Google Scholar 

  • Draganski B, Kherif F (2013) In vivo assessment of use-dependent brain plasticity—beyond the “one trick pony” imaging strategy. NeuroImage 73:255–259

    Article  PubMed  Google Scholar 

  • Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311–312

    Article  CAS  PubMed  Google Scholar 

  • Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Büchel C, May A (2006) Temporal and spatial dynamics of brain structure changes during extensive learning. J Neurosci 26(23):6314–6317

    Article  CAS  PubMed  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  CAS  PubMed  Google Scholar 

  • Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth Ø, Larsen VA, Walhovd KB (2010) Effects of memory training on cortical thickness in the elderly. Neuroimage 52:1667–1676

    Article  PubMed  Google Scholar 

  • Erickson KI (2013) Evidence for structural plasticity in humans: comment on Thomas and Baker (2012). NeuroImage 73:237–238

    Article  PubMed  Google Scholar 

  • Feczko E, Augustinack JC, Fischl B, Dickerson BC (2009) An MRI-based method for measuring volume, thickness and surface area of entorhinal, perirhinal, and posterior parahippocampal cortex. Neurobiol Aging 30:420–431

    Article  PubMed  Google Scholar 

  • Fields RD (2013) Changes in brain structure during learning: fact or artifact? Reply to Thomas and Baker. NeuroImage 73:260–264

    Article  PubMed  Google Scholar 

  • Forstmann B, van den Wildenberg W, Ridderinkhof K (2008) Neural mechanisms, temporal dynamics, and individual differences in interference control. J Cogn Neurosci 20:1854–1865

    Article  PubMed  Google Scholar 

  • Fu M, Zuo Y (2011) Experience-dependent structural plasticity in the cortex. Trends Neurosci 34:177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haier RJ, Karama S, Leyba L, Jung RE (2009) MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Res Notes 2:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT (2006) Brain connectivity related to working memory performance. J Neurosci 26:13338–13343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensch TK (2004) Critical period regulation. Ann Rev Neurosci 27:549–579

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci 107:13135–13140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu NS, Buschkuehl M, Jonides J, Jaeggi SM (2013) Potential Mechanisms Underlying Working Memory Training and Transfer. Poster presented at the Psychonomic Society Annual Meeting, Toronto, Ontario

  • Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    Article  CAS  PubMed  Google Scholar 

  • Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Weiner MW (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ (2008) Improving fluid intelligence with training on working memory. Proc Natl Acad Sci 105:6829–6833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Perrig WJ, Meier B (2010) The concurrent validity of the N-back task as a working memory measure. Memory 18:394–412

    Article  PubMed  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Jonides J, Shah P (2011) Short-and long-term benefits of cognitive training. Proc Natl Acad Sci 108:10081–10086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Shah P, Jonides J (2014) The role of individual differences in cognitive training and transfer. Memory Cognition 42:464–480

    Article  PubMed  Google Scholar 

  • Jung RE, Haier RJ (2007) The Parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–154

    Article  PubMed  Google Scholar 

  • Karama S, Bastin ME, Murray C, Royle NA, Penke L, Maniega SM, Deary IJ (2014) Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular psychiatry 19:555–559

    Article  CAS  PubMed  Google Scholar 

  • Karnath HO (2001) New insights into the functions of the superior temporal cortex. Nat Rev Neurosci 2:568–576

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab’bagh Y, MacDonald D, Evans AC (2005) Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27:210–221

    Article  PubMed  Google Scholar 

  • Kirkwood T, Bond J, May C, McKeith I, Teh M (2008) Foresight mental capital and wellbeing project. Mental capital through life: Future challenges. The Government Office for Science, London

    Google Scholar 

  • Kirwan CB, Stark CE (2007) Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe. Learn Memory 14:625–633

    Article  Google Scholar 

  • Knudsen E (2004) Sensitive periods in the development of the brain and behavior. Cognit Neurosci J 16:1412–1425

    Article  Google Scholar 

  • Kwok V, Niu Z, Kay P, Zhou K, Mo L, Jin Z, Tan LH (2011) Learning new color names produces rapid increase in gray matter in the intact adult human cortex. Proc Natl Acad Sci 108:6686–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • la Fougère C, Grant S, Kostikov A, Schirrmacher R, Gravel P, Schipper HM, Thiel A (2011) Where in vivo imaging meets cytoarchitectonics: The relationship between cortical thickness and neuronal density measured with high-resolution [18F] flumazenil-PET. Neuroimage 56:951–960

    Article  PubMed  Google Scholar 

  • Landi SM, Baguear F, Della-Maggiore V (2011) One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory 1 year later. J Neurosci 31:11808–11813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW, Sled JG (2011) Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 54:2086–2095

    Article  PubMed  Google Scholar 

  • Lustig C, Shah P, Seidler R, Reuter-Lorenz PA (2009) Aging, training, and the brain: a review and future directions. Neuropsychol Rev 19:504–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyttelton OC, Karama S, Ad-Dab’bagh Y, Zatorre RJ, Carbonell F, Worsley K, Evans AC (2009) Positional and surface area asymmetry of the human cerebral cortex. Neuroimage 46:895–903

    Article  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  • Østby Y, Tamnes CK, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB (2009) Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. J Neurosci 29:11772–11782

    Article  CAS  PubMed  Google Scholar 

  • Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, bhp026

  • Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72:26–35

    Article  PubMed  Google Scholar 

  • Petanjek Z, Judaš M, Kostović I, Uylings HB (2008) Lifespan alterations of basal dendritic trees of pyramidal neurons in the human prefrontal cortex: a layer-specific pattern. Cereb Cortex 18:915–929

    Article  PubMed  Google Scholar 

  • Prabhakaran V, Rypma B, Narayanan NS, Meier TB, Austin BP, Nair VA, Gabrieli JD (2011) Capacity-speed relationships in prefrontal cortex. PLoS One 6:e27504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 24:170–176

    Article  Google Scholar 

  • Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL, Greenstein D, Giedd JN (2011) How does your cortex grow? J Neurosci 31:7174–7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, Koeppe RA (2000) Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci 12:174–187

    Article  CAS  PubMed  Google Scholar 

  • Rimol LM, Panizzon MS, Fennema-Notestine C, Eyler LT, Fischl B, Franz CE, Dale AM (2010) Cortical thickness is influenced by regionally specific genetic factors. Biol Psychiatry 67:493–499

    Article  CAS  PubMed  Google Scholar 

  • Román FJ, Abad FJ, Escorial S, Burgaleta M, Martínez K, Álvarez-Linera J, Colom R (2014) Reversed hierarchy in the brain for general and specific cognitive abilities: A morphometric analysis. Hum Brain Mapp 35:3805–3818

    Article  PubMed  Google Scholar 

  • Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, Eickhoff SB (2012) Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage 60:830–846

    Article  CAS  PubMed  Google Scholar 

  • Schnack HG, van Haren NEM, Brouwer RM, Evans A, Durston S, Hulshoff Pol HH (2015) Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25:1608–1617

    Article  PubMed  Google Scholar 

  • Shaw P, Greenstein D, Lerch J, Clasen L, Lenroot R, Gogtay N, Giedd J (2006) Intellectual ability and cortical development in children and adolescents. Nature 440:676–679

    Article  CAS  PubMed  Google Scholar 

  • Sur M, Rubenstein JL (2005) Patterning and plasticity of the cerebral cortex. Science 310:805–810

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi H, Sekiguchi A, Taki Y, Yokoyama S, Yomogida Y, Komuro N, Kawashima R (2010) Training of working memory impacts structural connectivity. J Neurosci 30:3297–3303

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Baker CI (2013a) Teaching an adult brain new tricks: a critical review of evidence for training-dependent structural plasticity in humans. Neuroimage 73:225–236

    Article  PubMed  Google Scholar 

  • Thomas C, Baker CI (2013b) On evidence, biases and confounding factors: Response to commentaries. NeuroImage 73:265–267

    Article  PubMed  Google Scholar 

  • Thomas AG, Marrett S, Saad ZS, Ruff DA, Martin A, Bandettini PA (2009) Functional but not structural changes associated with learning: an exploration of longitudinal voxel-based morphometry (VBM). Neuroimage 48:117–125

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson PM, Hayashi KM, Dutton RA, Chiang MC, Leow AD, Sowell ER, Toga AW (2007) Tracking Alzheimer’s disease. Ann N Y Acad Sci 1097:183–214

    Article  PubMed  PubMed Central  Google Scholar 

  • Vendetti MS, Bunge SA (2014) Evolutionary and developmental changes in the lateral frontoparietal network: a little goes a long way for higher-level cognition. Neuron 84:906–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C, Kremen WS (2015) The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cereb Cortex 25:2127–2137

    Article  PubMed  Google Scholar 

  • Wierenga LM, Langen M, Oranje B, Durston S (2014) Unique developmental trajectories of cortical thickness and surface area. NeuroImage 87:120–126

    Article  PubMed  Google Scholar 

  • Woollett K, Maguire EA (2011) Acquiring “the Knowledge” of London’s layout drives structural brain changes. Curr Biol 21:2109–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Medical Association (2008) Declaration of Helsinki—ethical principles for medical research involving human subjects, 59th WMA General Assembly. Seoul, Korea

    Google Scholar 

  • Yassa MA, Stark CE (2011) Pattern separation in the hippocampus. Trends Neurosci 34:515–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yassa MA, Mattfeld AT, Stark SM, Stark CE (2011) Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc Natl Acad Sci 108:8873–8878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Buschkuehl M, Bernat E, Jaeggi SM (2014) EEG power changes as a function of working memory training. Poster presented at the 26th Annual Convention of the Association for Psychological Science, San Francisco

  • Zhou D, Lebel C, Evans A, Beaulieu C (2013) Cortical thickness asymmetry from childhood to older adulthood. NeuroImage 83:66–74

    Article  PubMed  Google Scholar 

  • Zhou D, Lebel C, Treit S, Evans A, Beaulieu C (2015) Accelerated longitudinal cortical thinning in adolescence. NeuroImage 104:138–145

    Article  PubMed  Google Scholar 

  • Zilles K, Amunts K (2012) Segregation and wiring in the brain. Science 335:1582–1584

    Article  CAS  PubMed  Google Scholar 

  • Zou Q, Ross TJ, Gu H, Geng X, Zuo XN, Hong LE, Yang Y (2013) Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Hum Brain Mapp 34:3204–3215

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant PSI2010-20364 (Ministerio de Ciencia e Innovación, Spain). FJR is supported by BES-2011-043527 (Ministerio de Ciencia e Innovación, Spain). KM is supported by AP2008-00433 (Ministerio de Educación, Spain). MB was funded by the Spanish Ministerio de Economía y Competitividad (MINECO-FPDI-2013-17528). Also, WSK was supported by Grants R01 AG022381, AG018386A, and AG018384 (U.S. National Institute on Aging).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Colom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román, F.J., Lewis, L.B., Chen, CH. et al. Gray matter responsiveness to adaptive working memory training: a surface-based morphometry study. Brain Struct Funct 221, 4369–4382 (2016). https://doi.org/10.1007/s00429-015-1168-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1168-7

Keywords

Navigation