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IGHV mutational status of nodal marginal zone lymphoma by NGS
reveals distinct pathogenic pathways with different prognostic
implications
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Abstract
The precise B cell of origin and molecular pathogenesis of nodal marginal zone lymphoma (NMZL) remain poorly defined. To
date, due to the rarity of NMZL, the vast majority of already-published studies have been conducted on a limited number of
samples and the technical approach to analyze the immunoglobulin genes was of amplifying rearranged variable region genes
with the classical direct sequencing of the PCR products followed by cloning. Here, we studied the B cell Ig heavy-chain
repertoires by next-generation sequencing (NGS) in 30 NMZL cases. Most of the cases were mutated (20/28; 71.5%) with
homologies to the respective germ line genes ranging from 85 to 97, 83%,whereas 8/28 (28.5%) were unmutated. In addition, our
results show that NMZL cases have a biased usage of specific immunoglobulin heavy-chain variable (IGHV) region genes.
Moreover, we documented intraclonal diversity in all (100%) of the mutated cases and ongoing somatic hypermutations (SHM)
have been confirmed by hundreds of reads. We analyzed the mutational pattern to detect and quantify antigen selection pressure
and we found a positive selection in 4 cases, whereas in the remaining cases there was an unspecific stimulation. Finally, the
disease-specific survival and the progression-free survival were significantly different between cases with mutated and
unmutated IGHV genes, pointing out mutational status as a possible new biomarker in NMZL.
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Introduction

Nodal marginal zone lymphomas (NMZL) represent one of
three recognized entities within the category of marginal zone
lymphomas (MZL), along with splenic marginal zone lym-
phomas (SMZL) and extranodal marginal zone lymphomas
(ENMZL), with the latter tumors also known as mucosa-
associated lymphoid tissue (MALT) lymphomas. NMZL,
SMZL, andMALTall belong to the category of indolent small
B cell lymphomas [1]. Although NMZL shares many histo-
logic and immunologic features with extranodal MZL of
MALT type, clinical characteristics, natural history, and prog-
nosis suggest that nodal MZL should be considered a distinct
entity [2].

However, lack of typical markers and absence of a clear
consensus for its molecular pathogenesis make the diagnosis
of nodal marginal zone lymphoma (NMZL) a problematic
subject [3]. Yet, the precise B cell of origin of NMZL remains
poorly defined [4].
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A B cell undergoes germinal center (GC) reaction in re-
sponse to antigen stimulation, resulting in the generation of a
memory B cell with a high specificity and affinity. At the gene
level, memory B cells are characterized by somatic mutation
(SM) in their rearranged immunoglobulin (Ig) heavy-chain
variable (VH) genes [5]. Somatic mutation studies of SMZL
and ENMZ have shown that in the great majority of the cases,
the tumor cells are of a post-GC, memory B cell derivation,
displaying a mutational pattern indicative of positive antigen
selection [6].

Because of the rarity of NMZL, it is hard to obtain large
study groups, and in all previous studies, the technical ap-
proach of amplifying rearranged variable region genes was
the classical sequencing methods, i.e., direct sequencing of
the PCR products followed by cloning. However, this ap-
proach is based on the analysis of limited number of clones
that could not be representative for the real intraclonal
heterogeneity.

The quantitative nature of next-generation sequencing
(NGS) data allows for higher resolution of the subclonal ar-
chitecture and can be used to decipher mutational signatures
and, thus offering a dynamic mechanism for the mutations
found in the sample [7].

Here, we studied the B cell Ig heavy-chain repertoires to
characterize the diversity of the heavy-chain CDR3 region and
the constituent V, D, and J segments that comprise it, in 30
NMZL cases to acquire insight into the nature of its cell of
origin and to identify mutation patterns reminiscent of antigen
selection processes. Our results show that NMZL cells have a
biased usage of IGHV genes in favor of specific segments. We
also shed light on the role of antigenic stimulation in the
aetiology of NMZL and in the maintenance of BCR integrity.
In addition, the postulated normal counterpart of this lympho-
ma consists of specific B lymphocyte subsets, with cases car-
rying unmutated and mutated IGHV genes which impact the
clinical outcome as observed in chronic B cell leukemia (B-
CLL) and other small B cell lymphomas.

Materials and methods

Patients and tissues samples

Thirty NMZL formalin-fixed paraffin-embedded (FFPE)
cases were selected from the files of the Department of
Medical Biotechnologies, University of Siena; Pathology
Unit, Careggi University Hospital, Florence; and
Department of Pathology, La Sapienza University, Rome. In
all the cases, the diagnosis of NMZLwas performed primarily
on lymph node localization in the absence of previous or con-
current involvement of any extranodal site, with the exception
of bone marrow. All the cases were reviewed by expert
h e m a t o p a t h o l o g i s t s b y m o r p h o l o g i c a l a n d

immunohistochemical criteria according to WHO classifica-
tion. In addition, to rule out a possible misdiagnosis of
lymphoplasmacytic lymphoma, all cases were analyzed for
MYD88 L265P mutation and two cases carrying the mutation
of this gene were excluded from the study [8, 9]. As further
validation of NMZL diagnosis, we also demonstrated the ab-
sence of glycosylation motifs in the VDJ regions of all the
analyzed cases, hence excluding concealed follicular lympho-
mas [10].

PCR amplification and high-throughput sequencing
by Roche 454 GS Junior instrument

Genomic DNAwas extracted from 5 to 10 μm of FFPE tissue
using a DNA extractor (MagCore NucleicAcid Extractor,
RBC Bioscience, Taiwan) and MagCore Genomic DNA
FFPE One-Step Kit, following the manufacturer’s recommen-
dations. Genomic DNA quality was assessed using BIOMED-
2 control gene PCR protocol and samples with a DNA product
size of ≥ 300 base pairs (bp) were analyzed [11]. Before ini-
tiating VDJ gene rearrangement analysis by HTS, all cases
were analyzed to evaluate clonality according to the
BIOMED-2 protocol [11]. NGS analysis was performed on
454 GS Junior system (Roche) previously described [12].
Data analysis was performed using the Roche (Basel,
Switzerland) proprietary software package for the 454 GS
Junior system (Roche). Image acquisition, image processing,
and signal processing were performed during the run.

Bioinformatical analysis

The bioinformatical analysis was performed by using the 454
GS Junior system, as previously described [12].

Sequence data analysis

To determine the IGHV, IGHD, and IGHJ gene usage and the
mutational status of each IGHV gene, sequences were submit-
ted to the international ImmunoGeneTics (IMGT,Montpellier,
France) database [13, 14] and aligned to the closest matching
germ line gene by using the IMGT/V-QUEST and IMGT/
Junction Analysis software [15, 16], as previously described
[12].

Clustering of VH CDR3 sequences

The length of the VH CDR3 of the immunoglobulin heavy-
chain gene rearrangement was computed using the IMGT da-
tabase starting from the first codon after the conserved cyste-
ine up to the position preceding the conserved tryptophan of
the JH gene segment, as previously described [17–19].
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Antigen selection

We used a recently published tool known as BASELINE (i.e.,
Bayesian estimation of antigen-driven selection; http://clip.med.
yale.edu/selection) to detect and quantify antigen selection in
individual or multiple sequences based on mutational patterns,
normalized to germ line sequences, and provided a visual
representation of differences in selective pressure [20, 21].
Clonally related sequences and productive heavy-chain V-re-
gion sequences (CDR1-FWR2-CDR2-FWR3) were analyzed
using BASELINE version 1.3 (01/30/2014).

Typical antigen-driven activation results in positive selec-
tion in the complementary-determined regions (CDRs), which
directly interact with antigen, and negative selection in the
framework regions (FRs), which are more important for struc-
tural integrity. Patterns of selective pressure contrary to this
model indicate non-specific activation [22].

Statistical analysis

A multivariate analysis based on Cox’s proportional hazards
regression was performed to verify the potential relationship
between survival of the patients, mutational status, and critical
clinical parameters (e.g., age, ECOG, LDH, stage, and thera-
peutic regimen) [23].

Survival curves were plotted using the Kaplan-Meier meth-
od and were compared using log-rank test. According to
Cheson et al., overall survival (OS) was defined as the time
from diagnosis to death; patients who remained alive were
censored at the last date of follow-up [24]. Progression-free
survival (PFS) was defined as the time from diagnosis to the
date of first documented recurrence. Disease-specific (or
disease-related) survival (DSS) was calculated from the date
of diagnosis until the patient’s death due to the NMZL.
Statistical analysis was performed using SPSS software ver-
sion 20.0 [25]. For all the tests, p < 0.05 (two-sided) was
considered statistically significant.

Results

Histopathological and immunophenotypic features

Most of the cases were characterized by a parafollicular and/or
interfollicular infiltrate of neoplastic cells effacing the lymph
node architecture and, to a considerably lesser extent,
regressed residual lymphoid follicles, lacking well-formed
germinal centers with attenuated mantle cuffs. The neoplastic
cells were heterogeneous in appearance with monocytoid,
centrocyte-like blastic and plasmacytoid features. All of the
cases expressed pan-B cell markers (CD20, PAX5).
Moreover, CD23 was also negative in the vast majority of
the cases (21/28; 75%). CD21 showed a disrupted and

expanded residual meshwork. All of the cases were negative
for CD5 and cyclin D1. Germinal center markers (CD10,
BCL6) were likewise negative. IgD IHC was also negative
where performed. Conversely, IgM IHC, when available,
was positive.

High-throughput sequencing analysis of IGHV gene
repertoire in NMZL

A total of 180,050 reads were generated. During the platform-
specific processing, 70,904 reads failed the filtering process
owing to missing or incomplete barcodes. For our 28 samples,
109,146 reads were obtained as final 454 output with an av-
erage depth of 2831 reads, with a minimum and maximum
depth of 808 and 16,114 reads respectively. Unproductive
rearrangements were excluded from analysis.

The IGHV, IGHD, and IGHJ gene and allele usage were
obtained using the statistical analysis of IMGT/HighV-
QUEST available online. This analysis is performed automati-
cally on the “1 copy”| “single allele” (for V, D, and J) category.
All the 28 cases were clonal on NGS using the criterion that a
clonal cluster(s) must beat least fourfold more abundant than
the largest clonotype of the background [12, 26]. In particular,
the presumed monoclonal clusters, represented from 20 to 99%
of the total reads, confirm the results of GeneScan profiles
ranging from clonal to clonal with polyclonal background ac-
cording to BIOMED-2 criteria. When all the sequences were
aligned with IMGT tools for nucleotide analysis of immuno-
globulin (IG), polymorphisms, and IG mutations, clusters
showing identical IGHV, IGHD, and IGHJ usage and CDR3
regions as the presumedmonoclonal clusters were detected. All
the results representative of clonotypes AA (amino acid) iden-
tified by NGS were overlapped and confirmed with the results
obtained by Sanger sequencing.

Most of the cases were mutated (20/28; 71.5%) (M-
NMZL) with homologies to the respective germ line genes
ranging from 85 to 97, 83%, whereas 8/28 (28.5%) were
unmutated (U-NMZL) (Fig. 1).

We demonstrated intraclonal diversity (ID) in all (100%)
the patients with a mutated IGHV; ongoing SHM have been
confirmed by hundreds of reads. Detailed results are reported
in Supplementary Table 1. Subclones have been identified
with a mean of 2–6 subclones per case. Figure 2 illustrates
an example of the branching of the lymphoma clone and
shows that distinct subclones evolved along similar, although
separate pathways.

Nineteen productive heavy-chain V-region clonally related
sequences were evaluated for select ion pressure
(Supplementary Table 1). The range of mutations was 30–7
with a V-region germ line identity% range 85.00–96.85. The
BASELINEmethod found positive selection in the CDRs and
negative selection in the FRWS of the heavy chains in 4 pa-
tients indicating selective pressure by antigens. In the
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remaining cases, we observed only a negative selection in the
FRWS indicating a non-specific activation by the antigen/
antigens to maintain the structural conservation and integrity
of BCR [27] (Supplementary Table 2; Supplementary
Figure 1).

Analysis of IGHV Gene Usage

Clonal and in-frame VH gene sequences from NMZL cases
derived from VH1, VH2, VH3, VH4, and VH6 families and
were further stratified according to the mutational status. In

Fig. 2 Example of branching of a lymphoma clone. The four different
clusters represented show identical IGHV, IGHD, and IGHJ usage and
related CDR3 regions but exhibit different somatic mutations. The
mutations indicated in black color in the box are common mutations,
while those in red, blue, and green are ongoing mutations. The

dominant clone is confirmed by 56% of the sequences of clonotype AA
and carried 16mutations. The other three minor clones are represented by
6%, 14%, and 4% of the sequences of the clonotype AA. Respectively, all
of the clones shared common mutations of the first clone (6% of
sequences)

Fig. 1 Gene usage in mutated vs
unmutated NMZL. 6 out of 28
cases (21.4%) utilized VH1-69
gene (3 mutated; 3 unmutated), 5
out of 28 (17.8%) were most
homologous to a VH1-2 gene
segment (3 mutated; 2
unmutated), and 4 of 28 (14.2%)
were most homologous to a VH3-
7 gene segment (3 mutated; 1
unmutated) while the remaining
13 were most closely related to
different VH genes from the VH2
family (VH2-5), VH3 family(
VH3-23, VH3-30, VH3-33, VH3-
48), VH4 family (VH4-31, VH4-
34, VH4-59), and VH6 family
(VH6-1)
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particular, 6 out of 28 cases (21.4%) utilized the same VH1-69
gene (3 mutated; 3 unmutated), 5 out of 28 (17.8%) were most
homologous to a VH1-2 gene segment (3 mutated; 2
unmutated), and 4 of 28 (14.2%) were most homologous to
a VH3-7 gene segment (3 mutated; 1 unmutated) while the
remaining 13 were most closely related to different VH genes
from the VH2 family (VH2-5), VH3 family (VH3-23, VH3-30,
VH3-33, VH3-48), VH4 family (VH4-31, VH4-34, VH4-59),
and VH6 family (VH6-1) (Fig. 1).

In addition, we also determined the IGHD and IGHJ genes
used in IGHV-D-J sequences analyzed. The IGHD genes used
were IGHD3 (35.7%), IGHD1 (21.4%), and IGHD2 (14.2%)
and several others to a much lower extent, including IGHD4,
IGHD5, and IGHD6. The IGHJ gene usage in all cases
showed that IGHJ4 (46.4%) was used the most, followed by
IGHJ6 (35.7%), IGHJ3 (3.57%), and IGHJ5 (7.1%).

The average VH CDR3 length of NMZL cells was 15, 7
AA ranging from 8 to 23 residues. In addition, we compared
the CDR3 regions of the NMZL cases to previously published
cases of CLL and SMZL that used the same VH region, and
they differ in length and AA composition [6, 17, 18].

Pattern of progression and survival

After a median follow-up of 5 years, no patient had developed
splenic or MALT involvement during the course of disease.
Additional clinical information is summarized in Table 1.

At the time of the analysis, 12 patients were deceased.
Death related to lymphoma occurred in 5/28 patients.
Relapse of disease occurred in 10 patients. Global median

time of overall survival (OS) was 66 months (95% CI 52.9–
79.0).

Despite the low sample size, we applied the multivariate
Cox survival analysis. At univariate analysis, ECOG (p
0.035), IGHV status (p 0.005) with LDH (p 0.026), and
IGHV status (p 0.0002) were respectively significant for OS,
DSS, and PFS (Supplementary Table 3). However, elevated
LDH and ECOGwere infrequent (18% and 3%, respectively).
Considering all the bivariate combinations, only the mutation-
al status remains significant in DSS and PFS analyses. Cox
models with higher dimensionality were completely not sta-
tistically significant. Therefore, the mutational status showed
to be an independent factor affecting survival and consequent-
ly clinical variables did not significantly affect survival or
acted as adjustment factors changing the mutational status
contribution. Accordingly, patients were stratified on the
grounds of IGHV mutational status. A median time of overall
survival of 62 months (95% CI 46.5–77.5) and 72 months
(95% CI 49.6–94.4) was shown for U-NMZL and M-NMZL
patients, respectively. However, Kaplan-Meier survival curves
for OS (Fig. 3a) showed a non-statistically significant differ-
ence between unmutated and mutated patients (p = 0.18).
Interestingly, disease-specific survival (Fig. 3b) and
progression-free survival (Fig. 3c) both exhibited a high sig-
nificant difference between the two groups (p < 0.01). In par-
ticular, for the unmutated patients, the median times of DSS
and PFS were 66 months (95% CI 48.9–83.1) and 36 months
(95% CI 16.3–55.7), respectively.

Discussion

Analyses of antigen-receptor genes in human lymphoma rep-
resent a useful tool in understanding their pathogenesis and
clonal history [7].

Somatic hypermutations seem to be restricted to B cells
proliferating within the microenvironment of the germinal
center (GC). As a consequence, the presence of somatic mu-
tations in the variable region of the rearranged immunoglob-
ulin genes is actually considered the hallmark of B cells that
have participated in a GC reaction [28]. Moreover, the pattern
of the distribution of somatic mutations and a preferential
usage of immunoglobulin variable, diversity, and joining seg-
ments may reveal a role of antigens in driving B cell prolifer-
ation. Clustering of nucleotide mutations leading to an amino
acid substitution in the CDRs of VH segments is considered to
indicate that the hypermutation process is driven by an antigen
[22].

Here we show that in NMZL cases, the VH1 family genes
were significantly overrepresented compared with transitional
B cells, naive B cells, and IgM memory B cells [29]. In par-
ticular, our data are in accordance with previous studies which
showed a biased usage of the IGHV genes in favor of IGHV-1-

Table 1 Summarized clinical features with therapy of 28 NMZL cases

N/tot Percent

Clinical features

Male 15/28 53

Median age (years) 67

Age > 60 (years) 22/28 78

Peripheral lymph nodes 20/28 71

Abdominal/thoracic lymph nodes 8/28 29

Bone marrow involvement 11/28 40

Liver involvement 0/28 0

Spleen involvement 0/28 0

Pleural localization 0/28 0

LDH normal 23/28 82

ECOG ≥ 2 1/28 3

Global median OS (months) 66 (95% CI 52.9–79.0)

Treatments

Watch and wait 6/28 21

R-Bendamustine 18/28 3

R-Leukeran, R-FC 4/28 14

R-FC rituximab-fludarabine-cyclophosphamide
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69 (6 out of 28 cases; 21.4%) [30]. Conversely, we found an
overrepresentation of VH1-2 gene in our cohort of cases (5 out
of 28; 17.8%) which has been found mainly in SMZL [30].
VH1-2 is known to react with antigen exposed on apoptotic
cells, suggesting that at least a subset of NMZL may arise

from a self-antigen antibody producing B cell [6].
Furthermore, VH1-69 gene segment is the most used in hep-
atitis C virus–positive NMZL [31]. However, the use of VH1-
69 gene in our series is not restricted to hepatitis C virus
infection. In fact, VH1-69 utilizing antibodies are also found
in protective antibody responses to additional viral pathogens
such as influenza infection, respiratory syncytial virus infec-
tion, and HIV-1 [32]. On the other hand, we could not confirm
in this series an overrepresentation of VH4-34, as reported in
previous studies [30, 33].

In line with previous studies, 20 out of 28 cases (71.5%)
carried SHM in their immunoglobulin genes [30]. We con-
firmed ID in all the mutated NMZL subgroup of patients an-
alyzed, supporting the notion that the SHM mechanism re-
mains active post-transformation and outside the germinal
centers, further diversifying the clonotypic IG receptors.
Therefore, the finding of ongoing mutations as indicated by
intraclonal variations in NMZL provides the genetic evidence
that the tumor responds to antigen stimulation, which may
play an important role in its clonal expansion [34]. Several
other studies have also demonstrated germinal center–
independent SHM. In particular, Warsame et al. showed evi-
dence of ongoing mutations in micro dissected monocytoid B
cells and expression of activation-induced cytidine deaminase
(AID) which is required for SHM [35]. However, according to
the BASELINE method, we found a positive selection only in
4 cases, whereas in the remaining cases, there was an unspe-
cific antigenic stimulation that might reflect the necessity of
preserving the integrity of BCR enabling the neoplastic cells
to avoid apoptotic death [27]. Thus, this finding implies that
the presence of BCR itself is necessary to generate a survival
signal in the malignant cells.

Taking into account all of the above findings, the obvious
conclusion is that environmentally encountered antigen plays
at least some part in the maintenance of neoplastic phenotype
in NMZL. Hence, immunogenic and functional evidence sup-
ports a role for antigen in the natural history of a subset of
NMZL. However, the timing and duration of antigen interac-
tions and their relevance for evolution of the disease remain
elusive.

In addition, oncogenic events contribute to lymphoma
growth and progression and may represent the first step of
malignant transformation as demonstrated in recent genomic
studies. Consistent with the physiological involvement of
NOTCH, NF-κB, B cell receptor, and toll-like receptor signal-
ling in the differentiation of mature B cells into the marginal
zone B cells, many oncogenic mutations of genes involved in
these pathways have been identified in MZL [36, 37]. In par-
ticular, although the NMZL genetic signature largely overlaps
with SMNL, somatic coding-sequence mutations and dele-
tions of the receptor-type tyrosine phosphatase gene PTPRD
have been identified as a molecular feature of NMZL among
indolent B cell tumors [2].

Fig. 3 Survival analysis for NMZL according to the mutational status.
Kaplan-Meier survival curves for overall survival in U-NMZL and M-
NMZL patients (p = 0.18) (a). Kaplan-Meier survival curves for disease-
specific survival in U-NMZL and M-NMZL patients (p < 0.01) (b).
Kaplan-Meier survival curves for progression-free survival in U-NMZL
and M-NMZL patients (p < 0.01) (c)
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Interestingly, a subset of our cases (28.5%) did not carry
SHM. The existence of unmutated IGHV genes could mean
that the transformation leading to NMZL does not target ex-
clusively post-germinal center B cells that bear SHM and have
been submitted to T-dependent antigen selection. Conversely,
U-NMZL may represent a subgroup not arising from post-
germinal center B cells with a different pathogenesis which
originates from a cell that has maturated outside of the germi-
nal center and still maintains a naive-like epigenetic signature.
Indeed, the possible presence of both virgin B cells and
hypermutated B cells in NMZL suggests different modalities
for the recruitment of B cells in the marginal zone [38]. Thus,
in accordance with previous studies, the observed pattern of
VH mutations suggests that NMZL may originate from differ-
ent subsets of marginal zone B cells: the naive B cells that
express unmutated VH genes and memory B cells character-
ized by somatic mutations [34].

The molecular heterogeneity that characterizes NMZL may
thus reflect two molecular subtypes of the disease with two dif-
ferent cells of origin. The analysis of IGHV genes of other B cell
lymphomas, including chronic lymphocytic leukemia (CLL),
splenic marginal zone lymphoma (SMZL), and mantle cell lym-
phoma (MCL), has also revealed an unexpected heterogeneity in
mutational status [39]. This heterogeneity has also been related to
prognosis particularly in CLL, inwhich IGHV sequence analysis
has become widely used for the purpose of prognostication [40,
41]. No international prognostic scoring system is available for
NMZL and the value of biomarkers in NMZL remains unclear
because of the small size of the series, heterogeneity of treatment,
and lack of prospective clinical trials [17–45]. According to our
knowledge, this is the first report which points out at the muta-
tional status of the immunoglobulin genes as a prognostic bio-
marker for stratifyingNMZLpatients. In fact, cases characterized
by unmutated immunoglobulin genes show a more aggressive
clinical course. In particular, the disease-specific survival and the
progression-free survival were significantly different between
cases with mutated or unmutated IGHV genes. However, due
to a limited number of cases, our results need to be confirmed in
additional series of patients, possibly in prospective clinical trials,
before applied in clinical practice.

On the other hand, we did not detect a correlation between
the usage of a specific VH gene with survival probability.
Further studies with larger populations will be needed to deter-
mine whether there is an association between VH gene usage
and prognosis and whether there is a parallel or not with CLL.

In summary, we have shown that NMZL cells show a bi-
ased usage of IGHV genes in favor of specific segments and
the role of antigenic stimulation in the aetiology of NMZL by
maintaining BCR integrity. In addition, the postulated normal
counterpart of this lymphoma consists of specific B lympho-
cyte subsets, with unmutated and mutated IGHV genes,
expanding the overlap among small B cell lymphomas in
terms of cell of origin and clinical outcome.
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