
Vol.:(0123456789)1 3

Planta (2022) 255:93 
https://doi.org/10.1007/s00425-022-03867-6

ORIGINAL ARTICLE

Estimating peanut and soybean photosynthetic traits using leaf 
spectral reflectance and advance regression models

Ma. Luisa Buchaillot1,2 · David Soba3 · Tianchu Shu4 · Juan Liu5 · Iker Aranjuelo3 · José Luis Araus1,2 · 
G. Brett Runion6 · Stephen A. Prior6 · Shawn C. Kefauver1,2 · Alvaro Sanz‑Saez4 

Received: 16 November 2021 / Accepted: 3 March 2022 / Published online: 24 March 2022 
© The Author(s) 2022

Abstract
Main conclusion  By combining hyperspectral signatures of peanut and soybean, we predicted Vcmax and Jmax with 70 
and 50% accuracy. The PLS was the model that better predicted these photosynthetic parameters.

Abstract  One proposed key strategy for increasing potential crop stability and yield centers on exploitation of genotypic 
variability in photosynthetic capacity through precise high-throughput phenotyping techniques. Photosynthetic parameters, 
such as the maximum rate of Rubisco catalyzed carboxylation (Vc,max) and maximum electron transport rate supporting 
RuBP regeneration (Jmax), have been identified as key targets for improvement. The primary techniques for measuring 
these physiological parameters are very time-consuming. However, these parameters could be estimated using rapid and 
non-destructive leaf spectroscopy techniques. This study compared four different advanced regression models (PLS, BR, 
ARDR, and LASSO) to estimate Vc,max and Jmax based on leaf reflectance spectra measured with an ASD FieldSpec4. Two 
leguminous species were tested under different controlled environmental conditions: (1) peanut under different water regimes 
at normal atmospheric conditions and (2) soybean under high [CO2] and high night temperature. Model sensitivities were 
assessed for each crop and treatment separately and in combination to identify strengths and weaknesses of each modeling 
approach. Regardless of regression model, robust predictions were achieved for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50). Field 
spectroscopy shows promising results for estimating spatial and temporal variations in photosynthetic capacity based on leaf 
and canopy spectral properties.

Keywords  Advanced regression models · ARDR · Bayesian ridge model · High-throughput phenotyping · Jmax · Lasso · 
Leaf reflectance · Peanut · Photosynthesis · PLS · Soybean · Vc,max
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Jmax	� Maximum electron transport rate supporting 
RuBP regeneration

LASSO	� Least absolute shrinkage and selection operator 
model

NIR	� Near-infrared spectral reflectance
PLSR	� Partial least squares regression model
RuBP	� Ribulose 1,5-bisphosphate
SWIR	� Shortwave infrared spectral reflectance
Vc,max	� Maximum rate of rubisco-catalyzed 

carboxylation
VIS	� Visible spectral reflectance

Introduction

One of the great challenges for the future is the production of 
sufficient food for a growing population. From 1961 to 2012, 
the human population more than doubled from approxi-
mately 3 billion to 7 billion people and a further increase to 
9.3 billion is projected for the year 2050 (FAOSTAT 2016). 
This means that crop production must double by 2050 to 
meet the predicted production demands of the global popu-
lation. However, achieving this goal will be a significant 
challenge for agriculture since crop yields would have to 
increase at a rate of 2.4% per year, yet the average rate of 
increase is only 1.3%, with yields stagnating in up to 40% 
of land under cereal production (Araus and Cairns 2014). 
Further, climate change will exacerbate this challenge by 
intensifying field crop exposure to abiotic stress conditions, 
including rising temperature, drought, and increased CO2 
concentration [CO2] (Christensen et al. 2007). This is a 
major issue because climatic factors since the end of the 
1980s have counterbalanced the wheat genetic progress 
of recent decades in Europe (Oury et al. 2012). Indeed, as 
observed by Oury et al. (2012) and Gray and Brady (2016), 
the beneficial effects expected from the increase in atmos-
pheric [CO2] in the World’s crop production during recent 
decades have been constrained by the effects of temperature 
increases and extended drought.

Grain legumes are the main source of proteins, miner-
als, and fibers for animals and humans (Meena et al. 2018). 
To achieve significant improvements in crop yield, breeding 
strategies aiming to increase biomass gains and crop pro-
ductivity need to focus on radiation uptake, photosynthetic 
efficiency, and harvest index (HI) (Reynolds et al. 2012; 
Koester et al. 2014). However, to date, breeding for higher 
photosynthetic efficiency or for tolerance to different envi-
ronmental stresses has only played a minor role in increas-
ing crop productivity over past decades (Zhu et al. 2010). 
In a rational sense, plant physiology research should focus 
on improving photosynthesis due to its central part in plant 
productivity (Long et al. 2004). Recently, different studies 

have advanced how to optimize photosynthetic processes in 
different crops (Ort et al. 2015; Simkin et al. 2019).

One way to improve crop photosynthesis is to increase 
our knowledge of genomic control of photosynthesis under 
different environmental conditions. To achieve this, diverse 
crop populations representing hundreds of cultivars need to 
be screened (phenotyped) under different environments to 
associate traits of interest (i.e., photosynthetic parameters) 
with specific genomic regions. With the rise of genomic and 
bioinformatics technologies, phenotyping entire populations 
for traits of interest is the bottleneck that delays scientific 
advancement in genomics (Adachi et al. 2011; Yan et al. 
2015; de Oliveira Silva et al. 2018; Oakley et al. 2018). 
Therefore, genomic approaches and breeding solutions need 
to implement new high-throughput phenotyping techniques 
that allow rapid measurement of photosynthetic traits for 
screening cultivars in the shortest amount of time (Araus and 
Cairns 2014; Araus et al. 2018). By improving techniques 
for measuring photosynthetic traits, more efficient cultivar 
selection will likely improve both yield potential and resil-
ience to abiotic stresses.

Photosynthetic performance is frequently measured with 
an infrared gas analyzer that assesses plant CO2 assimila-
tion rate. Photosynthetic parameters, such as leaf mid-day 
photosynthesis and leaf diurnal photosynthesis, can be used 
to assess in situ plant performance under different abiotic 
stresses (Sanz-Sáez et al. 2012, 2017). More detailed pho-
tosynthetic parameters, such as maximum rate of rubisco-
catalyzed carboxylation (Vc,max) and maximum electron 
transport rate supporting RuBP regeneration (Jmax), have 
been identified as selection parameters for tolerance to abi-
otic stress, such as drought (Aranjuelo et al. 2009, 2013), 
elevated tropospheric ozone (Yendrek et al. 2017), or for 
improved performance under elevated atmospheric CO2 
(Ainsworth et al. 2004; Soba et al. 2020). Depending on 
the parameter to be measured, sampling can take a few min-
utes each (e.g., mid-day photosynthesis) or 20–60 min per 
sample for photosynthetic parameters, such as Vc,max and 
Jmax, which are calculated using photosynthesis to intercel-
lular CO2 curves or A–Ci curves (Farquhar et al. 1980; Long 
and Bernacchi 2003). In addition, Vc,max and Jmax are essen-
tial input parameters for the FvCB model (Farquhar et al. 
1980) that relates photosynthetic biochemistry responses to 
known environmental conditions (Von Caemmerer 2013). 
This model has also been used in earth systems models for 
predicting ecosystem responses to environmental changes 
(Rogers 2014).

Reflectance spectra at leaf and canopy levels can facili-
tate assessment of plant’s structure, nutritional status, and 
certain stress parameters. This includes estimating contents 
of chlorophyll, xanthophylls, nitrogen, phosphorus, fiber, 
sucrose (Gamon et al. 1997; Peñuelas and Filella 1998; 
Petisco et al. 2006; Asner and Martin 2008; Colombo et al. 
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2008; Ainsworth et al. 2014; Serbin et al. 2014; Dechant 
et  al. 2017; Yendrek et  al. 2017), and plant secondary 
metabolites (Couture et al. 2016; Vergara-Diaz et al. 2020). 
In addition, leaf level spectral reflectance has been used to 
predict photosynthetic parameters, such as Vc,max and Jmax 
in soybean (Ainsworth et al. 2014), wheat (Silva-Perez et al. 
2018), maize (Heckmann et al. 2017; Yendrek et al. 2017), 
and trees (Serbin et al. 2012) as well as dark respiration in 
wheat (Coast et al. 2019).

Although translating data acquired with a field spectrom-
eter using a leaf clip to scalable imaging approaches using 
multispectral or hyperspectral cameras in drones or other 
aerial platforms (frequently limited to the 350–1000 nm 
spectral range) may be further complicated by the hetero-
geneous nature of canopies, such techniques could greatly 
expand the scope of applicability of these measurements. In 
the above-mentioned research, relationships between photo-
synthetic parameters and complex data arrays captured by 
leaf level spectrometers need to be analyzed using complex 
multivariate statistical models. Partial least squares regres-
sion (PLSR) is the most commonly used model (Serbin 
et al. 2012; Ainsworth et al. 2014; Heckmann et al. 2017; 
Silva-Pérez et al. 2017; Yendrek et al. 2017). However, Fu 
et al. (2020) recently reported that other machine learning 
algorithms such as Least Absolute Shrinkage and Selection 
Operator (LASSO) can estimate photosynthetic parameters 
as accurately or better than PLSR, since LASSO is more 
robust when comparing different environments or plant 
species (Tibshirani 1996). Therefore, to bypass PLSR per-
formance problems, we propose to explore other powerful 
machine learning algorithms with appropriate feature extrac-
tion capacities, which include LASSO (Vergara-Diaz et al. 
2020), Bayesian Ridge (BR; Neal 1996), and Automatic Rel-
evance Determination Regression (ARDR; Tipping 2001).

For these multivariate models, utilized data must repre-
sent enough phenotypic variability to support proper model 
functioning. To achieve sufficient phenotypic variability, 
several researchers have applied a range of growth condi-
tions, including different levels of abiotic stresses, such as 
drought (Silva-Perez et al. 2017), elevated tropospheric 
ozone (Ainsworth et al. 2014; Yendrek et al. 2017), or high 
temperature (Serbin et al. 2012). Another means for increas-
ing phenotypic variation is by including several related spe-
cies in the same model. For example, Doughty et al. (2011) 
used 149 tropical tree species to create a PLSR model to 
estimate mid-day photosynthesis using canopy hyperspectral 
imaging; and Serbin et al. (2012) combined hyperspectral 
data of two tree species to estimate Vc,max. However, to the 
best of our knowledge, no published study has combined 
multiple leguminous row crops species. In our research, 
we focused on soybean (Glycine max) and peanut (Arachys 
hypogea), which are leguminous crops often grown under 
high abiotic stress levels (drought and elevated temperature) 

in the southeastern United States. These legume crops are 
also important in rotation with corn and cotton.

The aims of this study were (i) to estimate photosynthetic 
capacity parameters, such as mid-day photosynthesis, leaf 
chlorophyll content (LCC), Vc,max, and Jmax of two legume 
crops (soybean and peanut) using full-range leaf level reflec-
tance spectra (VIS–NIR–SWIR, 400–2500 nm) with PLSR, 
BR, ARDR and LASSO models and (ii) to simulate pho-
tosynthetic parameter model performance using four com-
mon types of sensors with more limited wavelength ranges: 
VIS–NIR (350–1000 nm), NIR–SWIR (1000–2500 nm), 
SWIR (1400–2500 nm), and an advanced multispectral sen-
sor imitating the ESA Copernicus Sentinel 2 satellite with 
12 spectral bands.

Materials and methods

Trial setup and design

Experiments were conducted in field trials and controlled 
conditions located at Auburn University (Alabama, USA). 
The study was carried out with two leguminous crops (soy-
bean and peanut) that were exposed to different growth con-
ditions. The first experiment involved two soybean (Glycine 
max. L) cultivars grown under ambient and elevated [CO2] 
at an Open Top Chamber Facility. The second experiment 
involved four soybean cultivars grown under high night 
temperature in growth chambers. The third experiment was 
performed with 6 peanut (Arachis hypogea L.) cultivars 
grown under well-watered and water-stress conditions in a 
greenhouse.

Experiment 1: soybean cultivar response to elevated 
[CO2]

Two soybean cultivars representing high (PI398223) and low 
(PI567201A) water use efficiencies (WUE) were chosen for 
the study based on previous screening by Dhanapal et al. 
(2015). The two cultivars were planted on 16 May 2019 in 
20 L pots filled with commercial growth media (Pro-Mix, 
Premier Tech, Quebec, Canada) at the Open Top Chamber 
Facility located at the USDA-ARS National Soil Dynamics 
Laboratory, Auburn, AL, USA. Open top chambers (OTC) 
(Rogers et al. 1983), encompassing 7.3 m2 of ground sur-
face area, were used to deliver target [CO2] of ~ 410 ppm 
(ambient) or ambient plus 200 ppm (elevated) [CO2] dur-
ing light hours using a delivery and monitoring system 
described elsewhere (Mitchell et al. 1995). There were four 
replicate chambers of each CO2 level for a total of eight 
experimental plots. Each OTC held two pots of each cultivar 
to have two sub-replicates for each plot. The experiment 
was conducted as a split plot design with CO2 level being 
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the main plot factor and cultivar being the split plot factor. 
Mid-day photosynthesis and A–Ci curves were performed 
when plants were at the beginning of pod development (R3, 
Fehr et al. 1971, 15 July) and at the beginning of seed filling 
(R5, 26 July) according to growth stages defined by Fehr 
et al. (1971). Relative chlorophyll content and leaf hyper-
spectral reflectance measurements were performed concur-
rently with photosynthetic parameter measurements. More 
detailed information on experimental design was previously 
reported by Soba et al. (2020).

Experiment 2: soybean cultivar response to high 
night temperatures

Four soybean cultivars (PI360846, DS25-1, PI458098, and 
Agx9) were planted in 3.8 L pots containing a peat-moss: 
perlite potting mixture (2:1) on 1 May 2019. Plants were 
grown at the Auburn University Plant Science Research 
Center greenhouse complex. Temperatures were maintained 
at 28/20 °C (day/night) until plants reached the first flow-
ering stage (R1). To impose night temperature treatments, 
plants were then moved to two Conviron CMP 6010 growth 
chambers (Conviron, Manitoba, Winnipeg, Canada) main-
tained on a 12 h photoperiod (1200 µmol  m−2 s−1 PAR) 
with 50/70% RH (day/night). Control plants were grown 
at 30/20 °C (day/night) and high night temperature plants 
were grown at 30/30 °C (day/night). Three replicates per 
cultivar and chamber were used and the whole experiment 
was repeated twice. Fourteen days after temperature treat-
ments were imposed, mid-day photosynthesis, A–Ci curves, 
LCC, and leaf hyperspectral reflectance were performed as 
explained below.

Experiment 3: peanut cultivar response to drought

Six peanut cultivars (AUG16-28, AU17, 18H19-3738, G06-
G, AU8-19, and AU18-21) were planted at the Auburn Uni-
versity Plant Science Research Center greenhouse complex 
on 21 April 2019. Plants were grown in 20 L pots containing 
a mixture of sand and sandy-loam field soil (1:1, w/w) col-
lected from EV-Smith Research Center, Shorter, AL, USA. 
Plants were maintained under well-watered conditions (80% 
relative soil water content, RSWC) until 60 days old; at this 
time, the drought experiment was initiated. Weighing pots 
every 2–3 days initially and every day towards the end of 
the experiment allowed RWSC to be gravimetrically main-
tained. Well-watered plants were maintained at 80% RSWC 
while drought plants were maintained at a 30% RSWC. Four 
replicates per cultivar and stress treatment were used in this 
experiment. At 20 and 40 days after drought initiation (i.e., 
80- and 100-day-old plants), mid-day photosynthesis, A–Ci 
curves, LCC, and leaf hyperspectral reflectance measure-
ments were performed as explained below.

Physiological parameter assessments

In this study, mid-day photosynthesis, A–Ci curves, and 
SPAD measurements were taken from 3 different experi-
ments and coupled with full-range (350–2500 nm), high-
resolution (3–8 nm) spectral reflectance measurements taken 
with a Field Spec Hi-Res four field spectrometer (Analytical 
Spectral Devices, Boulder, CO, USA) to predict physiologi-
cal parameters that characterize photosynthetic traits.

Mid‑day photosynthesis measurements

Depending on experiment size, mid-day photosynthesis 
measurements were taken one day before A–Ci curves 
using two or three LI-6400 (Li-Cor Biosciences, Lincoln, 
NE, USA) systems. Measurements were performed on fully 
expanded young leaves corresponding with the third/forth 
leaf from the top in soybean, and second/third leaf from 
the top of the main stem in peanut. Prior to measurements, 
systems were set to match environmental growth conditions 
(light intensity and temperature) and maintained at a relative 
humidity of 60–70%. While photosynthesis measurements 
were in progress, relative chlorophyll content and spectral 
reflectance measurements were also performed on the same 
leaves using a SPAD meter (Minolta SPAD-502, Spectrum 
Technologies Inc., Plainfield, IL, USA) and the Field Spec 
Hi-Res 4 field spectrometer, respectively.

A–Ci curves

To calculate maximum rate of rubisco-catalyzed car-
boxylation (Vc,max) and maximum electron transport rate 
supporting RuBP regeneration (Jmax), A–Ci curves were 
performed at different developmental stages in each experi-
ment. In general, the A–Ci curves were the same for pea-
nut and soybean except for different light saturation points: 
1750 μmol m−2 s−1 PAR for soybean (Ainsworth et al. 2004) 
and 2000 μmol m−2 s−1 PAR for peanuts (Ferreyra et al. 
2000). Photosynthesis was initially induced at the growth 
[CO2] (410 ppm for ambient and 610 ppm for elevated 
CO2 treatments), and then [CO2] was reduced stepwise to 
the lowest concentration of 50 ppm. Afterwards, [CO2] 
was increased stepwise to the highest CO2 concentration 
of 1500 ppm. A total of 11 measurements per curve were 
recorded (Sanz-Sáez et al. 2017). During measurements, 
block temperature was set at 28 °C (i.e., mean mid-day tem-
perature at Auburn, AL). The equations and spreadsheet 
developed by Sharkey et al. (2007) were used to calculate 
Vc,max and Jmax normalized at 25 °C as it has been demon-
strated by (Khan et al. 2021) that different temperatures and 
the effect on reflectance does not affect prediction of these 
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normalized parameters. While A–Ci curves were taken, con-
current spectral reflectance measurements were performed 
on the same leaves.

Relative chlorophyll content

Relative chlorophyll content was taken on the same mid-day 
photosynthesis leaves using a SPAD-502 chlorophyll meter 
(Konica Minolta, Tokyo, Japan). Five subsample measure-
ments per leaf were collected and averaged.

Leaf spectral reflectance measurements

Leaf spectral reflectance was measured with a FieldSpec 
Hi-Res 4 concurrently on the same leaves used for photo-
synthetic measurements. This device has three sensors with 
a full spectro-radiometer range of 350–2500 nm, with a 
resolution of 3 nm in visible (VIS; 350–700) and near-infra-
red (NIR; 700–1000 nm) and 8 nm in shortwave-infrared 
(SWIR; 1000–2500 nm). Measurements were taken via a 
leaf clip coupled to a fiber-optic cable. The FieldSpec has a 
radiometrically calibrated internal light source, which was 
standardized for relative reflectance using white reference 
measurements every 15 min. For each leaf, 6 reflectance 
measurements were recorded on different regions of a single 
leaf per pot. We used the FieldSpectra package in R to aver-
age the six samples and align the VIS, NIR, SWIR sensors 
with a spectral splice correction (Serbin et al. 2014; Yendrek 
et al. 2017).

To accomplish the second research aim, we simulated if a 
more limited spectral range (corresponding to other remote 
sensing devices) would be able to estimate photosynthetic 
parameters with the same accuracy as the full-range spec-
tra achieved with the Field Spec HiRes4. Simple spectral 
resampling of four different sensors was performed to sim-
ulate commercial spectrophotometer sensors, such as the 
UniSpec-DC VIS/NIR (310–1100 nm; PP Systems, Ames-
bury, MA, USA), the USB 2000 VIS/NIR (340–1014 nm; 
Ocean Optics, Dunedin, FL, USA), and the Liga SWIR 
spectrophotometer (850–1888 nm; STEAG Micro Parts, 
Dortmund, Germany). We also included a resampling simu-
lation for the bands and bandwidths of the ESA Copernicus 
Sentinel-2 satellite, with 12 spectral bands (443, 494, 560, 
665, 704, 740, 781, 834, 944, 1375, 1612, and 2194 nm) 
representing VIS, NIR, and SWIR (see more in Drusch et al. 
2012; Segarra et al. 2020).

Statistical analysis of measured and estimate values

Statistical analyses were conducted using R Studio (RStu-
dio Team 2020) and Python 3.7 (Python Software Foun-
dation, https://​www.​python.​org) via a Jupiter notebook 
(Wofford et al. 2019). Effects of abiotic stress treatments 

and differences between cultivars on studied variables were 
assessed using analysis of variance (ANOVA) in R Stu-
dio. We also analyzed correlations between photosynthetic 
parameters against each spectrum band by Pearson’s correla-
tion using R Studio.

With respect to the different advance regression models, 
we used the SciPy module (Jones et al. 2001; Varoquaux 
et al. 2015) in Python 3.7 and the Scikit-Learn library for 
the estimation of different parameters to estimate deter-
mination (R2) and the root means squared error (RMSE). 
For cross-validation, we used the “train test split method” 
where, we split our data into training (60% of the data used 
to build the model) and testing (40% of the data used to test 
the model). This method quantifies the prediction error, the 
RMSE, which measures the average prediction error made 
by the model in predicting the outcome for an observation. 
That is, the average difference between the observed known 
outcome values and the values predicted by the model. Asso-
ciations between photosynthetic parameters (response vari-
ables) and the leaf reflectance spectrum (explanatory) vari-
ables were analyzed using four advances models: (i) Partial 
Least Squares Regression (PLSR) is based on the dimen-
sion reduction method (Wold et al. 2001). For this model, 
we used between 5 and 11 components, choosing the num-
ber of components that gave the highest R2 and the lower 
RSME; (ii) Least Absolute Shrinkage and Selection Opera-
tor (LASSO) is a shrinkage method (Tibshirani 1996); (iii) 
Bayesian ridge (BR) and (iv) Automatic relevance determi-
nation regression (ARDR) are both high-dimensional meth-
ods (Neal 1996; Tipping 2001). Figures were prepared using 
the matplotlib (Hunt 2019) and Seaborn Python (Waskom 
et al. 2017) modules in Python 3.7.

Results

Effect of abiotic stress and cultivar 
on photosynthetic parameters

Analyzing the effect of abiotic stress and cultivars can 
yield valuable insights into phenotypic range of varia-
tion within each experiment. In Experiment 1, the two 
soybean cultivars showed significant effects of [CO2] on 
mid-day photosynthesis and LCC, but not on Vc,max and 
Jmax (Table 1 and Fig. S2). We observed treatment effects 
for mid-day photosynthesis and LCC (Table 1a). In sum-
mary, phenotypic variation was noticeable with a range 
of 17.01–36.22 µmol m−2 s−1 for mid-day photosynthesis, 
34.55–51.35 for LCC, 182.9–348.4 µmol m−2 s−1 for Vc,max, 
174.7–263.7 µmol m−2 s−1 for Jmax, and 29.4–30.37 °C for 
leaf temperature. In Experiment 2, four soybean cultivars 
were grown under high night temperature (30/30 °C day/
night) for comparison to controls (30/20 °C day/night). 

https://www.python.org
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Cultivar effects with treatment showed a significant effect 
on mid-day photosynthesis, LCC, and Jmax (Table  1b). 
Overall, phenotypic variation was noticeable with a range 
of 11.52–32.68 µmol m−2 s−1 for mid-day photosynthesis, 
34.01–53.95 for LCC, 48.01–135.2 µmol m−2 s−1 for Vc,max, 
61.01–165.1 µmol m−2 s−1for Jmax, and 29.9–30.33 °C for 
leaf temperature. In Experiment 3, the effect of drought 
was significant for all measured peanut parameters except 
for Vc,max and Jmax (Table 2). Cultivars only showed sig-
nificant effects for LCC and Jmax. The interaction effects 
of drought and cultivars was only slightly significant for 
Vc,max (P = 0.094). Phenotypic variation was percepti-
ble since mid-day photosynthesis ranged from 5.051 to 
26.41  µmol  m−2  s−1, LCC varied from 42.30 to 52.45, 
Vc,max varied from 64.38 to 171.3 µmol m−2 s−1, Jmax ranged 
from 79.3 to 206.1  µmol  m−2  s−1, and 28.6 to 30.5  °C 
for leaf temperature. When phenotypic variation of all 
three experiments was considered together, the range for 
mid-day photosynthesis was 5.051–36.22 µmol  m−2 s−1, 
34.55–53.95 for LCC, 48.01–348.4 µmol m−2 s−1 for Vc,max, 
61.01–263.7 µmol m−2 s−1 for Jmax, and 26.33–31.55 °C 

for leaf temperature (Fig. S2, shows the Box plot for each 
experiment).

Relationships between spectral signatures 
and photosynthetic parameters

Figure 1 presents the sensitivity of leaf reflectance spectrum 
for different species and abiotic stresses. Under high night 
temperature, soybean reflectance spectrum shows higher 
variability than the control with a larger peak at ~ 550 nm 
and wider reflectance band between ~ 750–1400, 1550–1800 
and 2000–2300 nm (Fig. 1a, b). Elevated CO2 in soybean 
tended to reduce variability of the reflectance spectrum 
between ~ 500–600 and 750–1400 while maintaining the 
variability in the reflectance spectrum between 1550–1800 
and 2000–2300 nm (Fig. 1c, d). In peanut, drought increased 
variability at all wavelengths with the exception of the 
500–600 nm range (Fig. 1e, f). When comparing reflectance 
of the two legume species, we noted that peanut added a 
lot of spectral variation in the range from 750 to 2300 nm, 

Table 1   Mean values of mid-day photosynthesis (µmol m−2 s−1), leaf 
chlorophyll content (LCC, arbitrary units), maximum rate of rubisco-
catalyzed carboxylation (Vc,max, µmol m−2  s−1), maximum electron 
transport rate supporting RuBP regeneration (Jmax, µmol m−2  s−1), 

and leaf temperature (°C) per each treatment. (a) Experiment 1: two 
varieties of soybean grown at 410 ppm and 610 ppm of [CO2]; n = 32. 
(b) Experiment 2: four soybean varieties grown at low (20  °C) and 
high (30 °C) night temperature; n = 48

Levels of significance: x, P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001

(A)
Genotype Treatment Photosynthesis 

(µmol m−2 s−1)
LCC (arbitrary unit) Vcmax (µmol m−2 s−1) Jmax (µmol m−2 s−1) Leaf Temperature (°C)

Pi398223 410 23.3 ± 3.6 b 45.5 ± 3.6 a 249.5 ± 44.5 ab 212.2 ± 23.3 a 30.31 ± 0.388 a
Pi567201 410 25.1 ± 3.9 b 41.6 ± 3.3 b 269.8 ± 50.5 a 227.8 ± 31.9 a 30.06 ± 0.708 a
Pi398223 610 30.4 ± 2.1 a 46.3 ± 3.5 a 227.2 ± 22.7 b 211.4 ± 19.7 a 30.37 ± 0.706 a
Pi567201 610 31.2 ± 4.8 a 46.7 ± 2.2 a 257.4 ± 40.9 ab 219.2 ± 16.2 a 29.42 ± 1.377 a
ANOVA [CO2] 0.001*** 0.15* 0.242 0.569 0.354
ANOVA Varieties 0.344 0.13 0.092· 0.173 0.06·
ANOVA [CO2]*Varieties 0.678 0.077· 0.733 0.646 0.265

(B)
Genotype Treatment Photosynthesis 

(µmol m−2 s−1)
LCC (arbitrary unit) Vcmax (µmol m−2 s−1) Jmax (µmol m−2 s−1) Leaf Temperature (°C)

PI360846 Low T 17.7 ± 5.2 b 45.1 ± 0.6 ab 72.7 ± 28.6 a 102.6 ± 33.7 bc 30.06 ± 0.059 ab
PI458098 Low T 21.4 ± 4.8 ab 49.8 ± 3.7 a 91.7 ± 37.2 a 128.6 ± 43.1 ab 29.98 ± 0.418 ab
DS25-1 Low T 22.2 ± 1.3 ab 38.4 ± 3.9 c 82.7 ± 9.5 a 111.0 ± 10.2 abc 29.86 ± 0.450 b
AG48 × 9 Low T 27.2 ± 3.9 a 45.9 ± 1.5 a 107.6 ± 13.1 a 149.0 ± 16.6 a 29.98 ± 0.216 ab
PI360846 High T 16.9 ± 5.3 b 47.3 ± 4.7 a 100.6 ± 29.1 a 136.3 ± 34.3 ab 30.33 ± 0.170 a
PI458098 High T 16.9 ± 0.5 b 50.1 ± 4.1 a 84.7 ± 29.7 a 108.0 ± 14.7 abc 29.91 ± 0.188 ab
DS25-1 High T 15.6 ± 3.6 b 39.7 ± 3.2 bc 68.7 ± 7.4 a 78.67 ± 16.3 c 30.08 ± 0.202 ab
AG48 × 9 High T 27.5 ± 5.1 a 45.7 ± 3.2 a 109.3 ± 26.0 a 146.6 ± 25.2 ab 30.01 ± 0.146 ab
ANOVA Temperature 44.81 0.522 0.833 0.624 0.312
ANOVA Varieties 0.010** 0.002** 0.303 0.042* 0.561
ANOVA Temp*Varieties 0.999 0.999 0.999 0.999 0.999
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Table 2   Mean values of midday photosynthesis (µmol m−2 s−1), leaf 
chlorophyll content (LCC, arbitrary units), maximum rate of rubisco-
catalyzed carboxylation (Vc,max, µmol m−2  s−1), maximum electron 
transport rate supporting RuBP regeneration (Jmax, µmol m−2  s−1), 

and leaf temperature (°C) in six varieties of peanut grown under well-
watered (WW, 80% SWC) and water-stress (WS, 30% SWC) condi-
tions

Levels of significance: x, P < 0.1; *P < 0.05; **P < 0.01; ***P < 0.001; n = 48

Genotype Treartment Photosynthesis 
(µmol m−2 s−1)

LCC (arbitrary unit) Vc,max (µmol m−2 s−1) Jmax (µmol m−2 s−1) Leaf Temperature (°C)

18H19-3738 WW 22.2 ± 2.1 a 50.7 ± 1.4 bcd 126.2 ± 17.1 a 169.2 ± 14.9 ab 28.93 ± 0.906 ab
AU17 WW 21.1 ± 4.8 a 49.6 ± 1.9 cde 135.9 ± 19.9 a 179.9 ± 29.8 a 28.67 ± 0.727 b
AU18-21 WW 21.1 ± 1.9 ab 45.7 ± 0.8 e 129.6 ± 15.1 a 159.5 ± 31.4 abc 29.96 ± 0.662 ab
AU16-28 WW 20.2 ± 4.8 ab 46.6 ± 3.6 de 136.1 ± 20.4 a 183.4 ± 18.9 a 29.01 ± 0.974 ab
AU18-19 WW 17.9 ± 2.5 abc 46.9 ± 2.7 de 108.9 ± 19.2 abc 150.2 ± 22.6 abc 29.58 ± 1.377 ab
G-06-G WW 17.9 ± 5.0 abc 45.6 ± 2.2 e 123.1 ± 35.2 ab 139.8 ± 45.1 bcd 29.37 ± 1.489 ab
18H19-3738 WS 15.4 ± 3.5 bcd 56.6 ± 1.2 a 125.7 ± 40.4 ab 153.94 ± 31.5 abc 30.40 ± 0.640 ab
AU17 WS 14.1 ± 2.1 cd 53.1 ± 4.6 abc 131.1 ± 22.6 a 152.3 ± 5.8 abc 29.24 ± 0.688 ab
AU18-21 WS 10.7 ± 5.4 d 52.1 ± 4.1 abc 85.4 ± 32.8 c 109.1 ± 22.8 d 29.24 ± 0.688 ab
AU16-28 WS 12.5 ± 2.8 d 54.9 ± 2.7 ab 113.7 ± 14.6 abc 121.3 ± 26.7 cd 30.56 ± 0.707 a
AU18-19 WS 11.9 ± 3.2 d 54.8 ± 4.1 ab 135.4 ± 15.9 a 133.6 ± 37.3 bcd 30.58 ± 0.224 a
G-06-G WS 10.3 ± 1.8 d 49.3 ± 2.8 cde 89.1 ± 25.8 bc 126.7 ± 15.9 cd 29.47 ± 1.351 ab
ANOVA Drought 0.001*** 0.001*** 0.46 0.275 0.02*
ANOVA Varieties 0.154 0.001*** 0.196 0.092· 0.837
ANOVA Drought*Varieties 0.884 0.353 0.094· 0.352 0.461

Fig. 1   a Mean, ± standard devi-
ation (n = 24), and minimum 
and maximum leaf reflectance 
for soybean at high night tem-
perature grown in growth cham-
bers. b Mean, ± standard devia-
tion (n = 24), and minimum and 
maximum leaf reflectance for 
soybean at control temperature 
grown in growth chambers. 
c Mean, ± standard deviation 
(n = 18), and minimum and 
maximum leaf reflectance for 
soybean at 610 ppm grown at 
an Open Top Chamber Facility. 
d Mean, ± standard deviation 
(n = 18), and minimum and 
maximum leaf reflectance for 
soybean at 410 ppm grown at 
an Open Top Chamber Facility. 
e Mean, ± standard deviation 
(n = 24), and minimum and 
maximum leaf reflectance 
for peanut drought grown 
under greenhouse conditions. 
f Mean, ± standard deviation 
(n = 24), and minimum and 
maximum leaf reflectance for 
peanut irrigated grown under 
greenhouse conditions
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probably due to the drought treatment; meanwhile soybean 
added more variability in the 500–600 nm range (Fig. S1).

Pearson’s correlations were performed to highlight which 
zones of spectral signatures presented negative or positive 
correlations with each measured parameter. Pearson’s cor-
relations between the parameter and each wavelength were 

presented separately for soybean (Fig. 2a), peanut (Fig. 2b), 
and both species combined (Fig. 2c). Regarding soybean 
Vc,max and Jmax values, correlation against each band showed 
significant (P < 0.05) negative values (Pearson coefficient 
around − 0.6) in the VIS (400 nm) and in almost all SWIR 
(1400–2500 nm) bands (Fig. 2a). On the other hand, mid-day 

Fig. 2   Pearson’s correlation coefficients (r) between photosynthetic 
parameters and each wavelength from the leaf reflectance spectrum 
for each species and both species combined. a Soybean varieties 
under two treatments, one at high [CO2] and the other at high tem-
perature. b Peanut varieties at water stress. c Soybean and peanut data 

pooled together. Each graphic presents in the x-axis the wavelength 
spectrum between 350 and 2500 nm and in the y-axis the Pearson’s 
correlation coefficient from − 1 to 1. The discontinuous line in each 
graphic means the significance level P < 0.05 below the x-axis
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photosynthesis and LCC presented lower and no significant 
correlation coefficients against each band from the reflec-
tance spectrum. In the case of peanut (Fig. 2b), photosynthe-
sis values against each wavelength band showed significant 
correlation (r = − 0.6, P < 0.05) in VIS–NIR (400–1000 nm) 
bands. LCC and each wavelength showed strong correlation 
(r = − 0.7, P < 0.05) in the NIR (700 nm). For Vc,max and 
Jmax, the correlation against each wavelength was very low 
or non-significant (Fig. 2b). With increased variability from 
combining all experiments, we could observe that mid-day 
photosynthesis against each wavelength showed a signifi-
cant correlation (r = − 0.5, P < 0.05) in the VIS (400 nm). 
Regarding the coefficient of correlation between Vc,max and 
Jmax, significance (r = 0.6, P < 0.05) in the VIS (400 nm) 
and most of the SWIR (1400–2500 nm) bands indicated an 
improvement relative to species analyzed separately. For this 
reason, we ran all advance models using combined pheno-
typic and spectral data from each species and environmental 
condition.

Estimating photosynthetic parameters using field 
spectroscopy and advance regression models

To test how accurately a given model estimated different 
photosynthetic parameters, we presented the coefficient of 
determination (R2) and RMSE for each model and mean 
parameter, i.e., interpreted as the proportion of information 
in data that is explained by each model (Fig. 3). Since esti-
mation of the Vc,max and Jmax parameters did not work well 
in the peanut experiment but worked well for the soybean 
(Table S1), and since the LCC estimation does not work 
with soybean, we decided to combine these three experi-
ments and focus on the combination of the two crop spe-
cies in this manuscript (Fig. 3). Mid-day photosynthesis 
showed a higher R2 (0.62) and low RMSE (4.79) using 
the PLSR model using 10 components, followed by BR 
(R2 = 0.41 and RMSE = 5.92) with the worst model being 
the ARDR (R2 = 0.28 and RMSE = 6.55) (Fig. 3a). LCC 
was better assessed by PLSR (R2 = 0.56 and RMSE 3.83) 
using 10 components, followed by ARDR (R2 = 0.34 and 
RMSE = 4.71) with the BR model showing the worst perfor-
mance (R2 = 0.08 and RMSE = 5.55; Fig. 2b). The best Vc,max 
model was obtained by PLSR (R2 = 0.70 and RMSE = 42.80) 
using nine components followed by the other three models 
with similar values (R2 = 0.56–0.59; RMSE = 50.11–52.03). 
Regarding Jmax, the best model was PLSR (R2 = 0.50 and 
RMSE = 35.83) using nine components closely followed by 
Lasso (R2 = 0.46 and RMSE = 37.1) and BR (R2 = 0.45 and 
RMSE = 37.41), with ARDR (R2 = 0.40 and RMSE = 39.29) 
being the worst model.

For each of the four models, we calculated the coeffi-
cient of weight for each band and model (Fig. 4). These 
coefficients showed waveband contributions along the 

VIS–NIR–SWIR spectrum for photosynthetic parameter 
estimations using leaf reflectance spectrum of pooled spe-
cies, cultivars, and growing conditions. The coefficient of 
weight for estimating mid-day photosynthesis using PLSR 
showed maximum values around 400, 750, and 1750 nm, 
while ARDR and LASSO showed high coefficient weights at 
400 nm. On the other hand, BR did not show any remarkable 
coefficient weights for mid-day photosynthesis (Fig. 4a). 
With respect to LCC, PLSR showed maximum coefficients 
at 400, 750, and 1750 nm, while ARDR showed a peak 
around 400 nm (Fig. 4b). LASSO and BR showed very low 
coefficients at all wavelengths (Fig. 4b). In Fig. 4c, we can 
observe the different coefficients of each band for Vc,max, 
where the maximum peaks were at 400, 700 and around 
2000 nm for PLSR, BR and LASSO, while for ARDR it 
was only at 400 and 750 nm. For estimates of Jmax, the 
highest coefficient weights for PLSR were located in SWIR 
(2200–2300), followed by NIR (900–1100). For the LASSO 
model, the strongest areas were at 400, 750, and 1750 nm 
(Fig. 4d), while the highest coefficients were found in the 
SWIR (1400–2500 nm) for BR and ARDR.

Scaling up estimations of photosynthetic 
parameters for potential hyperspectral aerial 
or satellite applications

To assess their ability to estimate photosynthetic param-
eters compared to full spectra captured by the Field Spec 
Hi-Res4 (VIS–NIR–SWIR, 350–2500 nm), we simulated 
other sensors with limited wavelength ranges, specifically 
VIS–NIR (350–1000 nm), NIR–SWIR (1000–2500 nm), 
SWIR (1400–2500 nm), and the 12 wavelength bands of 
Sentinel-2 satellites (Table S2). To test this, we used reflec-
tance data acquired by the Field Spec Hi-Res4 and separated 
the reflectance data according to the wavelength range of 
each before mentioned sensor. We then performed photo-
synthetic estimations using the same 4 models (PLSR, BR, 
ARDR, and LASSO).

Table 3, Figs. 5, and 6 show estimations of photosyn-
thetic parameters using pooled data from both species. For 
mid-day photosynthesis and LCC, simulations with different 
sensors with just the VIS–NIR (350–1000 nm), NIR–SWIR 
(1000–2500 nm), and SWIR (1400–2500 nm) spectrum 
regions were best performed using PLSR compared to BR, 
ARDR, and LASSO models (Table 3; Figs. 5, 6). However, 
LCC was estimated best by BR, ARDR, and LASSO using 
the simulated ESA Copernicus Sentinel-2 satellite multi-
spectral bands (Table 3; Figs. 5, 6). Concerning estimation 
of Vc,max within the VIS–NIR range (350–1000 nm) and the 
ESA Copernicus Sentinel-2 satellite sensors, the best per-
forming model was PLSR using 10 components (R2 = 0.63 
and 0.53, respectively). For simulations of the NIR–SWIR 
(1000–2500 nm), SWIR (1400–2500 nm), BR was the best 
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Fig. 3   Measured against estimated values correlation for different 
physiological parameters estimated with PLSR (blue), BR (green), 
ARDR (red), and LASSO (yellow) predictive models. The estimated 
physiological parameters are: mid-day photosynthesis (a), leaf chloro-
phyll content (b), maximum rate of Rubisco catalyzed carboxylation 
(Vc,max, c) and maximum electron transport rate supporting RuBP 

regeneration (Jmax, d) for soybean and peanut cultivars all pooled 
together. All the models were built using train and test data splitting 
them into 60 and 40%, respectively. In each graph, the R2, the RMSE 
of the train and test of the model are shown along with the size of the 
train and test population and number of model components (comp) 
used in each PLSR model. The gray dashed line shows the 1:1 line
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model for assessing Vc,max (R2 = 0.62 and 0.60, respectively). 
For estimating Jmax with the VIS–NIR (350–1000 nm) sen-
sor, the best model was LASSO (R2 = 0.42). For the range 
NIR–SWIR (1000–2500  nm), SWIR (1400–2500  nm) 
ARDR estimated Jmax similarly (R2 = 0.51). PLSR, BR, and 
LASSO presented the same coefficient of determination 

(R2 = 0.41) when using ESA Copernicus Sentinel-2 satellite 
simulated wavebands to assess Jmax.

Regarding comparison of different sensors (VIS–NIR, 
NIR–SWIR, and SWIR) against original FieldSpec data 
(VIS–NIR–SWIR), we observed that estimation of mid-
day photosynthesis by the different models was similar to 

Fig. 4   Spectral-specific coef-
ficients for each prediction 
model (PLSR, BR, ARDR and 
LASSO) used to predict the fol-
lowing photosynthetic param-
eters of the two species pooled 
together. a Mid-day photosyn-
thesis. b Leaf chlorophyll con-
tent (LCC). c Maximum rate of 
Rubisco carboxylation (Vc,max). 
d Maximum electron transport 
rate supporting RuBP regenera-
tion (Jmax,). Continuous vertical 
lines delineate different regions 
of the spectrum: VIS = 450–
700 nm, NIR = 700–1400, and 
SWIR = 1400–2500 nm

Table 3   Coefficient of determination (R2) and root mean squared 
error (RMSE) of mid-day photosynthesis (µmol m−2 s−1), leaf chloro-
phyll content (arbitrary units) of all species pooled together based on 
leaf reflectance spectra at different ranges [VIS–NIR (350–1000 nm), 
NIR-SWIR (1000-–2500 nm), SWIR (1400–2500 nm), and Sentinel-2 

bands] through advance regression models: Partial Least Squares 
Regression (PLSR), Bayesian Ridge (BR), the Automatic Relevance 
Determination Regression (ARDR), and Least Absolute Shrinkage 
and Selection Operator (LASSO)

“–” indicates that the estimation model did not yield results

Estimation using the species, cultivars, and growing conditions together

n = 146 From 350 to 1000 nm From 1000 to 2500 nm From 1400 to 2500 nm Simulation of Senti-
nel-2

Model R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Mid-day photosyn-
thesis

 PLSR 0.47 5.61 0.42 6.1 0.52 5.53 – –
 BR 0.28 6.54 0.47 5.84 0.50 5.69 – –
 ARDR 0.27 6.59 0.40 6.20 0.49 5.70 – –
 LASSO 0.34 6.29 – – – – – –

Leaf chlorophyll content
 PLSR 0.35 4.98 0.33 4.09 0.22 4.41 – –
 BR 0.26 4.98 – – – – 0.23 7.04
 ARDR – – – – 0.33 40.90 0.26 6.90
 LASSO 0.15 5.33 – – – – 0.28 6.79
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that of simulated sensors (Figs. 3, 5, 6 and Table 3). With 
ESA Copernicus Sentinel-2 satellite, estimation of mid-day 
photosynthesis did not work. Estimation of LCC using ESA 
Copernicus Sentinel-2 satellite was lower than when the 
whole spectrum was used. Regarding the estimation of the 

Vc,max simulating ESA Copernicus Sentinel-2 satellite, the 
PLSR and LASSO presented an R2 (0.50) that was a little 
lower than the FieldSpec (R2 = 0.70). With respect to Jmax 
estimation, we observed that coefficients for the simulated 
NIR–SWIR and SWIR sensor ranges were very similar (but 

Fig. 5   Measured (X-axis) against estimated (Y-axis) correlation of 
maximum rate of rubisco-catalyzed carboxylation (Vc,max) esti-
mated with PLSR (blue), BR (green), ARDR (red), and LASSO (yel-
low) predictive models. These models were based on leaf reflectance 
spectra at different ranges [VIS–NIR (350–1000  nm), NIR–SWIR 
(1000–2500 nm), SWIR (1400–2500 nm), and Sentinel-2 bands] for 

soybean and peanut cultivars all pooled together. All the models were 
built using the training and test split method (60 and 40%, respec-
tively). Each graph shows the train and test R2 and the RMSE values 
of for each model. For PLSR models, we used 10 components. Size 
of population is n = 158. The gray dashed line shows the 1:1 line
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Fig. 6   Measured (axis  X) against estimated (axis  Y) correlation of 
maximum electron transport rate supporting RuBP regeneration 
(Jmax) estimated with PLSR (blue), BR (green), ARDR (red), and 
LASSO (yellow) predictive models. These models were based on 
leaf reflectance spectra at different ranges [VIS–NIR (350–1000 nm), 
NIR–SWIR (1000–2500 nm), SWIR (1400–2500 nm), and Sentinel-2 

bands] for soybean and peanut cultivars all pooled together. All the 
models were built using the training and test split method (60 and 
40%, respectively). Each graph shows the train and test  R2 and the 
RMSE values of for each model. For PLSR models, we used 10 com-
ponents. Size of population is n = 158. The gray dashed line shows 
the 1:1 line



	 Planta (2022) 255:93

1 3

93  Page 14 of 19

slightly lower) to the full-range FieldSpec (Figs. 3, 5, 6 and 
Table 3). The VIS–NIR and ESA Copernicus Sentinel-2 
satellite simulations presented values that were lower than 
using the whole spectrum (Figs. 3, 5, 6 and Table 3).

Discussion

Estimating photosynthetic parameters using field 
spectroscopy and advance regression models

The main objective of this research was to assess which 
advanced statistical model (PLSR, BR, ARDR, and 
LASSO) was the most successful in estimating different 
photosynthetic parameters using leaf reflectance spectra 
(VIS–NIR–SWIR, 350–2500 nm) from two legume species. 
The use of advance regression models to predict different 
physiological parameters needs ample phenotypic variation 
to be accurate (Kuhn and Johnson 2013). Since statistical 
effects of different treatments over some variables were 
not significant (Table 1), we combined findings from three 
experiments (two different species) to increase phenotypic 
range for better parameter estimation with all models rather 
than examining each species separately (Table S1). Similar 
approaches have been used recently to increase phenotypic 
variation and obtain a better prediction model by includ-
ing different species and/or cultivars (Doughty et al. 2011; 
Serbin et al. 2012; Choquette et al. 2019), different abiotic 
stresses such as drought (Silva-Perez et al. 2018), or elevated 
atmospheric ozone concentrations (Ainsworth et al. 2014; 
Yendrek et al. 2017).

In our study, when data from both legumes were com-
bined, almost all of the advanced models were able to esti-
mate Vc,max and Jmax at greater than R2 > 0.50 (Fig. 3). Of the 
four models used to predict these two parameters, PLSR was 
the overall best model for Vc,max (R2 = 0.70 and RMSE 42.80) 
and Jmax (R2 = 0.50 and 35.83), followed by LASSO and BR 
for Vc,max (R2 = 0.59 with RMSE 50.11; 0.59 with a RMSE 
50.15, respectively), and BR and LASSO for Jmax (R2 = 0.45 
with a RMSE 37.11; 0.46 with a RMSE 37.41, respectively) 
(Fig. 3). This may be because the PLSR model does not esti-
mate shrinkage when performing variable selection (spectral 
wavebands) as do BR, ARDR, and LASSO (Neal 1996; Tip-
ping 2001; Wold et al. 2001). Others have also found that 
PLSR and LASSO had similar estimation capacities, show-
ing that LASSO band block contribution was similar to the 
PLSR model (Fu et al. 2020). Specific reasons why PLSR 
was more efficient at estimating photosynthetic parameters 
assessed in this study are discussed in detail below.

Successful predictions of Vc,max (R2 = 0.89 with a RMSE 
15.4) and Jmax (R2 = 0.93 with a RMSE 18.67) using PLSR 
have been previously obtained by combining two tree spe-
cies (Serbin et al. 2012); this study showed statistically 

significant phenotypic variation due to temperature treat-
ments as well as species. In our study, the lower R2 associ-
ated with Vc,max and Jmax estimates could be attributed to the 
lack of effect of some environmental treatments (tempera-
ture, elevated CO2, and drought) and cultivars over these 
parameters (Table 1). However, Ainsworth et al. (2014) 
showed a significant correlation between measured and esti-
mated Vc,max (R2 = 0.88 with a RMSE 13.4) with the effect 
of treatments (elevated ozone) and cultivars not being sig-
nificant. This demonstrated that good parameter estimation 
and significant treatment or cultivar effects are not mutually 
exclusive and that it is only necessary to have sufficient range 
in variation of phenotypic data. For example, Ainsworth 
et al. (2014) and Serbin et al. (2012) noted Vc,max variation 
(60–280 μmol m−2 s−1 and 40–170 μmol m−2 s−1, respec-
tively) similar to the values obtained in this study when all 
three experiments were combined (48–348 μmol m−2 s−1 
for the current experiment). Since the ranges in variation of 
Vc,max and Jmax data are similar but higher to those obtained 
in the above-mentioned research, why are R2 values in the 
current study for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50) lower 
and RSME (42.80 and 35.83, respectively) higher than in 
those studies? Tibshirani (1996) has noted that PLSR models 
lose accuracy when estimating parameters across different 
environments. Research by Serbin et al. (2012) and Ains-
worth et al. (2014) were each performed in one environ-
ment (greenhouse and field, respectively) for one growing 
season, while our study combined information from three 
experiments representing distinct environments (greenhouse, 
growth chambers, and open top chambers) with plants grown 
at very different environmental conditions. In an experiment 
with several corn breeding lines grown under ambient and 
elevated ozone repeated over three growing seasons, Yen-
drek et al. (2017) obtained Vc,max estimations (R2 = 0.55 with 
RMSE 6.61, and 0.65 with a RMSE 6.60) similar to those 
reported in our study but with a RMSE lower than ours. This 
was probably due to the effects of changing environments 
on PLSR performance (Serbin et al. 2012; Ainsworth et al. 
2014). Regarding the lower RMSE obtained in the above-
mentioned publications (Serbin et  al. 2012; Ainsworth 
et al. 2014; Yendrek et al. 2017) in comparison with those 
obtained in our research, this could be due to the different 
cross-validation used in our approach. In our cross-valida-
tion, the test error rate can be highly variable, depending 
on which observations are included in the training set and 
which observations are included in the validation set. This 
may be the reason for the higher RMSE values observed in 
Vc,max and Jmax. Also the high RMSE values can be due to 
a higher phenotypic range as a result of including two crop 
species grown in three very different environments. This 
highlights the importance of performing calibration experi-
ments under multiple environments. Other issue that can 
arise is the use of these models with completely new set of 
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cultivars and experimental conditions as was tested in Yen-
drek et al. (2017). In such a case, it would be recommenda-
ble to test model precision by measuring spectral reflectance 
under new conditions and corroborating model estimates of 
extreme values for Vc,max with ground truth measurements 
of the photosynthetic parameter. Although this extra step 
will take more time, this procedure could serve to test model 
accuracy and help improve the model with new training data.

To solve this multiple environment/location problem, 
new approaches need to be developed and implemented. 
For example, Fu et al. (2020) increased prediction model 
accuracy by stacking different machine learning algorithms 
(i.e., R2 increases of 0.1–0.2 over single prediction models). 
Another alternative would be creation of a consortium of 
scientists interested in using hyperspectral reflectance tech-
nology to predict physiological traits. Their combined exper-
tise would create strong standardized calibrations that could 
be used across multiple environments as has been done for 
assessing forage quality traits using NIRS technology (i.e., 
NIRS Consortium; https://​www.​nirsc​onsor​tium.​org/).

Estimation of mid-day photosynthesis using PLSR, 
BR, ARDR, and LASSO presented lower R2 values (≈ 
0.29–0.62) than for Vc,max and Jmax (Fig. 3) since in situ 
photosynthetic measurements are likely more influenced by 
environment (Sanz-Sáez et al. 2017; Soba et al. 2020) than 
by leaf structure and biochemistry (Serbin et al. 2012; Ains-
worth et al. 2014). Thus, a looser estimation was expected. 
Due to environmental variability, few reports have estimated 
mid-day photosynthesis. However, our PLSR estimation was 
better than the observations of Vitrack-Tamam et al. (2020) 
for cotton stomatal conductance (R2 = 0.23); this was likely 
due to the lower range spectral reflectance device used in 
their experiment (633–1659 nm). Similar estimations of net 
photosynthesis were accomplished using the scaled photo-
chemical reflectance index and a FieldSpec Hi-Res Device 
(Kumari et al. 2012).

Regarding spectral wavelength specific coefficients for 
each estimation model for Vc,max and Jmax, the most frequent 
selection for the four models was the VIS waveband (Fig. 4) 
where chlorophyll and other pigments have strong absorp-
tion features (Peñuelas and Filella 1998). However, these 
models also used wavebands in the NIR and SWIR, similar 
to other studies (Hansen and Schjoerring 2003; Doughty 
et al. 2011; Serbin et al. 2012; Ainsworth et al. 2014; Yen-
drek et al. 2017). In addition, Rubisco has several relatively 
broad spectral absorption features in the NIR and SWIR 
(Elvidge 1990). These selections of spectral region combi-
nations indicate that Vc,max and Jmax spectral signatures are 
not simply a function of chlorophyll content, which sug-
gests that more information is needed beyond the VIS–NIR 
wavebands to estimate such complex processes. The inclu-
sion of a broader range of wavebands, due in part to less 
penalizations, is likely why the PLSR model outperformed 

BR, ARDR, and LASSO by more effectively capturing the 
broader spectral absorption features of Rubisco. For exam-
ple, the Vc,max LASSO model only selected specific coeffi-
cients at 540, 680, 720, 2000, and 2250 nm (Fig. 4c), while 
the PLSR model had significant coefficient ranges between 
400–450, 700–800, and 1750–1900 (Fig. 4c). Photosynthe-
sis and LCC also presented the highest selection of spectral 
peaks in the VIS, followed by NIR; this has been extensively 
documented through both vegetation indices that estimate 
chlorophyll pigment content and also by the Photochemi-
cal Reflectance Index (PRI) that predicts photosynthetic 
efficiency through a zeaxanthin absorption feature (Gamon 
et al. 1997; Gitelson et al. 2005; Schlemmera et al. 2013).

We also present a more in-depth comparison of the four 
models. As shown in Fig. 3, the  R2 of models do not present 
significant differences between each other, although we can 
see that the models used different numbers of coefficients to 
estimate each parameter (Fig. 4). This was reflected in the 
algorithm differences in each model approach to parsimony, 
the simple explanation of an occurrence involving the fewest 
entities, assumptions, or changes. This means that a fewer 
number of weight coefficients were used to estimate the dif-
ferent parameters (Vandekerckhove and Matzke 2015). In 
our study, all PLSR models (blue line in Fig. 4) used VIS, 
NIR, and SWIR wavelengths, but potentially over-fitted by 
an over-inclusion of predictor variables (Geladi et al. 1986; 
Wold et al. 2001). This contrasts to the BR (in green), ARDR 
(in red), and LASSO (in yellow) models (Fig. 4), which used 
more specific and limited spectra than restricted models that 
penalize the lesser coefficients (Neal 1996; Tibshirani 1996; 
Tipping 2001).

Scaling up estimations of photosynthetic 
parameters for potential hyperspectral aerial 
or satellite applications

The second aim of this study was to simulate different 
sensors with more limited spectral coverage (VIS–NIR, 
NIR–SWIR, and SWIR), including the ESA Copernicus 
Sentinel-2 satellite13 bands. We found that estimation of 
Vc,max using three different sensor ranges (VIS–NIR–SWIR) 
with the four models performed (R2 = 0.50) surprisingly sim-
ilar to the whole spectrum (Figs. 3 and 5). For Jmax, the high-
est estimation (R2 = 0.51) used NIR–SWIR and SWIR data 
in ARDR. This was quite similar to Meacham-Hensold et al. 
(2020) who used PLSR models and canopy-level spectra 
with three different spectral ranges (500–900, 500–1700, and 
500–2400 nm) to achieve Vc,max estimations near R2 = 0.60 
and Jmax estimations around R2 = 0.40.

We also resampled FieldSpec data to cover the 12 spectral 
bands of the ESA Copernicus Sentinel-2 satellite; these were 
quite similar to spectral ranges selected by the coefficients 
used by the different models to estimate photosynthetic 

https://www.nirsconsortium.org/
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parameters. Concerning the different photosynthetic param-
eters, only Vc,max was estimated at more than R2 = 0.50. This 
could be related to the carboxylation process (Vc,max) having 
several relatively broad spectral absorption features in NIR 
and SWIR centered at 1.5, 1.68, 1.74, 1.94, 2.05, 2.29 µm, 
etc. (Elvidge 1990), which are in close proximity to several 
Sentinel-2 wavelength bands (Table S2). Supplementary 
data (Table S3) and Serbin et al. (2012) showed that wave-
lengths (490, 610, 690, 710, 1680, 1940, 2200, 2400 nm) 
used to estimate Vc,max have some bands similar to Senti-
nel-2. Figure 5d also shows that the spectral regions used in 
PLSR models were similar to Sentinel bands (Yendrek et al. 
2017). The limited success of single-leaf-level estimations of 
photosynthetic capacities using point-based spectral analysis 
(Serbin et al. 2015) found considerable promise in airborne 
and potential promise in space-borne imaging spectroscopy 
such as the NASA HyspIRI mission (Mariotto et al. 2013). 
In this regard, hyperspectral imagery through inversion of 
the Soil-Canopy Observation of Photosynthesis and Energy 
(SCOPE) model to estimate Vc,max also uses sensor resolu-
tions available in airborne or even precision agriculture tech-
nologies (Camino et al. 2019). Recently, one plot-level study 
using sunlit vegetative reflectance pixels from a single vis-
ible near infra-red (VNIR; 400–900 nm) hyperspectral cam-
era reported determination coefficients of R2 = 0.79 for Vc,max 
and R2 = 0.59 for Jmax (Meacham-Hensold et al. 2020). Thus, 
our simulation analyses and other recent literature suggest 
that the wide range of variability in VIS, NIR, and SWIR 
sensors and the Sentinel-2 multispectral sensor (to a more 
limited extent) could be employed to estimate photosynthetic 
parameters (including Vc,max and Jmax) with advanced regres-
sion models. However, more research needs to be done in 
this area as one of the limitations of this work was that we 
measured leaf reflectance with a leaf clip, while UAV and 
satellites measure canopy reflectance that can be different 
from single leaf reflectance. For the future, we suggest to test 
if canopy reflectance measurements at different precision 
levels can predict leaf level photosynthetic measurements 
or even canopy-level photosynthesis as has been done with 
models such as PROSAIL (Berger et al. 2018).

Conclusion and future directions

In this study, we estimated Vc,max and Jmax using leaf 
spectral reflectance data and different advanced regres-
sion models with determination coefficients higher than 
R2 = 0.50–0.70. The combination of different species and 
environmental conditions (elevated [CO2], high tempera-
ture, and drought) increased phenotypic variation and 
improved model estimations where treatment effects were 
not significant. To achieve higher coefficients of determi-
nation and model performance, this research demonstrated 

that it is more important to have a wider range of pheno-
typic variation than a significant effect of a treatment or 
cultivar. We suggest that estimating photosynthetic capac-
ity from reflectance spectra may be considered sufficiently 
robust to be useful for several different plant physiologi-
cal applications, such as abiotic stress detection, improved 
characterization of photosynthesis process-based crop 
models, and a prescreening tool in breeding programs. We 
demonstrated that PLSR was the best model for predicting 
photosynthetic parameters in comparison to other advanced 
regression models (BR, ARDR and LASSO). However, 
new advance regression approaches that combine different 
regression models may be employed to increase phenotype 
estimation using this technology. Based on simulation of 
four limited spectral range sensors (VIS–NIR, NIR–SWIR 
and SWIR) using a leaf level spectrophotometer, we dem-
onstrated that it is possible to estimate Vc,max with similar 
precision compared to using the whole VIS–NIR–SWIR 
spectrum. This research should encourage future studies 
using different imaging sensors (hyperspectral and multi-
spectral) at different scales for estimating Vc,max and Jmax.
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