Skip to main content
Log in

Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue

  • Emerging Technologies
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4–2.5 g of glucose; and 0.73–2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CoR:

Coefficients of repeatability

CV:

Coefficient of variation

D2O:

Deuterium oxide

FMF:

Focused microwave fixation

fw:

Fresh weight

GC:

Gas chromatography

1H NMR:

Proton NMR

HPLC:

High-performance liquid chromatography

HR-MAS:

High-resolution magic angle spinning

LoA:

Limits of agreement

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

qNMR:

Quantitative NMR

SNR:

Signal-to-noise ratio

T1:

Longitudinal relaxation time

TR:

Recycling time

V:

Wilcoxon signed-rank test statistic

References

  • Adams MA, Chen Z, Landman P, Colmer TD (1999) Simultaneous determination by capillary gas chromatography of organic acids, sugars, and sugar alcohols in plant tissue extracts as their trimethylsilyl derivatives. Anal Biochem 266:77–84

    Article  PubMed  CAS  Google Scholar 

  • Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. The Statistician 32:307–3017

    Article  Google Scholar 

  • Angyal SJ (1994) The composition of reducing sugars in dimethyl sulfoxide solution. Carbohydr Res 263:1–11

    Article  CAS  Google Scholar 

  • Barclay T, Ginic-Markovic M, Johnston MR, Cooper P, Petrovsky N (2012) Observation of the keto tautomer of d-fructose in D(2)O using (1)H NMR spectroscopy. Carbohydr Res 347:136–141

    Article  PubMed  CAS  Google Scholar 

  • Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TM, Holmes E, Lindon JC, Nicholson JK (2012) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032

    Article  Google Scholar 

  • Biais B, Allwood JW, Deborde C, Xu Y, Maucourt M, Beauvoit B, Dunn WB, Jacob D, Goodacre R, Rolin D, Moing A (2009) 1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon. Anal Chem 81:2884–2894

    Article  PubMed  CAS  Google Scholar 

  • Biological Magnetic Resonance Data (2012) Bank. http://www.bmrb.wisc.edu/metabolomics/metabolomics_standards.html

  • Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  PubMed  CAS  Google Scholar 

  • Bland JM, Altman DG (2007) Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat 17:571–582

    Article  PubMed  Google Scholar 

  • Boogaart AB (1995) The use of signal processing algorithms to obtain biochemically relevant parameters from magnetic resonance data sets. PhD thesis, St. George’s Hospital Medical School

  • Broberg A, Kenne L (2000) Use of high-resolution magic angle spinning nuclear magnetic resonance spectroscopy for in situ studies of low-molecular-mass compounds in red algae. Anal Biochem 284:367–374

    Article  PubMed  CAS  Google Scholar 

  • Burger Y, Schaffer AA (2007) The contribution of sucrose metabolism enzymes to sucrose accumulation in Cucumis melo. Soc Hort Sci 132:704–712

    CAS  Google Scholar 

  • Candiota AP, Majos C, Bassols A, Cabanas ME, Acebes JJ, Quintero MR, Arus C (2004) Assignment of the 2.03 ppm resonance in in vivo 1H MRS of human brain tumour cystic fluid: contribution of macromolecules. Magn Reson Mater Phy 17:36–46

    Article  CAS  Google Scholar 

  • Carstensen B (2010) Comparing clinical measurement methods. A practical guide. Wiley, Singapore

    Book  Google Scholar 

  • Carstensen B, Gurrin L, Ekstrom C (2012) MethComp: functions for analysis of method comparison studies. R package version 1.15. http://CRAN.R-project.org/package=MethComp

  • Cazor A, Deborde C, Moing A, Rolin D, This H (2006) Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements. J Agric Food Chem 54:4681–4686

    Article  PubMed  CAS  Google Scholar 

  • Chou HM, Bundock N, Rolfe SA, Scholes JD (2000) Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol Plant Pathol 1:99–113

    Article  PubMed  CAS  Google Scholar 

  • Claridge TDW (2009) High-resolution NMR techniques in organic chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Cuny M, Vigneau E, Le Gall G, Colquhoun I, Lees M, Rutledge DN (2008) Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometrics tools. Anal Bioanal Chem 390:419–427

    Article  PubMed  CAS  Google Scholar 

  • Davila M, Candiota AP, Pumarola M, Arus C (2012) Minimization of spectral pattern changes during HRMAS experiments at 37 degrees celsius by prior focused microwave irradiation. Magn Reson Mater Phy 25:401–410

    Article  CAS  Google Scholar 

  • R, Development Core Team (2012a) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Dewe W (2009) Review of statistical methodologies used to compare (bio)assays. J Chromatogr B Analyt Technol Biomed Life Sci 877:2208–2213

    Article  PubMed  CAS  Google Scholar 

  • Eduardo I, Arus P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148

    Article  PubMed  CAS  Google Scholar 

  • Fan TWM (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219

    CAS  Google Scholar 

  • Finney DJ (2006) Calibration guidelines challenge outlier practices. Am Stat 60:309–314

    Article  Google Scholar 

  • Frye JS, Maciel GE (1982) Setting the magic angle using a quadrupolar nuclide. J Magn Reson 48:125–131

    CAS  Google Scholar 

  • Fumagalli E, Baldoni E, Abbruscato P, Piffanelli P, Genga A, Lamanna R, Consonni R (2009) NMR techniques coupled with multivariate statistical analysis: tools to analyse Oryza sativa metabolic content under stress conditions. J Agron Crop Sci 195:77–88

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872–11877

    Article  PubMed  CAS  Google Scholar 

  • Gil AM, Duarte IF (2008) High-Resolution Magic Angle Spinning NMR Spectroscopy of Fruits and Vegetables. In: Graham AW (ed) Modern Magnetic Resonance, Springer, pp 1765-1768

  • Gil AM, Duarte IF, Delgadillo I, Colquhoun IJ, Casuscelli F, Humpfer E, Spraul M (2000) Study of the compositional changes of mango during ripening by use of nuclear magnetic resonance spectroscopy. J Agric Food Chem 48:1524–1536

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez VM, Garcia-Mas J, Arus P, Puigdomenech P (2010) Generation of a BAC-based physical map of the melon genome. BMC Genomics 11:339

    Article  PubMed  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, Gomez P, Deleu W, Cano-Delgado A, Arus P, Nuez F, Garcia-Mas J, Puigdomenech P, Aranda MA (2007) MELOGEN: an EST database for melon functional genomics. BMC Genomics 8:306

    Article  PubMed  Google Scholar 

  • Hendrix DL, Peelen KK (1987) Artifacts in the analysis of plant tissues for soluble carbohydrates. Crop Sci 27:710–715

    Article  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    PubMed  CAS  Google Scholar 

  • Hubbard NL, Huber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534

    Article  PubMed  CAS  Google Scholar 

  • Human Metabolome Database (2012) http://www.hmdb.ca/

  • Jahren AH, Saudek C, Yeung EH, Kao WH, Kraft RA, Caballero B (2006) An isotopic method for quantifying sweeteners derived from corn and sugar cane. Am J Clin Nutr 84:1380–1384

    PubMed  CAS  Google Scholar 

  • Kanamatsu T, Tsukada Y (1999) Effects of ammonia on the anaplerotic pathway and amino acid metabolism in the brain: an ex vivo 13C NMR spectroscopic study of rats after administering [2-13C] glucose with or without ammonium acetate. Brain Res 841:11–19

    Article  PubMed  CAS  Google Scholar 

  • Kolayli S, Kara M, Tezcan F, Erim FB, Sahin H, Ulusoy E, Aliyazicioglu R (2010) Comparative study of chemical and biochemical properties of different melon cultivars: standard, hybrid, and grafted melons. J Agric Food Chem 58:9764–9769

    Article  PubMed  CAS  Google Scholar 

  • Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265

    Article  PubMed  CAS  Google Scholar 

  • Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG (2008) 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat Protoc 3:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Lindon JC, Beckonert OP, Holmes E, Nicholson JK (2009) High-resolution magic angle spinning NMR spectroscopy: application to biomedical studies. Prog Nuc Magn Reson Spectr 55:79–100

    Article  CAS  Google Scholar 

  • Lingle SE, Dunlap JR (1987) Sucrose metabolism in netted muskmelon fruit during development. Plant Physiol 84:386–389

    Article  PubMed  CAS  Google Scholar 

  • Ludbrook J (2008) Outlying observations and missing values: how should they be handled? Clin Exp Pharmacol Physiol 35:670–678

    Article  PubMed  CAS  Google Scholar 

  • Maestrelli A, Lo Scalzo R, Lupi D, Bertolo G, Torreggiani D (2001) Partial removal of water before freezing: cultivar and pre-treatments as quality factors of frozen muskmelon (Cucumis melo, cv reticulatus Naud.). J Food Eng 49:255–260

    Article  Google Scholar 

  • Moing A, Maucourt M, Renaud C, Gaudillère M, Brouquisse R, Lebouteiller B, Gousset-Dupont A, Vidal J, Granot D, Denoyes-Rothan B, Lerceteau-Köhler E, Rolin D (2004) Quantitative metabolic profiling by 1-dimensional 1H-NMR analyses: application to plant genetics and functional genomics. Plant Biol 31:889–902

    CAS  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Murillo I, Roca R, Bortolotti C, San Segundo B (2003) Engineering photoassimilate partitioning in tobacco plants improves growth and productivity and provides pathogen resistance. Plant J 36:330–341

    Article  PubMed  CAS  Google Scholar 

  • Ni QW, Eads TM (1993) Liquid-phase composition of intact fruit tissue measured by high-resolution proton NMR. J Agric Food Chem 41:1026–1034

    Article  CAS  Google Scholar 

  • Nicholls AW, Mortishire-Smith RJ (2001) Temperature calibration of a high-resolution magic-angle spinning NMR probe for analysis of tissue samples. Magn Reson Chem 39:773–776

    Article  CAS  Google Scholar 

  • Patzold R, Bruckner H (2005) Mass spectrometric detection and formation of d-amino acids in processed plant saps, syrups, and fruit juice concentrates. J Agric Food Chem 53:9722–9729

    Article  PubMed  Google Scholar 

  • Pauli GF, Jaki BU, Lankin DC (2005) Quantitative 1H NMR: development and potential of a method for natural products analysis. J Nat Prod 68:133–149

    Article  PubMed  CAS  Google Scholar 

  • Pauli GF, Jaki BU, Lankin DC (2012) Quantitative 1H NMR: development and potential of an analytical method: an update. J Nat Prod 75:834–851

    Article  PubMed  CAS  Google Scholar 

  • Penn SG, Hu H, Brown PH, Lebrilla CB (1997) Direct analysis of sugar alcohol borate complexes in plant extracts by matrix-assisted laser desorption/ionization fourier transform mass spectrometry. Anal Chem 69:2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Raiford DS, Fisk CL, Becker ED (1979) Calibration of methanol and ethylene glycol nuclear magnetic resonance thermometers. Anal Chem 51:2050–2051

    Article  CAS  Google Scholar 

  • Ratcliffe RG (1994) In vivo NMR studies of higher plants and algae. Adv Bot Res 20:43–123

    Article  CAS  Google Scholar 

  • Ratcliffe RG, Shachar-Hill Y (2001) Probing plant metabolism with NMR. Annu Rev Plant Physiol Plant Mol Biol 52:499–526

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Nakaie S, Kinoshita M, Ihara T, Kinugasa S, Nomura A, Maeda T (2004) Practical guide for accurate quantitative solution state NMR analysis. Metrologia 41:213–218

    Article  CAS  Google Scholar 

  • Schaeffer AA, Aloni B, Fogelman E (1987) Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry 26:1883–1887

    Article  Google Scholar 

  • Schripsema J (2009) Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochem Anal 21:14–21

    Article  Google Scholar 

  • Shintu L, Ziarelli F, Caldarelli S (2004) Is high-resolution magic angle spinning NMR a practical speciation tool for cheese samples? Parmigiano Reggiano as a case study. Magn Reson Chem 42:396–401

    Article  PubMed  CAS  Google Scholar 

  • Sidhu OP, Annarao S, Pathre U, Snehi SK, Raj SK, Roy R, Tuli R, Khetrapal CL (2010) Metabolic and histopathological alterations of Jatropha mosaic begomovirus-infected Jatropha curcas L. by HR-MAS NMR spectroscopy and magnetic resonance imaging. Planta 232:85–93

    Article  PubMed  CAS  Google Scholar 

  • Sobolev AP, Brosio E, Gianferri R, Segre AL (2005) Metabolic profile of lettuce leaves by high-field NMR spectra. Magn Reson Chem 43:625–638

    Article  PubMed  CAS  Google Scholar 

  • Soininen P (2008) Quantitative 1H NMR Spectroscopy. Chemical and biological applications. Kuopio Univ Publ C Nat Environ Sci 240:1–128

    Google Scholar 

  • R, Studio Inc. (2012b) RStudio: integrated development environment for R (Version 0.96.122), Boston. http://www.rstudio.org/

  • USDANNDB (2011) U.S. Department of Agriculture, Agricultural Research Service. USDA National Nutrient Database for Standard Reference, Release 24: Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/nutrientdata

  • Wang Y, Wyllie SG, Leach DN (1996) Chemical changes during the development and ripening of the fruit of Cucumis melo (Cv. Makdimon). J Agric Food Chem 44:210–216

    Article  CAS  Google Scholar 

  • Warren CR, Adams MA (2000) Capillary electrophoresis for the determination of major amino acids and sugars in foliage: application to the nitrogen nutrition of Sclerophyllous species. J Exp Bot 51:1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM, Lewis DH (1981) Patterns of translocation, storage and interconversion of carbohydrates. In: Ayres PG (ed) Effects of disease on the physiology of the growing plant. Cambridge University Press, Cambridge, pp 47–83

    Google Scholar 

  • Zhang MF, Li ZL (2005) A comparison of sugar-accumulating patterns and relative compositions in developing fruits of two oriental melon varieties as determined by HPLC. Food Chem 90:785–790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. P. Puigdomènech and J. García-Mas for critical reading of this manuscript and to Llorenç Badiella (Servei d’Estadistica, UAB) for initial advice on the statistical analysis of data. This work was funded by grants from the Spanish Ministerio de Ciencia e Innovación (SAF2008-03323 and SAF2011-23870 to CA) and the Ministerio de Economia y Competitividad (BIO2009-08719 and BIO2012-32838 to BSS). CIBER-BBN is an initiative of Instituto de Salud Carlos III, Spain, which is co-funded with EU-funds.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Arús.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1810 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado-Goñi, T., Campo, S., Martín-Sitjar, J. et al. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue. Planta 238, 397–413 (2013). https://doi.org/10.1007/s00425-013-1924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1924-y

Keywords

Navigation