Skip to main content
Log in

Changes in gravitational forces induce modifications of gene expression in A. thaliana seedlings

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

By comparing the expression patterns of selected genes from Arabidopsis thaliana (L.) Heynh. grown either at 1 g or on a clinostat (horizontally or vertically inverted, 1 rpm), and either used directly or after hypergravity stimulation, we have shown that the pattern of expression did not proceed in a stereotypical manner. Rather, the selected genes fell into different classes. These classes include (i) those insensitive to the gravitational conditions, (ii) those that are regulated in an opposite manner by hypergravity and clinostat conditions, (iii) those that are desensitised to hypergravity by long-term culture on a clinostat, and (iv) those enhanced by such a treatment. Our data suggest that rapid reorientation of gene expression is likely to occur in response to changes in the gravitational conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c.
Fig. 2.

Similar content being viewed by others

Abbreviations

Aux:

auxin

2-D:

two-dimensional

GUS:

β-glucuronidase

RT–PCR:

reverse transcription–polymerase chain reaction

SSH:

suppression substractive hybridisation

References

  • Aarrouf J, Schoevert D, Maldiney R, Perbal G (1999) Changes in hormonal balance and meristematic activity in primary root tips on the slowly rotating clinostat and their effect on the development of the rapeseed root system. Physiol Plant 105:708–18

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–33402

    PubMed  Google Scholar 

  • Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28:48–48

    Google Scholar 

  • Baluška F, Hasenstein KH (1997) Root cytoskeleton: its role in perception of and response to gravity. Planta 203: S69-S78

    PubMed  Google Scholar 

  • Bao Y, Kost B, Chua NH (2001) Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    Article  CAS  PubMed  Google Scholar 

  • Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism Science 273:948–950

    Google Scholar 

  • Blancaflor EB, Fasano JM, Gilroy S (1999) Laser ablation of root cap cells: implications for models of graviperception. Adv Space Res 24:731–738

    Article  CAS  PubMed  Google Scholar 

  • Boonsirichai K, Guan C, Chen R, Masson PH (2002) Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants. Annu Rev Plant Physiol Plant Mol Biol 53:421–447

    Article  CAS  Google Scholar 

  • Braun M, Buchen B, Sievers A (2002) Actomyosin-mediated statolith positioning in gravisensing plant cells studied in microgravity. J Plant Growth Regul 21:137–145

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117

    CAS  PubMed  Google Scholar 

  • Cholodny H (1928) Beiträge zur hormonalen Theorie von Tropismen. Planta 6:118–134

    Google Scholar 

  • Davies E, Shimps B, Brown K, Stankovic B (1999) Gravity, stress, calcium and gene expression. J Gravit Physiol 6:21–22

    CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    CAS  PubMed  Google Scholar 

  • Firn RD, Wagstaff C, Digby J (2000) The use of mutants to probe models of gravitropism. J Exp Bot 51:1323–1340

    CAS  PubMed  Google Scholar 

  • Fitzelle KJ, Kiss JZ (2001) Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity. J Exp Bot 52:265–275

    CAS  PubMed  Google Scholar 

  • Friedman H, Vos JW, Hepler PK, Meir S, Halevy AH, Philosoph-Hadas S (2003) The role of actin filaments in the gravitropic response of snap dragon flowering shoots. Planta 216:1034–1042

    CAS  PubMed  Google Scholar 

  • Fujii N, Kamada M, Yamasaki S, Takahashi H (2000) Differential accumulation of Aux/IAA mRNA during seedling development and gravity response in cucumber (Cucumis sativus L.). Plant Mol Biol 42:731–740

    Article  CAS  PubMed  Google Scholar 

  • Fukaki H, Fujisawa H, Tasaka M (1996) How do plant shoots bend up? The initial step to elucidate the molecular mechanisms of shoot gravitropism using Arabidopsis thaliana. J Plant Res 109:129–137

    CAS  PubMed  Google Scholar 

  • Hampp R, Hoffmann E, Schonherr K, Johann P De Filippis L (1997) Fusion and metabolism of plant cells as affected by microgravity. Planta [Suppl] 203:42–53

  • Kiss JZ, Katembe WJ, Edelmann RE (1998) Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight. Physiol Plant 102:493–502

    CAS  PubMed  Google Scholar 

  • Knight T (1806) On the direction of the radicle and germen during the vegetation of seeds. Philos Trans R Soc 99:108–20

    Google Scholar 

  • Leach JE, Ryba-White M, Sun Q, Wu CJ, Hilaire E, Gartner C, Nedukha O, Kordyum E, Keck M, Leung H,Guikema JA (2001) Plants, plant pathogens, and microgravity — a deadly trio. Gravit Space Biol Bull 14:15–23

    CAS  PubMed  Google Scholar 

  • Link B, Wagner E, Cosgrove D (2001) The effect of a microgravity (space) environment on the expression of expansins from the peg and root tissues of Cucumis sativus. Physiol Plant 113:292–300

    Article  CAS  PubMed  Google Scholar 

  • Long J, Zhao W, Rashotte A, Muday G, Huber S (2002) Gravity-stimulated changes in auxin and invertase gene expression in maize pulvinal cells. Plant Physiol 128:591–602

    Article  CAS  PubMed  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187

    CAS  PubMed  Google Scholar 

  • McClure BA, Guilfoyle T (1989) Rapid redistribution of auxin-regulated RNAs during gravitropism. Science 243:91–93

    CAS  PubMed  Google Scholar 

  • Miyamoto K, Yamamoto R, Fujii S, Soga K, Hoson T, Shimazu T, Masuda Y, Kamisaka S, Ueda J (1999) Growth and development in Arabidopsis thaliana through an entire life cycle under simulated microgravity conditions on a clinostat. J Plant Res 112:413–418

    CAS  PubMed  Google Scholar 

  • Moseyko N, Zhu T, Chang HS, Wang X, Feldman LJ (2002) Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiol 130:720–728

    Article  CAS  PubMed  Google Scholar 

  • Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–11

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nedukha EM (1998) Effects of clinorotation on the polysaccharide content of resynthesized walls of protoplasts Adv Space Res 21:1121–1126

    Article  CAS  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    CAS  Google Scholar 

  • Palme K, Gälweiler L (1999) PIN pointing the molecular basis of auxin transport. Curr Opin Plant Biol 2:375–381

    CAS  PubMed  Google Scholar 

  • Paul AL, Daugherty CJ, Bihn EA, Chapman DK, Norwood KL, Ferl RJ (2001) Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in Arabidopsis. Plant Physiol 126:613–621

    Article  CAS  PubMed  Google Scholar 

  • Perbal G, Driss-Ecole D, Tewinkel M, Volkmann D (1997) Gravity and gravisensitivity in seedling roots grown in microgravity. Planta [Suppl] 203:57–62

    Google Scholar 

  • Poff K, Martin H (1989) Site of graviperception in roots: a re-examination. Physiol Plant 76:451–455

    CAS  PubMed  Google Scholar 

  • Ranjeva R, Graziana A, Mazars C (1999) Plant graviperception and gravitropism: a newcomer's view. FASEB J [Suppl] 13:135–141

    Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122:481–490

    CAS  PubMed  Google Scholar 

  • Reddy A, Kao Y, Mykles D, Sadeh W, Wheeler R (1998) A ground-based study for a shuttle bric experiment on gravity effects on gene expression. Adv Space Res 21:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Sievers A, Kruse S, Kuo-Huang LL, Wendt M (1989) Statoliths and microfilaments in plant cells. Planta 179:275–278

    CAS  PubMed  Google Scholar 

  • Sievers A, Buchen B, Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1:273–279

    Article  CAS  PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Hoson T, Kamisaka S (2001) Gravitational force regulates elongation growth of Arabidopsis hypocotyls by modifying xyloglucan metabolism. Adv Space Res 27:1011–1015

    CAS  PubMed  Google Scholar 

  • Utsuno K, Shikanai T, Yamada Y, Hashimoto T (1998) AGR, an agravitropic locus of Arabidopsis thaliana, encodes a novel membrane-protein family member. Plant Cell Physiol 39:1111–1118

    CAS  PubMed  Google Scholar 

  • Went F (1933) Wuchstoff und Wachstum. Rec Trav Bot Neerl 25:1–116

    Google Scholar 

  • Yamamoto K, Pyke KA, Kiss JZ (2002) Reduced gravitropism in inflorescence stems and hypocotyls, but not roots, of Arabidopsis mutants with large plastids. Physiol Plant 114:627–636

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brigitte Eche (GSBMS) for skillful technical assistance and Jérome Gouzy (INRA-CNRS) for sequence analysis. This work was supported by the Centre National d'Etudes Spatiales (CNES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Graziana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Centis-Aubay, S., Gasset, G., Mazars, C. et al. Changes in gravitational forces induce modifications of gene expression in A. thaliana seedlings. Planta 218, 179–185 (2003). https://doi.org/10.1007/s00425-003-1103-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1103-7

Keywords

Navigation