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Abstract Early gamma band responses of the human elec-
troencephalogram have been identified as an early interface
linking top-down and bottom-up processing. This was based
on findings that observed strong sensitivity of this signal to
stimulus size and at the same time, to processes of attention
and memory. Here, we simulate these findings in a simple ran-
dom network of biologically plausible spiking neurons. Dur-
ing a learning phase, different stimuli were presented to the
network and the synaptic connections were modified accord-
ing to a spike-timing-dependent plasticity learning rule. In a
subsequent test phase, we stimulated the network with (i)
patterns of different sizes to simulate bottom-up effects and
(ii) with patterns that were or were not presented during the
learning phase. The network displayed qualitatively simi-
lar behavior as early gamma band responses measured from
the scalp of human subjects: there was a general increase in
response strength with increasing stimulus size and stronger
responses for learned stimuli. We demonstrated that within
one neural architecture early gamma band responses can be
modulated both by bottom-up factors and by basal learning
mechanisms mediated via spike-timing-dependent plasticity.
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1 Introduction

The brain is continuously active. This spontaneously emerg-
ing activity manifests itself on different scales ranging from
spontaneous spiking of single cells (Abeles 1991), over fine-
grained spatio-temporal patterns as revealed by optical imag-
ing (Arieli et al. 1996; Kenet et al. 2003; Tsodyks et al. 1999)
to large-scale brain rhythms (Başar 1980; Berger 1929), and
coordinated fluctuations of local brain metabolism (Fox et al.
2007). In many cases, responses to specific stimuli emerge
from this ongoing activity in the form of transient resets
(Fründ et al. 2007b; Hanslmayr et al. 2007; Makeig et al.
2002).

A particular type of such transient responses is the early
gamma band response (Herrmann et al. 2004b; Karakaş and
Başar 1998; Tiitinen et al. 1993). This response occurs at
roughly 30 Hz at a latency of approximately 90 ms with
respect to a visual stimulus in stimulus-locked averages. The
visually evoked early gamma band response is strongest for
large, centrally presented stimuli (Busch et al. 2004) with
low spatial frequencies (Fründ et al. 2007a) and high contrast
(Schadow et al. 2007b). Despite its relatively short latency,
the early gamma band response is modulated by attention
(Busch et al. 2006b; Debener et al. 2003; Tiitinen et al.
1993) and by similarity between stimulus and patterns stored
in long-term memory (Fründ et al. 2008a; Herrmann et al.
2004a; Morup et al. 2006).

Gamma band responses have also been reported for a later
time interval around 200 and 300 ms after stimulus onset
(e.g., Tallon-Baudry and Bertrand 1999; Gruber and Müller
2006; Busch et al. 2006a; Lachaux et al. 2005). These later,
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Fig. 1 Summary of experimentally obtained results about event related
gamma band responses. Left side: single participant taken from the size
experiment in Fründ et al. (2008b). Right side: single participant taken
from the memory experiment in Fründ et al. (2008a). a–h Time–fre-
quency plots of activity. abscissa is time in ms, ordinate is frequency
in Hz. Amplitudes are coded in color: high amplitudes correspond to
reddish colors, low amplitudes correspond to blueish colors. a Evoked
response to large stimuli, b total amplitude response for large stimuli,
c evoked response to small stimuli, d total amplitude response for small
stimuli, e evoked response to known stimuli, f total amplitude response

for known stimuli, g evoked response to unknown stimuli, h total ampli-
tude response for unknown stimuli. In the middle row, the time courses
of activity for the respective conditions is illustrated. The scale bars
correspond to 100 ms horizontal and 0.1µV vertical. The frequency at
which the time course data were determined is marked as a white line in
the time–frequency plots (a–h). Absolute amplitudes of the responses
depend on various aspects of data recording and processing and differ
considerably between the two experiments. They are omitted here for
clarity

so-called induced gamma band responses (Basar-Eroglu et al.
1996), are less strictly locked to the stimulus and are usually
observed in the form of later amplitude modulations of the
activity.

Here, we ask, how in particular early gamma band
responses can emerge from the background of spontaneous
activity. We simulated a sparsely connected network of spik-
ing neurons. After the network had been trained for 24 h
using spike-timing-dependent plasticity (Bi and Poo 1998;
Markram et al. 1997), it was tested with a series of input pat-
terns. We observed similar patterns as in human participants
(see Fig. 1 for a summary of the results obtained with human
participants). Early gamma band responses were stronger for
large stimuli. In addition, early gamma band responses were
augmented for stimuli that had been repeatedly presented
during the training phase. In addition, later “induced” gamma
band responses were found, too.

2 Simulation

We simulated a highly simplified network of spiking neu-
rons. This network represents a small group of neurons in

an early sensory area. The EEG data, we compare with the
model, are from visual experiments. Although similar mech-
anisms might presumably be valid for the auditory modality,
too, we presently think of the network as residing in primary
or early secondary visual cortex. The network was in large
part adapted from Izhikevich (2006). The implementation
by Izhikevich (2006) was altered to facilitate storage of net-
works, separate training and testing sessions, and to enable
stimulation of selected cells within the network. In the fol-
lowing, we present details about the simulation.

2.1 Single neuron model

We simulated single neurons using a generalized quadratic
integrate-and-fire neuron as proposed by Izhikevich (2003).
This model is characterized by two ordinary differential
equations

v̇ = 0.04v2 + 5v + 140 − u + I, u̇ = a(bv − u), (1)

and an auxiliary after-spike resetting, if v ≥ 30 mV, v is
reset to a value c, and u is incremented by a value d. Here, v

and u are dimensionless variables, a, b, c, and d are dimen-
sionless real parameters, and ẋ := dx/dt , where t is time.
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The variable v can be interpreted as the membrane potential
and u represents a membrane recovery variable that accounts
for the activation of K+ ionic currents and inactivation of
Na+ ionic currents. All inputs into the cell (synaptic Isyn as
well as external Iext) are collapsed into the dimensionless
variable I := Isyn + Iext.

The network consisted of 800 excitatory cells and 200
inhibitory cells. The parameters a, b, c, and d were tuned in
order to make the excitatory cells resemble regular spiking
cells (RS, Connors and Gutnick 1990), and inhibitory cells
resemble fast spiking cells (FS, Connors and Gutnick 1990).
These parameters are described in more detail by Izhikevich
(2003).

2.2 Network connections

Each neuron in the network projected to a total of 100 ran-
domly chosen other neurons in the network (equal probability
for each neuron). Thus 10% of all possible connections were
realized. Neurons never projected to themselves, and inhibi-
tory cells only projected to excitatory cells. If a presynaptic
neuron i fired a spike at time t (k)

i , the membrane potential
of the postsynaptic neuron j received an impulse of strength
si j after a delay at time t (k) + ∆t . Thus, in total the synaptic

current I ( j)
syn of a postsynaptic neuron j could be written

I ( j)
syn(t) =

∑

k:t (k)
i <t

∑

i projects to j

si jδ
(

t − t (k)
i − ∆t

)
. (2)

The synaptic delay ∆t differed between synapses. Delays
of excitatory synapses were uniformly distributed between
0 (instantaneous) and 20 ms. Delays of inhibitory synapses
were fixed at 0 ms. At the beginning of the simulation the syn-
aptic strength of each excitatory synapse was set to s = 6,
and the synaptic strength of each inhibitory synapse was set
to s = −5. These synaptic strengths correspond to postsyn-
aptic potentials of ≈5.5 mV (s = 6) and ≈4.3 mV (s = −5).
The exact size of the postsynaptic potential depended on the
state of the neuron before an action potential arrived. The
values above are averages derived from simulations in which
single neurons were first driven to a steady state and then
received a pulse. The amplitude of the postsynaptic potential
depended on both, the steady state and the strength of the
pulse. Synaptic strengths were chosen relatively high com-
pared to typical physiological values to compensate for the
small size of the network with few inputs arriving at each
cell.

In an initial training phase, the network synapses were
modified by spike-timing-dependent plasticity. Each spike
that arrives from an excitatory presynaptic neuron at a post-
synaptic neuron, might trigger a spike in the postsynaptic
neuron. Therefore, the corresponding synapse is strength-
ened after each spike. In addition, each spike that arrives

right after the postsynaptic neuron fired, weakens the respec-
tive synapse. Details of the implementation are reported by
Izhikevich (2006). The initial training phase consisted of 24 h
simulated time. During the training phase, one of two stim-
uli was presented to the network every second. Both stimuli
excited disjunct subsets of 50 of the excitatory neurons. Stim-
uli consisted of a rectangular current of strength 3.5. These
stimuli were presented for 300 ms with a fixed inter-stimu-
lus interval of 1 s. After the initial training phase, learning
was disabled and a number of different experiments were
performed on the trained network. Learning was disabled, in
order to avoid effects due to the sequence of the experiments
and the exact sequence of the stimuli within an experiment.

2.3 Simulated experiments

Two types of experiments were performed with the trained
network. The first of the two experiments probed for stim-
ulus-driven responses in the trained network. The second
experiment probed for memory effects in the trained net-
work.

The first simulation experiment resembled the EEG exper-
iments by Busch et al. (2004) and Fründ et al. (2008b).
Human EEG data from the latter experiment are presented in
Fig. 1 (left). The trained network was stimulated with stim-
uli of three different sizes. In the visual system, the size of
the excited cortical area is a monotonic function of the reti-
nal size of a stimulus for centrally presented stimuli. Thus,
we modeled stimulus size as the number of cells that were
excited by a stimulus. Stimuli were presented to 20, 50, or 100
cells, corresponding to a small, medium, or large stimulus.
The stimulus consisted of a rectangular current of strength
3.5 that was injected into the cell for 300 ms. Each stimulus
level was presented 100 times. The stimulus did not overlap
with the cells that were directly stimulated during learning.
In order to simulate the variability across human participants
and to compute statistical parameters, the experiment was
repeated 13 times and the network was retrained for each
repetition.

The second simulation experiment resembled the EEG
experiments by Herrmann et al. (2004a) and Fründ et al.
(2008a). Human EEG data from the latter experiment are
presented in Fig. 1 (right). During the training phase, two
stimuli were repeatedly presented to the network. Thus, dur-
ing training, network connections were adapted to these stim-
uli. After training, these stimuli were considered “known”.
To simulate a memory experiment similar to the ones by
Herrmann et al. (2004a) and Fründ et al. (2008a), the trained
network was stimulated with the same stimuli that were used
during the training phase. In addition, two new stimuli were
presented to the network that had not been presented during
the training phase. Each stimulus was presented 100 times.

123



230 Biol Cybern (2009) 101:227–240

The experiment was repeated 13 times and the network was
retrained for each repetition.

2.4 Data postprocessing

The experiments that have been simulated in the present study
were confined by their technical approach to mass action
of neural activity (Freeman 1975, 2000). This observable is
derived from superimposed postsynaptic potentials of large
numbers of single neurons. Postsynaptic potentials are not
directly accessible from the model presented here. There
is no satisfactory way how to separate postsynaptic poten-
tials from membrane potentials. Any kind of low pass fil-
tering would introduce ringing or other types of artifacts.
It might be argued that each spike triggers a postsynaptic
potential and thus, the number of spikes should be propor-
tional. However, this is only approximately true. If a cell has
more than one connection to other cells, its spikes should
be weighted depending on that and on the respective con-
nection weights. Thus, the generation between single-cell
activity would change during learning. This introduces room
for a lot of ambiguity. We selected another approach. We
simply averaged the membrane potential across all cells in
the network. This does weight a cells spikes depending on
their impact on target cells. In addition, it does not introduce
any filtering artifacts. We will refer to this average membrane
potential as a simulated local field potential (LFP).

We studied early gamma band responses in the simulated
LFP. As early gamma band responses in humans are defined
by (i) timing (60–120 ms poststimulus) and (ii) frequency
(≈25 Hz and higher), we derived time frequency representa-
tions of the simulated LFP. These time frequency represen-
tations were based on a wavelet transform with a complex
morlet wavelet. The morlet wavelets were approximated by
modulated gaussians, that were scaled to the desired fre-
quency, and evaluated on a grid that spanned 6 cycles of
the wavelet’s center frequency. At 1 Hz, the wavelet had the
form

Ψ (t) ∝ exp

(
− t2

2

)
exp (2π ı t) , (3)

with ı = √−1. The wavelet transform of a signal x(t) at
scale a = f −1 was then given as the convolution with the
scaled wavelet

LΨ x(t, a) = (x ∗ Ψa)(t), Ψa(·) = 1

a
Ψ

( ·
a

)
, (4)

where ∗ denotes complex convolution. The wavelet trans-
form was evaluated at frequencies ranging from 1 to 80 Hz
in 1 Hz steps.

After wavelet transformation of the data three statistical
quantities were derived. First, we averaged the population
average of the membrane potential time courses from all pre-

sentations of the same stimulus. We applied the wavelet trans-
form to the average time course, and considered only the
absolute value of the result. This quantity will be referred to
as evoked activity. The evoked activity identifies all compo-
nents of the response that are time locked to the onset of a
stimulus. Second, we applied the wavelet transform to the
population average of the membrane potential at each stim-
ulus presentation. These data were then normalized to have
unit amplitude, and were subsequently averaged. This results
in a time–frequency representation of a quantity that is known
as mean resultant length in statistics (Fisher 1993). In the
EEG literature, this quantity is known as the phase-locking
factor (PLF, Tallon-Baudry et al. 1996). We will use the sec-
ond term because this quantity is 1 for a situation in which
all the individual time courses are strictly phase-locked to
the stimulus. The PLF approaches zero for constellations in
which the phases of the individual time courses have random
phase in the sense that they cancel out in the average. As a
third quantity, we derived a time–frequency representation
of the average amplitude of the individual time courses of
population average of the membrane potential. We applied
the wavelet transform to the simulated LFP at each stimu-
lus presentation and averaged the absolute values of these
wavelet transformed data.

Evoked activity is derived from an average across trials.
An increase in evoked activity can result from two mecha-
nisms: Either a response component could be enhanced or
the temporal alignment of a response component across tri-
als could become stricter. Clearly both of these mechanisms
could interact, and actually they do so in real EEG data (see,
Busch et al. 2006b, for an example). Evoked activity alone
cannot differentiate between these two alternatives. How-
ever, taking into account PLF and the average amplitudes of
the individual time courses can do this. Enhancement of a
response component without accompanying temporal align-
ment change should result in a selective increase of the aver-
age amplitudes. In contrast, increased temporal alignment
across trials should result in a selective increase of the PLF.
The latter mechanism has been reported to be dominant for
early gamma band responses (e.g., Fründ et al. 2007b).

Thus, we described network activity with respect to the
stimulus in terms of three quantities: evoked activity, the PLF,
and the average amplitude.

Data from the two experiments were statistically analyzed
by means of an analysis of variance (ANOVA). The depen-
dent variable for the ANOVA was the average evoked activity
in a time range from 0 to 100 ms after stimulus onset. Two
ANOVAs were performed: one on the data from the size
experiment with a three level factor size, and one on the data
from the memory experiment with a two level factor famil-
iarity.

We observed two prominent response components: one
early component that was phase-locked to the onset of the
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stimulus and a late component that was an amplitude increase
without phase-locking to the stimulus. To quantify the con-
tributions of single neurons to each of these response com-
ponents, patterns were derived for each of these components.
The correlations between the pattern and the activity of each
single neuron were considered a measure of the contribution
of this neuron to the respective response component.

The early component was most prominent in time–fre-
quency representations of the event-related potential, i.e., the
average across all trials. To obtain a pattern for this response,
we limited the bandwidth of the event-related potential to
frequencies between 18 and 32 Hz (128 point digital band-
pass filter with 5 Hz-wide transition bands). The pattern was
then defined as the time course of this band-limited signal
in a temporal window from 25 ms before stimulus onset to
100 ms after stimulus onset. The time course of each neu-
ron on each trial was compared to this pattern. The outcome
of each comparison was quantified by a linear correlation.
This way we obtained one correlation for each trial and each
neuron.

The late component was most prominent in time–fre-
quency representations of the average amplitude across tri-
als. This indicated that the phase of the contributions to this
response varies from trial to trial, although the timing as
well as the frequency range remained relatively constant. It
is therefore not possible to quantify the contributions of sin-
gle cells to this response as the correlations with a single
pattern. However, a necessary condition for the contribution
of a particular cell is easily formulated: if a cell contributes to
the late increase in amplitudes, it has to contribute to the sim-
ulated LFP on each single trial in the same time and frequency
range. Thus, we limited the bandwidth of the averaged mem-
brane potential on each single trial to frequencies between 50
and 70 Hz (164 point digital bandpass filter with 10 Hz-wide
transition bands) and selected the time course from 100 to
500 ms as the pattern for that particular trial. For each trial,
we constructed a pattern for the late gamma band response
and calculated the correlation between this pattern and the
time course of the membrane potential of each single cell on
that trial. This resulted in one correlation for each cell and
each trial.

3 Results

3.1 Network training

In Fig. 2 the evolution of network activity during the train-
ing phase of the network is illustrated. During an initial phase
(Fig. 2a), the network displayed global, burst-like activity.
The inter-burst frequency was approximately 4 Hz. During
this phase, the network did virtually not respond to the stim-
ulus that was applied to the first 50 cells. During training, the
slow, global activity diminished and a characteristic response

pattern emerged. Figure 2b displays the correlation matrix of
the responses in part (a). After a short transitional phase, all
responses were highly correlated. To estimate the number
of different dynamical patterns that dominated the learning
dynamics, we performed an eigenvalue analysis (sometimes
also known as principal component analysis). Figure 2d dis-
plays the eigenvalues of the correlation matrix. The eigen-
values indicate how much of the correlation matrix can be
explained by the corresponding eigenvector. The eigenvalue
spectrum decreases very rapidly. Only the first two eigen-
values are visibly different from zero. The eigenvalues indi-
cate that the first two eigenvectors capture most of the
dynamics of the responses during learning. The eigenvec-
tors that correspond to these two eigenvalues are displayed
in Fig. 2e. The first eigenvector (blue) starts close to zero
and reaches a stable plateau during the first 2 or 3 h of train-
ing. The second eigenvector (red) starts with a relatively high
value and decays rapidly to zero. We can reconstruct the time
course of the response pattern that is associated with one of
these eigenvectors by calculating a weighted sum of the hour
by hour network responses weighted by the eigenvector ele-
ments. These reconstructed response patterns are displayed
in Fig. 2 (f: first eigenvector, g: second eigenvector). The
response pattern associated with the first eigenvector is very
similar to the network response that emerges during learning.
The response pattern associated with the second eigenvector
resembles the network response at the beginning of the train-
ing period. Figure 2c illustrates the emergence of the evoked
network response. This response starts at a value close to zero
and rises rapidly to a relatively stable plateau. We fitted the
data with an exponential function ERP = a(1−exp(−τ t)) to
determine the rate τ of decay toward the plateau a. The rate of
decay toward the plateau was τ = 2.01 h−1. The time course
of the evoked network response is well represented by the
first eigenvector of the correlation matrix (albeit with inverse
sign, also compare with Fig. 2f). We repeated the same anal-
ysis using network tests every 15 min. In this case, the same
observations were made. In particular, the first eigenvector
highly resembled an evoked gamma band response. How-
ever, the rate of decay toward the plateau was faster in this
case (τ = 4.60 h−1).

Similar to the network responses, the synaptic weights
initially underwent large changes (Fig. 2h, i). Although syn-
aptic weights were not fixed after the first 2 or 3 h, the overall
pattern remained stable (Fig. 2h; note that synapses 80,000–
100,000 were inhibitory and remained fixed throughout the
simulation) and the average synaptic strength did not change
much (Fig. 2).

Training altered the topology of the networks. During the
training period a snapshot of the network was stored every
hour. Figure 3a shows the differences in network connectivity
between successive hours of training. Initially, these differ-
ences had relatively large amplitudes. This indicates that the
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(a) (b) (c)

(d)

(e)

(f) (g)

(h) (i)

Fig. 2 Event-related neural dynamics during learning. a Event-related
potential derived from 100 stimulus presentations during training. Ini-
tially, the network was engaged in slow oscillations with high amplitude
and did not display a clear response. After 1 h of training, a character-
istic response pattern started to emerge that stabilized within 2 h. The
scale bars correspond to 100 ms horizontal and to an arbitrary ampli-
tude of 0.2 vertical. The vertical part of the scale bar is aligned with the
onset of the stimulus. b Correlation matrix of the correlation between
the event-related potentials from part (a). The color of point (x, y) in
the matrix displays the correlation between the event-related potential
after x hours with the event-related potential after y hours. c Enhance-
ment of the event-related potential with respect to prestimulus standard
deviation during the training phase. A stable response emerged during
the first 2 or 3 h that subsequently fluctuated around a fixed response
enhancement. The solid line indicates a least-squares fit of the expres-
sion ERP = a(1 − exp(−τ t)) to the data. The fitted parameters were:

asymptotic normalized response a = 18.24 and time constant of learn-
ing τ = 2.01 h−1. d Eigenvalues of the correlation matrix in (b). Only
two eigenvalues seem to be sufficient to describe the largest part of
the correlation matrix. e The first two eigenvectors of the correlation
matrix in (b). The first eigenvector (blue) starts close to zero and reaches
a stable plateau during the first 2 or 3 h of training. The second eigen-
vector (red) starts with a relatively high value and decays rapidly to
zero. f Time course of the first eigenvector. Scale bars are like in (a).
g Time course of the second eigenvector. Scale bars are like in (a).
h Time evolution of synapse strengths during learning. After an ini-
tial strong change, a stable pattern emerges. Note that synapses with
indices ranging from 80,000 to 100,000 were inhibitory and remained
fixed throughout the simulation. i Average strength of synapses in the
network. During the first 2 h of learning the synapse strengths were
down-regulated and remained stable, on average, afterward

network was largely restructured during these initial stages
of learning. After 2 or 3 h, when the network had reached
its steady state, the network connections became more sta-
ble. However, instead of remaining in a fixed state, the net-
work connections remained changing constantly. This was
in contrast with the very stable responses we observed in
Fig. 2. To summarize the total effect of training, we aver-
aged the synaptic output for each presynaptic neuron (see
Fig. 3b; note that cells 800–1,000 are inhibitory). Before
training, the averaged synaptic output for each presynaptic
neuron was fixed (blue line in Fig. 3b). For most neurons, the

synaptic output decreased during training (see green line in
Fig. 3b). The average output increased for only very few neu-
rons. These neurons were unsystematically distributed across
the whole excitatory population. The network before training
and the network after training are displayed in Fig. 3c and d,
respectively. Although the overall structure of these networks
looked similar, the excitatory connections in the trained net-
work seemed to be reduced. This was particularly true for
connections from excitatory neurons to excitatory neurons.
Figure 3f confirms this view. Here, the average input into each
neuron is plotted. The blue line indicates the network before
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(a)

(b) (c) (d) (e)

(f)

Fig. 3 Training effects on network topology. a Differences between
synapse strengths between successive training hours. Initially many syn-
apses were modified. After the network had reached its stable state in
hour 2 or 3, the synapses did not remain static but rather kept changing
although with lower amplitude of the changes. b Averaged output of
cells in the network. Blue line: network before training, green line: net-
work after 24 h of training. Note that the blue line is largely hidden by
the green line. Further note that the main effect of training is mainly to
weaken excitation in the network. c Network topology prior to training.
y-axis is neuron index as in (b), x-axis is neuron index as in (f). Note
that cells 800–1000 are inhibitory. d Network topology after training.
Axes like in (c). Note that the main effect of training is to increase the

sparseness of the excitatory connections. e Evolution of sparseness of
network connections. Sparseness initially increases rapidly and reaches
a stable plateau after 2 or 3 h of training. Black line: network trained
with specific stimuli, red line: network trained with no specific stim-
uli but only unspecific noise input. Sparseness is measured as kurtosis
of the connection matrices. Note that the plateau is slightly higher for
the network that was trained with a specific stimulus set. f Averaged
input into each cell. Blue line: network before training, green line: net-
work after training. Note that although the overall excitation is reduced
after training, excitatory connection strengths to inhibitory cells (index
800–1,000) are strengthened

training. This network had slightly stronger input into inhib-
itory cells than into excitatory cells. After learning (green
line in Fig. 3f), the average input into excitatory cells was
decreased. In contrast, the average input into inhibitory cells
had increased. Inhibitory connections in the network were
not directly altered by the spike-timing-dependent plastic-
ity rule. Figure 3f demonstrates that the plasticity rule still
had an impact on the level of inhibition in the network by
adapting the input to the inhibitory cells.

We asked how these changes depended on the particu-
lar stimuli presented during the training phase. To this end,
we trained the same initial network for 24 h, but this time
without any specific stimuli. Thus, the input into this net-
work consisted of noise only. Interestingly, this network
was not visibly distinguishable from the network with spe-
cific inputs based on Figs. 2 and 3 (a–d,f, data not shown).

Thus, the overall connectivity patterns seems to be estab-
lished by spike-timing-dependent plasticity. However, these
two training protocols yielded slightly different levels of
sparseness for the two networks. The sparseness of the net-
works was quantified by the kurtosis g of the distribution
of synaptic weights. High kurtosis corresponds to a situa-
tion with relatively few extreme connections and most other
connections close to the average. Figure 3e displays the
evolution of network sparseness during training. The initial
network had a relatively low kurtosis. During learning, the
kurtosis rapidly increased during the first 2 or 3 h and then
fluctuated around a relatively stable plateau. This plateau
was slightly lower for the network that was trained with-
out specific stimuli (red line in Fig. 3e) than for the net-
work that was trained with specific stimuli (black line in
Fig. 3e).
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Similar simulations were performed on a network that
additionally included connections from inhibitory cells to
inhibitory cells. Again, inhibitory connections were not mod-
eled as plastic. Although learning proceeded in a similar
manner in this network, the network responses looked much
different. In this network, the first pulse of the response (see
Fig. 2a) was increased, while all subsequent pulses were
largely diminished. We decided to omit this network from
the current analyses.

3.2 Size modulation experiment

A size modulation experiment similar to the one by Busch
et al. (2004) was performed on the trained network. In that
experiment, the authors observed a monotonic increase of
early gamma band activity with increasing stimulus size. This
increase in bottom up salience seems to be predominantly due
to increased phase-locking of the responses to the stimulus
(see also Fründ et al. 2007b). We simulated different stimu-
lus sizes by injecting current into different numbers of cells.
During the experiment, learning was disabled.

Figure 4 shows time–frequency representations of net-
work activity in response to different simulated stimulus
sizes. In part (a), we see that evoked activity after stimu-
lation with a small (20 cells) stimulus is virtually absent. A
clear response could be observed after approximately 25 ms
at approximately 25 Hz.1 This early response increased if the
stimulus size was increased to 50 cells (part b). It increased
even further if the stimulus size was increased to 100 cells.
Thus, the network activity displayed a similar monotonic
increase of early gamma band activity with stimulus size
as has been reported experimentally (Network:F(2, 36) =
421.85, P < 10−15, Experiment by Busch et al. (2004):
F(2, 42) = 11.12, P < 0.001).

Figure 4d shows a time–frequency representation of the
PLF in response to a small (20 cells) stimulus. The early
response that we saw in Fig. 4a is present here, too. Although
the increases of the PLF were less focused in both, time and
frequency, we can clearly observe a monotonic increase of
this statistic with increasing stimulus size (Fig. 4e,f). Thus
at least part of the modulation of the response observed in
Fig. 4a–c resulted from increased phase-locking to the stim-
ulus. In contrast, if we consider the averaged amplitudes of
average membrane potential that are shown in Fig. 4g–i, the
early response was very weak. There was still a small early
response, which was modulated by stimulus size. However,
the strongest modulation of the simulated LFP was found
considerably later, after approximately 200 ms at a frequency
of approximately 60 Hz. Strong and consistent modulations

1 Note that the seemingly strong activity at the borders of the analyzed
window is an artifact of the time–frequency analysis which becomes
wider at lower frequencies.

of early evoked responses were observed in all 13 simulation
runs. This is illustrated by the very small standard errors of
the responses shown in Fig. 5a.

Figure 5a also shows results from a network in which
the network connection strengths were shuffled within all
excitatory connections and within all inhibitory connections
(dashed lines). Thus for this network, the mean and the stan-
dard deviation of the connection strengths as well as the
number of connections were all the same as for the original
network. However, the fine structure of the connections was
completely abolished. Figure 5a demonstrates that evoked
gamma band responses are much reduced if this fine struc-
ture is disrupted. Consequently, the size manipulation has
clearly weaker effects in this modified network.

We determined the firing rates of those cells that were
directly stimulated separately from the firing rates of the
remaining excitatory cells and the inhibitory cells. In general,
excitatory cells that were not directly stimulated displayed
only weak responses. In contrast, prominent responses were
observed for those cells that were directly stimulated by the
input as well as for the inhibitory subpopulation. We tested
whether the stimulated cells were driving the inhibitory sub-
population by estimating the rate with which the responses
of the stimulated cells peaked before the responses of the
inhibitory cells peaked. It should be noted that this does not
necessarily have to be the case as both populations also dis-
played spontaneous fluctuations in their activity. Thus, if the
responses of the inhibitory populations were merely due to
spontaneous fluctuations, the responses should peak equally
often before the excited cells as after the excited cells. How-
ever, this was not the case. For the small stimulus, the cell
population that was directly stimulated peaked in 88% of
the trials before the inhibitory population’s response peaked.
This clearly suggests a driving impact of the directly stimu-
lated cells on the inhibitory population. For larger stimulus
sizes, the fraction increased to 98% for the largest stimulus.
Thus, after stimulation, the inhibitory population was driven
by the stimulated cells and this driving influence was stronger
for larger stimuli.

3.3 Memory experiment

A second experiment was performed with the trained net-
work. This experiment resembled the one by Herrmann et al.
(2004a). In that experiment, the authors presented their par-
ticipants images of known and unknown objects. The early
gamma band responses to known objects were stronger than
those to unknown objects. We repeated a similar experi-
ment with the trained network. We considered those stim-
uli “known” that were presented during the training phase.
In addition, we presented stimuli of the same size that were
not presented during the training phase. These stimuli were
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Fig. 4 Size modulation of early
gamma band responses. Left
column: time–frequency
representations of evoked
activity for small (20 cells, a),
medium (50 cells, b), and large
(100 cells, c) stimuli. Middle
column: time–frequency
representations of the
phase-locking factor for small
(20 cells, d), medium (50 cells,
e), and large (100 cells, f)
stimuli. Right column:
time–frequency representations
of average amplitude for small
(20 cells, g), medium (50 cells,
h), and large (100 cells, i)
stimuli. Note, that the early
evoked response at
approximately 25 ms and 25 Hz
(a,b,c) can mainly be related to
increases in the phase-locking
factor (d,e,f). Stimulus intensity
was I = 3.5 during training as
well as during testing

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

considered “unknown”. During the experiment, learning was
disabled.

Figure 6 displays time–frequency representations of the
simulated LFP for known and unknown stimuli. When stim-
ulated with a known stimulus, the network displayed a clear
evoked response at approximately 25 Hz after approximately
25 ms (Fig. 6a). When stimulated with an unknown stimu-
lus, this response was attenuated but still focused in time and
frequency (Fig. 6b). This is similar to effects reported from
experiments (Network: F(1, 24) = 9.46, P < 0.01, exper-
iment by Fründ et al. 2008a, F(1, 16) = 5.24, P < 0.05).
A similar analysis for the PLF is plotted in Fig. 6c, d. This
response was less focused in time and frequency than it was
for the evoked activity. For averaged amplitudes, there was a
very focused response with a similar time–frequency locali-
zation as for the evoked activity. Although this response was
focused for known stimuli (Fig. 6e) as well as unknown stim-
uli (Fig. 6f), it was clearly attenuated for unknown stimuli.
For the average amplitudes, there was a second, later response
component at a frequency of approximately 60 Hz. This
response was visible for both, the known stimuli (Fig. 6e) and
the unknown stimuli (Fig. 6f). However, after 100–200 ms,
it was stronger for the known stimuli than for the unknown
stimuli.

In Fig. 5b, we also show time courses of the evoked gamma
band responses to known and unknown stimuli for a network

in which the network connections were shuffled after the
network was trained (dashed lines). Similar to the observa-
tions reported in Sect. 3.2, evoked gamma band responses are
diminished in this network. Furthermore, the network does
not exhibit any memory effects anymore.

3.4 Origin of evoked and induced responses

So far, we observed two types of responses in the model.

1. An early response at a frequency of approximately 25 Hz
which is strongly phase locked to the onset of a stimulus.

2. A later response at a considerably higher frequency
(≈60 Hz) which was only weakly or not at all phase
locked to the onset of a stimulus.

We tried to identify the cells that contributed to each of these
responses. To do so, we derived a pattern for each of the
responses and determined the match of this pattern to the
response of every single cell in every single trial. If this match
was high, we concluded, that the respective cell had a large
contribution to the respective response component.

The evoked response was most prominent in time–fre-
quency representations of the event related potential, i.e.,
the average across all trials. Thus, we limited the band-
width of the event-related potential time course to frequen-
cies between 18 and 32 Hz. The time course of this signal in
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(a)

(b)

Fig. 5 Time courses of evoked activity at 25 Hz. Solid lines indicate
averages over 13 simulation runs, shaded regions indicate 95% confi-
dence intervals of mean. a Network responses to stimuli of difference
sizes. Blue lines and shading indicate responses to small stimuli (20
cells). Green lines and shading indicate responses to medium size stim-
uli (50 cells). Red lines and shading indicate responses to large stimuli
(100 cells). b Network responses to known and unknown stimuli. Red
lines and shading indicate responses to known stimuli. Blue lines and
shading indicate responses to unknown stimuli. Green and yellow lines
and shading correspond to the same stimuli but in a network that did
not receive any specific stimulation during the learning phase. Green
indicates the same stimulus as the known stimulus, yellow indicates
the same stimulus as the unknown stimulus. In both parts, the dashed
lines mark the same conditions as the solid lines with one difference: in
these conditions, the network connections of the trained network were
shuffled between all excitatory connections and between all inhibitory
connections prior to experimental testing. Note that size effects and
gamma band responses are diminished in these cases. Confidence inter-
vals have roughly the same width as for the intact network

the time range from 25 ms before stimulus onset to 100 ms
after stimulus onset served as the pattern for the evoked
response. The time and frequency range that correspond to
this pattern are marked by a green box in Fig. 7c. The pat-
tern itself is superimposed on the event-related potential time
course in Fig. 7a. For each trial and each cell, we calculated
the correlation between this pattern and the time course of
the membrane potential of this cell on that particular trial.
Histograms of these correlations are color coded for each
cell in Fig. 7b. The cells that directly received a stimulus are
marked by a white bar at the bottom of Fig. 7b. Although the
correlation was larger than zero for most excitatory cells; this

effect was most prominent for those cells that were directly
stimulated. Another point that is worth noting is that the dis-
tribution of correlations was more spread out for inhibitory
cells than for excitatory cells. This indicates that for inhibi-
tory cells, more strongly positive and more strongly negative
correlated cells are present in the network.

The later gamma band response, was most prominent
in time–frequency representations of the average amplitude
across trials. This indicated that the phase of the contributions
to this response varies from trial to trial, although the timing
as well as the frequency range remain relatively constant. It
is therefore not possible to quantify the contributions of sin-
gle cells to this response as correlations with a single pattern.
However, a necessary condition for the contribution of a par-
ticular cell is easily formulated: if a cell contributes to the
late increase in amplitudes around 60 Hz, it has to contribute
to the simulated LFP on each single trial in the same time and
frequency range. Thus, we limited the bandwidth of the sim-
ulated LFP on each single trial and selected the time course
from 100 to 500 ms as the pattern for that particular trial. For
each trial, we constructed a pattern for the late gamma band
response and calculated the correlation between this pattern
and the time course of the membrane potential of each single
cell on that trial. This resulted in one correlation for each cell
and each trial. The time and frequency ranges that were used
to derive the patterns are marked as a red box in Fig. 7e. The
average envelope of all patterns is marked as a red line in
Fig. 7a. Histograms of the correlations are color coded for
each cell in Fig. 7d. In contrast to the evoked response, the
cells that display high contributions to the late gamma band
response are not restricted to the cells that were directly stim-
ulated. The correlations for the single cells are skewed toward
positive correlations for the whole excitatory population. For
the inhibitory population, the correlations spread less than in
the case with the evoked gamma band response.

We performed the same experiments on a network in
which all the connections were randomized. In this network,
none of the reported results could be observed. Thus, STDP
seems to be relevant for generating and maintaining a net-
work state that is characterized by event-related gamma band
responses.

4 Discussion

We presented data from a simple spiking network model,
similar to the one by Izhikevich (2006). During a training
phase, the network connections were modified using spike-
timing-dependent plasticity. During this phase, the network
was stimulated with two different input patterns. The overall
network structure became more sparse, while local features
of the network remained the same. After training, we con-
ducted two experiments on the trained network. In the first
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(a) (c) (e)

(b) (d) (f)

Fig. 6 Memory modulations of early gamma band responses. Left col-
umn: time–frequency representation of evoked activity for known (a)
and unknown (b) stimuli. Middle column: time–frequency representa-
tion of the phase-locking factor for known (c) and unknown (d) stimuli.

Right column: time–frequency representation of average amplitude for
known (e) and unknown (f) stimuli. Note that the differences that can be
observed for evoked activity are virtually absent for the phase-locking
factor (c,d) but very pronounced for the average amplitude (e,f)

experiment, we manipulated the size of the input population.
Similar to an experiment by Busch et al. (2004), we observed
a monotonic increase in early gamma band responses with
increasing input size. In the second experiment, we com-
pared the responses to known stimuli, that had been pre-
sented during the training phase, and unknown stimuli that
had not been presented during the training phase. Similar
to an experiment by Herrmann et al. (2004a), we observed
stronger early gamma band responses for known stimuli. This
indicates that spike-timing-dependent plasticity drives a neu-
ral network into a state that is characterized by early gamma
band responses.

Classical approaches that modeled the electroencephalo-
gram have usually focused their attention on the interrela-
tion of average properties (David and Friston 2003; Freeman
1975; Jansen and Rit 1995; Jirsa and Haken 1997; Nunez
and Srinivasan 2006; Robinson et al. 1997, 2001; Wright and
Liley 1995). Such mass models are much better in dealing
with the huge number of neurons that are involved in generat-
ing the electroencephalogram than spike-based approaches
such as the one employed here. Furthermore, such models
provide better opportunity of fitting to real electrophysiolog-
ical data in a quantitative way (David et al. 2006; Robinson
et al. 2001, 2004). Mass models have provided reasonable
explanations for phenomena that arise in the limit of infi-
nitely many neurons, such as wave-like information trans-
mission (Freeman 1975; Jirsa and Haken 1997; Nunez and
Srinivasan 2006; Robinson et al. 1997), or the emergence of
large-scale synchronous rhythms (Freeman 1975; Jansen and
Rit 1995; Robinson et al. 1998; Rennie et al. 2000). How-

ever, large-scale dynamical states are characterized not only
by average firing rate but also by the variability of spiking
across cells (Brunel 2000). This variability is discarded by
simply considering average quantities. However, it is crucial
for spike-timing-dependent plasticity. Although the analy-
sis of the current report focused on average quantities, the
simulation did not. Thus, the simulation can reasonably cap-
ture spike-timing-dependent plasticity as present in the fine
structure of spiking variability.

The manipulations we performed on the model resulted
in changes of early gamma band responses. These changes
manifested themselves as changes in phase-locking to the
onset of the stimulus. These findings have parallels in the lit-
erature on early gamma band responses. Reliable increases
in phase-locking have been reported for large stimuli (Fründ
et al. 2007b). However, such phase-locking does not seem to
be restricted to size manipulations. Increased phase-locking
has also been found in response to stimuli with high visual
contrast (Schadow et al. 2007b), to stimuli with low spatial
frequency (Fründ et al. 2007a), or to intense auditory stimula-
tion (Schadow et al. 2007a). This seems to indicate that bold,
salient stimuli in general result in increased phase-locking of
the early gamma band response to the stimulus. For the cur-
rent simulation, different levels of bottom-up saliency trans-
late into different numbers of neurons directly stimulated. For
top-down modulations of early gamma band responses, there
is less clear evidence that favors one or the other property of
the evoked gamma band response. Attentional modulation
of early gamma band responses seems to become manifest
in the amplitudes of early gamma band responses (Busch
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(a)

(b) (d)

(c) (e)

Fig. 7 Single-cell contributions to different types of response. a Sim-
ulated event-related potential (black line) and the two patterns that were
searched. Green line: pattern for evoked gamma band activity. Red line:
average envelope of the patterns for induced gamma band activity.
b Contributions of each neuron to the evoked gamma band response.
The time course of each neuron in each single trial was correlated with
the pattern for the evoked gamma band response (green line in part
a). Thus, for each trial and each neuron, a correlation coefficient was
determined that described the correlation between the neurons activity
and the evoked gamma band response. Color codes the probability for a
given neuron to display the specific correlation on a given trial. A white
bar at the bottom left marks the cells that received direct current input.
c Time frequency representation of the evoked activity. Green box: time–
frequency window of the pattern for the evoked gamma band response.

d Contributions of each neuron to the late amplitude changes in the
gamma band. The time course of each neuron in each single trial was
correlated with the band limited simulated LFP on that trial (the average
envelope of these population activities is indicated as a red line in part
a). Thus, for each trial and each neuron, a correlation coefficient was
determined that described the correlation between the neurons activity
and the late gamma band activity on that trial. The average of these late
gamma band activities across trials is the late gamma band response
(marked by a red box in part e). Color codes the probability for a given
neuron to display the specific correlation on a given trial. A white bar
at the bottom left marks the cells that received direct current input.
e Time frequency representation of the average amplitudes of popula-
tion activity. Red box: time–frequency window of the patterns for the
late gamma band response

et al. 2006b). However, another study only observed famil-
iarity effects for the phase-locking of the early gamma band
response but not for average amplitude (Fründ et al. 2008a).
Thus, the EEG data are not conclusive in this respect.

Spike-timing-dependent plasticity drives the network into
a state that is characterized by evoked gamma band responses.
Although it had previously been demonstrated that spike-tim-
ing-dependent plasticity can stabilize global network states
(e.g., Song et al. 2000), it is interesting to note, that evoked
gamma band responses are a characteristic part of this. Fur-
thermore, the eigenvalue analysis suggests that the emer-
gence of evoked gamma band activity proceeds relatively
independent of the decay of the low-frequency components
of the network activity. This is a prediction that has, to our
knowledge not yet been tested experimentally.

A very prominent phenomenon associated with scalp mea-
sured gamma band activity are so-called induced gamma
band responses (for review see Basar-Eroglu et al. 1996;
Tallon-Baudry and Bertrand 1999). There has recently been
some doubt as to whether such responses could be measured
from scalp EEG at all (Yuval-Greenberg et al. 2008). Inter-
estingly, our model displays induced gamma band responses
as indicated by our amplitude measure. These responses are
more pronounced for known stimuli as compared to unknown
stimuli, which is exactly what many studies of scalp mea-
sured gamma band responses found (Busch et al. 2006a;
Gruber and Müller 2005, 2006; Lachaux et al. 2005; Tallon-
Baudry et al. 1997, see Herrmann et al. 2004b for a review).
In addition, this response was modulated by the size of
the input stimuli in a similar way as recently observed for
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natural images (Fründ et al. 2008b). However, the response
frequencies observed in our model are relatively high
(approximately 50–70 Hz) for scalp measured induced
gamma band responses. Thus, it is unclear in how far the
later modulations of average amplitude can be related to the
induced gamma band responses reported in the literature. If
they could, the fact that they emerge directly from the spike-
timing-dependent plasticity learning rule suggests that these
brain responses are related to very basal processing.

In the present simulation, we observed stronger evoked
responses for (i) larger stimuli and (ii) for known as compared
to unknown stimuli. The frequency of these responses is in
the β/γ frequency range (≈20–90 Hz). Previous studies have
related gamma band activity to activity of the inhibitory sub-
population (Izhikevich 2006) or to recurrent activity within
the inhibitory subpopulation (see Whittington et al. 2000, for
a review). The current model does not have recurrent con-
nections within the inhibitory subpopulation. Thus, a purely
inhibitory origin of the gamma band activity in this model is
not possible.2 The correlation analysis in Sect. 3.4 suggests
two different origins for the early and late response. The early
gamma band response was predominantly input driven. The
excitatory cells that strongly contribute to this response com-
ponent are those cells that were directly excited by the stim-
ulus. The late gamma band response was not related to direct
driving from the input. This is indicated by the fact, that all
excitatory cells contributed more or less equally strong to
the late gamma band response. This suggests that the late
gamma band response emerges from the interactions within
the whole network. A similar effect, albeit on a different scale
has been reported for scalp measured EEG, too. The evoked
gamma band response is typically restricted to very few scalp
locations, while the late gamma band response is much more
widespread (e.g., Busch et al. 2006a; Fründ et al. 2008a).
However, such comparisons have to remain very speculative.

We conclude, that very simple random networks under
the influence of spike-timing-dependent plasticity can repro-
duce findings from experiments with humans. It is plausible
that early gamma band responses in humans are shaped by
bottom-up processing and by low level learning processes
such as spike-timing-dependent plasticity. Furthermore, the
model predicts that later gamma band responses are an emer-
gent network property.
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