Skip to main content
Log in

Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To examine the effects of neuromuscular electrical stimulation (NMES) and blood flow restricted (BFR) exercise on wrist extensors cross-sectional area (CSA), torque and hand functions compared NMES only in individuals with incomplete tetraplegia. The acute effect of an acute bout of NMES with BFR on flow mediated dilation (FMD) was compared with BFR only.

Method

Nine men completed 6 weeks twice weekly of bilateral NMES training of the wrist extensor muscles. The right forearm received NMES + BFR (30 % above the resting systolic blood pressure), while the left forearm received NMES only. The CSA of the extensor carpi radialis longus (ECRL) and extensor digitorum communis (EDC) muscles was measured on ultrasound images. Torque was measured isometrically and hand function with grasp and release test. Another eight men with SCI received NMES+BFR to the right forearm, while the left forearm received BFR only. Immediately, the FMD of the brachial artery was measured.

Result

Following training, the ECRL CSA was 17 % greater in the NMES+BFR forearm (mean difference = 0.6 cm2, p = 0.003) compared with the NMES only. The NMES+BFR had a 15 % increase in ECRL CSA (mean increase = 0.58 cm2, p = 0.048). FMD increased (p = 0.05) in the exercise arm (12 ± 3 %) compared with the control arm (6.5 ± 6 %).

Conclusion

NMES training with BFR is a strategy that can increase skeletal muscle size. NMES with and without BFR can improve wrist strength and hand function. The acute effects of NMES+BFR may suggest that an increase in FMD may partially contribute to skeletal muscle hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ANCOVA:

Analysis of covariance

BFR:

Blood flow restricted

CSA:

Cross-sectional area

ECRL:

Extensor carpi radialis longus m

EDC:

Extensor digitorum communis m

FMD:

Flow mediated dilation

HR:

Heart rate

NMES:

Neuromuscular electrical stimulation

NMES+BFR:

Neuromuscular electrical stimulation and blood flow restricted

NO:

Nitric oxide

ROM:

Range of motion

SCI:

Spinal cord injury

References

  • Abe T, Yasuda T, Midorikawa T et al (2005) Skeletal muscle size and circulating IGF-1 are increased after 2 weeks of twice daily Kaatsu resistance training. Int J KAATSU Training Res 1:6–12

    Article  Google Scholar 

  • Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol (1985) 100(5):1460–1466

    Article  CAS  Google Scholar 

  • Abe T, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Bemben MG (2012) Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging 32(4):247–252

    Article  CAS  PubMed  Google Scholar 

  • Agewall S, Doughty RN, Bagg W, Whalley GA, Braatvedt G, Sharpe N (2001) Comparison of ultrasound assessment of flow-mediated dilatation in the radial and brachial artery with upper and forearm cuff positions. Clin Physiol 21(1):9–14

    Article  CAS  PubMed  Google Scholar 

  • Alon G, McBride K (2003) Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch Phys Med Rehabil 84(1):119–124

    Article  PubMed  Google Scholar 

  • Alon G, Levitt AF, McCarthy PA (2007) Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabil Neural Repair 21(3):207–215

    Article  PubMed  Google Scholar 

  • Anderson KD (2004) Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma 21(10):1371–1383

    Article  PubMed  Google Scholar 

  • Betik AC, Luckham VB, Hughson RL (2004) Flow-mediated dilation in human brachial artery after different circulatory occlusion conditions. Am J Physiol 286:H442–H448

    CAS  Google Scholar 

  • Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ (2003) Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc 35:1203–1208

    Article  CAS  PubMed  Google Scholar 

  • Castro MJ, Apple DF Jr, Hillegass EA, Dudley GA (1999) Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol 80(4):373–378

    Article  CAS  PubMed  Google Scholar 

  • Credeur DP, Hollis BC, Welsch MA (2010) Effects of handgrip training with venous restriction on brachial artery vasodilation. Med Sci Sports Exerc 42(7):1296–1302

    Article  PubMed  PubMed Central  Google Scholar 

  • DeVivo MJ (1997) Causes and costs of spinal cord injury in the United States. Spinal Cord 35(12):809–813

    Article  CAS  PubMed  Google Scholar 

  • Erskine RM, Jones DA, Maganaris CN et al (2009) In vivo specific tension of the human quadriceps femoris muscle. Eur J Appl Physiol 106:827–838

    Article  PubMed  Google Scholar 

  • Gorgey AS, Dudley GA (2007) Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord 45(4):304–309

    CAS  PubMed  Google Scholar 

  • Gorgey AS, Gater DR (2012) Insulin growth factors may explain relationship between spasticity and skeletal muscle size in men with spinal cord injury. J Rehabil Res Dev 49(3):373–380

    Article  PubMed  Google Scholar 

  • Gorgey AS, Mahoney E, Kendall T, Dudley GA (2006) Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol 97(6):737–744

    Article  PubMed  Google Scholar 

  • Gorgey AS, Mather KJ, Cupp HR, Gater DR (2012) Effects of resistance training on adiposity and metabolism after spinal cord injury. Med Sci Sports Exerc 44(1):165–174

    Article  CAS  PubMed  Google Scholar 

  • Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR (2014a) Effects of spinal cord injury on body composition and metabolic profile–part I. J Spinal Cord Med 37(6):693–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgey AS, Timmons MK, Michener LA, Ericksen JJ, Gater DR (2014b) Intra-rater reliability of ultrasound imaging of wrist extensor muscles in patients with tetraplegia. PM R 6(2):127–133

    Article  PubMed  Google Scholar 

  • Harris RA, Nishiyama SK, Wray DW, Richardson RS (2010) Ultrasound assessment of flow-mediated dilation. Hypertension 55(5):1075–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson JA (2009) Musculoskeletal ultrasound: focused impact on MRI. AJR Am J Roentgenol 193:619–627

    Article  PubMed  Google Scholar 

  • Kjaer M, Dela F, Sørensen FB, Secher NH, Bangsbo J, Mohr T, Galbo H (2001) Fatty acid kinetics and carbohydrate metabolism during electrical exercise in spinal cord-injured humans. Am J Physiol Regul Integr Comp Physiol 281(5):R1492–R1498

    CAS  PubMed  Google Scholar 

  • Mahoney ET, Bickel CS, Elder C et al (2005) Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehabil 86(7):1502–1504

    Article  PubMed  Google Scholar 

  • Marino RJ, Ditunno JF Jr, Donovan WH, Maynard F Jr (1999) Neurologic recovery after traumatic spinal cord injury: data from the model spinal cord injury systems. Arch Phys Med Rehabil 80(11):1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Nash MS, Montalvo BM, Applegate B (1996) Lower extremity blood flow and responses to occlusion ischemia differ in exercise-trained and sedentary tetraplegic persons. Arch Phys Med Rehabil 77:1260–1265

    Article  CAS  PubMed  Google Scholar 

  • National Spinal Cord Injury Statistical Center (2015) Available at: https://www.nscisc.uab.edu. Accessed 7th Dec 2015

  • Pearson SJ, Hussain SR (2015) A review on the mechanisms of blood-flow restriction resistancetraining-induced muscle hypertrophy. Sports Med 2:187–200

    Article  Google Scholar 

  • Popovic MR, Kapadia N, Zivanovic V et al (2011) Functional electrical stimulation therapy of voluntary grasping versus only conventional rehabilitation for patients with subacute incomplete tetraplegia: a randomized clinical trial. Neurorehabil Neural Repair 25:433–442

    Article  PubMed  Google Scholar 

  • Powell J, Pandyan AD, Granat M, Cameron M, Stott DJ (1999) Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 30(7):1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Rosewilliam S, Malhotra S, Roffe C, Jones P, Pandyan AD (2012) Can surface neuromuscular electrical stimulation of the wrist and hand combined with routine therapy facilitate recovery of arm function in patients with stroke? Arch Phys Med Rehabil 93(10):1715–1721

    Article  PubMed  Google Scholar 

  • Rupp R, Gerner HJ (2007) Neuroprosthetics of the upper extremity–clinical application in spinal cord injury and challenges for the future. Acta Neurochir Suppl 97:419–426

    CAS  PubMed  Google Scholar 

  • Ryan TE, Brizendine JT, Backus D, McCully KK (2013) Electrically induced resistance training in individuals with motor complete spinal cord injury. Arch Phys Med Rehabil 94(11):2166–2173

    Article  PubMed  Google Scholar 

  • Sabatier MJ, Stoner L, Mahoney ET et al (2006) Electrically stimulated resistance training in SCI individuals increases muscle fatigue resistance but not femoral artery size or blood flow. Spinal Cord 44(4):227–233

    Article  CAS  PubMed  Google Scholar 

  • Segal NA, Williams GN, Davis MC, Wallace RB, Mikesky AE (2015) Efficacy of blood flow-restricted, low-load resistance training in women with risk factors for symptomatic knee osteoarthritis. PM R 7(4):376–384

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith BT, Mulcahey MJ, Betz RR (1996) Quantitative comparison of grasp and release abilities with and without functional neuromuscular stimulation in adolescents with tetraplegia. Paraplegia 34(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Smith LW, Smith JD, Criswell DS (2002) Involvement of nitric oxide synthase in skeletal muscle adaptation to chronic overload. J Appl Physiol (1985) 92(5):2005–2011

    Article  CAS  Google Scholar 

  • Spungen AM, Adkins RH, Stewart CA et al (2003) Factors influencing body composition in persons with spinal cord injury: a cross-sectional study. J Appl Physiol (1985) 95(6):2398–2407

    Article  Google Scholar 

  • Stoner L, Sabatier M, VanhHiel L et al (2006) Upper vs lower extremity arterial function after spinal cord injury. J Spinal Cord Med 29:138–146

    PubMed  PubMed Central  Google Scholar 

  • Stoner L, Sabatier MJ, Mahoney ET et al (2007) Electrical stimulation-evoked resistance exercise therapy improves arterial health after chronic spinal cord injury. Spinal Cord 45:49–56

    Article  CAS  PubMed  Google Scholar 

  • Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N (2000a) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88:2097–2106

    CAS  PubMed  Google Scholar 

  • Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N (2000b) Rapid increase in plasma growth hormone following low-intensity resistance exercise with vascular occlusion. J Appl Physiol 88:61–65

    CAS  PubMed  Google Scholar 

  • Takarada Y, Takazawa H, Ishii N (2000c) Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 32(12):2035–2039

    Article  CAS  PubMed  Google Scholar 

  • Wijman CA, Stroh KC, Van Doren CL, Thrope GB, Peckham PH, Keith MW (1990) Functional evaluation of quadriplegic patients using a hand neuroprosthesis. Arch Phys Med Rehabil 71(13):1053–1057

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf S. Gorgey.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorgey, A.S., Timmons, M.K., Dolbow, D.R. et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol 116, 1231–1244 (2016). https://doi.org/10.1007/s00421-016-3385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3385-z

Keywords

Navigation