Skip to main content
Log in

Solutions to a limited-permeable crack or two limited-permeable collinear cracks in piezoelectric/piezomagnetic materials

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The solutions of a limited-permeable crack (case I) or two collinear limited-permeable cracks (case II) in piezoelectric/piezomagnetic materials subjected to a uniform tension loading were investigated in this paper using the generalized Almansi’s theorem. At the same time, the electric permittivity and the magnetic permeability of air in crack were firstly considered. Through the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables were jumps of displacements across crack surfaces, not the dislocation density functions or the complex variable functions. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials to obtain the relations among electric displacement intensity factors, magnetic flux intensity factors and stress intensity factors at crack tips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu T.L., Huang J.H. (2000). Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases. Int. J. Solids Struct. 37: 2981–3009

    Article  MATH  Google Scholar 

  2. Wippler K., Ricoeur A., Kuna M. (2004). Towards the computation of electrically permeable cracks in piezoelectrics. Eng. Fracture Mech. 71: 2567–2587

    Article  Google Scholar 

  3. Fujimoto Y., Shintaku E., Pirker G., Liu G. (2003). Piezoelectric sensor for stress intensity factor measurement of two dimensional cracks. Eng. Fracture Mech. 70: 1203–1218

    Article  Google Scholar 

  4. Sih G.C., Song Z.F. (2003). Magnetic and electric poling effects associated with crack growth in BaTiO3 - CoFe2O4 composite. Theor. Appl. Fracture Mech. 39: 209–227

    Article  Google Scholar 

  5. Song Z.F., Sih G.C. (2003). Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theor. Appl. Fracture Mech. 39: 189–207

    Article  Google Scholar 

  6. Wang B.L., Mai Y.W. (2004). Fracture of piezoelectromagnetic materials. Mech. Res. Commun. 31(1): 65–73

    Article  MATH  Google Scholar 

  7. Gao C.F., Kessler H., Balke H. (2003). Fracture analysis of electromagnetic thermoelastic solids. Eur. J. Mech. Solid 22(3): 433–442

    MATH  Google Scholar 

  8. Gao C.F., Tong P., Zhang T.Y. (2003). Interfacial crack problems in magneto-electroelastic solids. Int. J. Eng. Sci. 41(18): 2105–2121

    Article  Google Scholar 

  9. Spyropoulos C.P., Sih G.C., Song Z.F. (2003). Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation. Theor. Appl. Fracture Mech. 39(3): 281–289

    Article  Google Scholar 

  10. Liu J.X., Liu X.L., Zhao Y.B. (2001). Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39(12): 1405–1418

    Article  Google Scholar 

  11. Chung M.Y., Ting T.C.T. (1995). The Green function for a piezoelectric piezomagnetic anisotropic elastic medium with an elliptic hole or rigid inclusion. Philos. Mag. Lett. 72: 405–410

    Article  Google Scholar 

  12. Pan E. (2002). Three-dimensional Green’s functions in anisotropic magneto-electro-elastic bimaterails. Zeitschrift fur Angewandte Mathematik und Physik 53: 815–838

    Article  MATH  Google Scholar 

  13. Gao C.F., Kessler H., Balke H. (2003). Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int. J. Eng. Sci. 41(9): 969–981

    Article  MathSciNet  Google Scholar 

  14. Gao C.F., Kessler H., Balke H. (2003). Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. Int. J. Eng. Sci. 41(9): 983–994

    Article  MathSciNet  Google Scholar 

  15. Wang B.L., Mai Y.W. (2003). Crack tip field in piezoelectric/piezomagnetic media. Eur. J. Mech. Solid 22(4): 591–602

    Article  MATH  Google Scholar 

  16. Chen W.Q., Lee K.Y., Ding H.J. (2004). General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. Int. J. Eng. Sci. 42: 1361–1379

    Article  Google Scholar 

  17. Wang X., Shen Y.P. (2002). The general solution of three-dimensional problems in magnetoelectroelastic media. Int. J. Eng. Sci. 40: 1069–1080

    MathSciNet  Google Scholar 

  18. Van Suchtelen J. (1972). Product properties: a new application of composite materials. Phillips Research Reports 27: 28–37

    Google Scholar 

  19. Harshe G., Dougherty J.P., Newnham R.E. (1993). Theoretical modeling of 3-0/0-3 magnetoelectric composites. Int. J. Appl. Electromag. Mat. 4: 161–171

    Google Scholar 

  20. Avellaneda M., Harshe G. (1994). Magnetoelectric effect in piezoelectric/magnetostrictive multiplayer (2–2) composites. J. Intell. Mat. Syst. Struct. 5: 501–513

    Article  Google Scholar 

  21. Nan C.W. (1994). Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50: 6082–6088

    Article  Google Scholar 

  22. Benveniste Y. (1995). Magnetoelectric effect in fibrous composites with piezoelectric and magnetostrictive phases. Phys. Rev. B 51: 16424–16427

    Article  Google Scholar 

  23. Huang J.H., Kuo W.S. (1997). The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions. J. Appl. Phys. 81(3): 1378–1386

    Article  Google Scholar 

  24. Li J.Y. (2000). Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials. Int. J. Eng. Sci. 38: 1993–2011

    Article  Google Scholar 

  25. Zhou Z.G., Wang B. (2004). Two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Int. J. Solids Struct. 41: 4407–4422

    Article  MATH  Google Scholar 

  26. Zhou Z.G., Wang B., Sun Y.G. (2004). Two collinear interface cracks in magneto-electro-elastic composites. Int. J. Eng. Sci. 42: 1157–1167

    Google Scholar 

  27. Zhou Z.G., Wu L.Z., Wang B. (2005). The dynamic behavior of two collinear interface cracks in magneto-electro-elastic composites. Eur. J. Mech. Solids 24(2): 253–262

    Article  MATH  Google Scholar 

  28. Zhou Z.G., Wu L.Z., Wang B. (2005). The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Archive Appl. Mech. 74(8): 526–535

    Article  MATH  Google Scholar 

  29. Morse P.M., Feshbach H.: Methods of theoretical physics. vol.1, McGraw-Hill, New York (1958)

  30. Gao H.J., Zhang T.Y., Tong P. (1997). Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramics. J. Mech. Phys. Solids 45(4): 491–510

    Article  Google Scholar 

  31. Hao T.H., Shen Z.Y. (1994). A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fracture Mech. 47(6): 793–802

    Article  Google Scholar 

  32. Govorukha V.B. (2006). On the influence of the electric permeability on an interface crack in a piezoelectric biomaterial compound. Int. J. Solids Struct. 43: 1979–1990

    Article  Google Scholar 

  33. Suo Z., Kuo C.M., Barnett D.M. (1992). Willis J R Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40(4): 739–765

    Article  MATH  MathSciNet  Google Scholar 

  34. Zhang T.Y., Tong P. (1996). Fracture mechanics for a mode III crack in a piezoelectric material. Int. J. Solids Struct. 33: 343–359

    Article  MATH  Google Scholar 

  35. Ueda S. (2006). Transient response of a center crack in a functionally graded piezoelectric strip under electromechanical impact. Eng. Fracture Mech. 73: 1455–1471

    Article  MathSciNet  Google Scholar 

  36. Zhong Z., Meguid S.A. (1997). Analysis of a circular arc-crack in piezoelectric materials. Int. J. Fracture 84: 143–158

    Article  Google Scholar 

  37. McMeeking R.M. (1989). On mechanical stress at cracks in dielectrics with application to dielectric breakdown. J. Appl. Phys. 62: 3316–3122

    Google Scholar 

  38. Parton V.S. (1976) Fracture mechanics of piezoelectric materials, ACTA Astronautra 3, 671–683

    Google Scholar 

  39. Mikhailov G.K., Parton V.S.: Electromagnetoelasticity. Hemisphere, New York (1990)

  40. Pak Y.E. (1990). Crack extension force in a piezoelectric material. J. Appl. Mech. 57: 647–653

    MATH  Google Scholar 

  41. Deeg W.E.F.: The analysis of dislocation, crack and inclusion problems in piezoelectric solids, Ph.D. thesis. Stanford University (1980)

  42. Soh A.K., Fang D.N., Lee K.L. (2000). Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. Eur. J. Mech. Solid 19: 961–977

    Article  MATH  Google Scholar 

  43. Hao T.H. (2001). Multiple collinear cracks in a piezoelectric material. Int. J. Solids Struct. 38(50–51): 9201–9208

    Article  MATH  Google Scholar 

  44. Yang F.Q. (2001). Fracture mechanics for a Mode I crack in piezoelectric materials. Int. J. Solids Struct. 38: 3813–3830

    Article  MATH  Google Scholar 

  45. Ding H.J., Chen B., Liang J. (1996). General solutions for coupled equations for piezoelectric media. Int. J. Solids Struct. 33(16): 2283–2296

    Article  MATH  Google Scholar 

  46. Gradshteyn I.S. (1980). Ryzhik IM. Table of integral, series and products. Academic

    Google Scholar 

  47. Erdelyi A. (1954). Tables of integral transforms, vol. 1. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Gong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, ZG., Zhang, PW. & Wu, LZ. Solutions to a limited-permeable crack or two limited-permeable collinear cracks in piezoelectric/piezomagnetic materials. Arch Appl Mech 77, 861–882 (2007). https://doi.org/10.1007/s00419-007-0135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-007-0135-z

Keywords

Navigation